Dr. Hankenson works at the interface of basic and clinical research, encompassing what is commonly referred to as “translational research”. The primary goal of his research is to utilize basic science discoveries to inform new clinical treatments for orthopaedic regenerative medicine. In this respect, his laboratory integrates cutting-edge cell and molecular biological techniques with system-wide studies in animal models, particularly mice, to interrogate the most relevant questions in bone biology. His laboratory is particularly focused on understanding how a unique adult stem cell, the mesenchymal stem cell, differentiates to become either cartilage forming chondrocytes or bone forming osteoblasts. His laboratory collaborates with both basic scientists (biologists, engineers, computational biologists, and geneticists) and clinician-scientists (dentists, physicians, and veterinarians) at the University and around the globe.
Dr. Hankenson received his DVM (veterinary degree) from the University of Illinois (1992), an MS from Purdue University (1997) and his PhD from the University of Washington, Department of Biochemistry (2001). A former equine veterinarian, he began his independent research career at the University of Michigan in 2002. In 2006 he moved to the University of Pennsylvania, School of Veterinary Medicine, where he was the inaugural holder of the Dean W. Richardson Chair for Equine Disease Research. He returned to Michigan to join the Department of Orthopaedic Surgery and the Orthopaedic Research Laboratories in 2017 as a Professor of Orthopaedic Surgery. Dr. Hankenson is an American Society for Bone and Mineral Research (ASBMR) Young Investigator award winner (2002), received a John Haddad Fellowship from the ASBMR (2003), and in 2008 was the first veterinarian awarded the Fuller Albright award by the ASBMR. He is a past-president of Advances in Mineral Metabolism (AIMM) and is currently elected to the presidential line of the Orthopaedic Research Society (ORS), and in 2023 will assume the presidency of the ORS.