Randy Ten Haken

Randall K Ten Haken, PhD

Professor

1500 E Medical Center Dr
UH B2C432, SPC 5010
Ann Arbor, MI 48109-5010

734-936-8695

Administrative Contact

Linda Hearing
734-936-8695

Biography

Dr. Ten Haken has enjoyed a rich and varied career in applications of physics to radiation oncology. These range from early-career measurements of tissue perfusion via photon activation, followed by studies of therapeutic neutron beam dosimetry, on through additional investigations into photon and electron beam dosimetry followed by early innovations in 3-D treatment planning and up to mid-career assessments (together with direction of graduate students and post-docs) of the impact of geometric uncertainties and organ motion on radiation therapy treatments.

These later studies helped alert the community to the need to incorporate patient specific anatomy and setup uncertainties and organ motion into the treatment planning process. Most gratifying to himwas the development of a phase I dose escalation methodology for conformal radiation therapy treatments. Such strategies did not exist prior to the UM team's efforts, and a one-size-fits-all approach to radiation treatments was the standard (i.e., a single tumor dose regardless of tumor size, or more importantly normal tissue dose distributions).

Dr. Ten Haken was the primary innovator of an iso-toxicity dose escalation scheme that led to clinical trials that demonstrated the ability to safely deliver higher doses of radiation to tumors in the liver and lung than had previously been thought possible. Analyses of the results of those dose escalation studies led to the parameterization of normal tissue complication probability (NTCP) models for use in subsequent clinical trials. These published results were among the first of their kind. This led naturally to the desire to use these mathematical models of predicted outcomes directly in optimization of treatment plans. A series of papers demonstrated the strength and flexibility of these approaches. More recently, Dr. Ten Haken has collaborated with others toward the use of physiological imaging and other biomarkers into treatment response assessment of both tumors and normal tissues to irradiation, with the goal of incorporating these techniques into individualized response-based adaptive therapy regimens.

Areas of Interest

  • Dr. Ten Haken is a Principal Investigator/Program Director of a long-standing program project grant related to the Optimization of High Dose Conformal Therapy. The overall goal of that program project is to improve the effectiveness of radiation therapy for cancer patients by individualizing therapy beyond simple anatomy. Specifically, this research seeks to use both anatomical and physiological information acquired during treatment to re-optimize therapy based on the individual patient’s treatment history and response.

Clinical Interests

  • Optimization of radiation therapy treatment planning and delivery.

Honors & Awards

2010    Fellow, The American College of Radiology (FACR).
2006    Fellow, The American Society for Radiation Oncology (FASTRO)
2004    Fellow, The Institute of Physics (FInstP) 
1997    Fellow, The American Association of Physicists in Medicine (FAAPM)

Credentials

  • PhD, Nuclear Physics, University of Wisconsin – Madison, 1978
  • Board Certification: Therapeutic Radiological Physics, 1983-Present
  • Board Certification: Radiotherapy Physics, 1990, 2000, 2005, 2010, 2015

Grants

P01-CA59827, (PI: TenHaken/Lawrence), 05/15/14-04/30/19, National Cancer Institute, Optimization of High-Dose Conformal Therapy , Role: Co-Program Director/Principal Investigator: 

Published Articles or Reviews

Ten Haken publications

Selected from 224 publications

  • Ten Haken RK, Martel MK, Kessler ML, Hazuka MB, Lawrence TS, Robertson JM, Turrisi AT, Lichter AS: Use of Veff and iso-NTCP in the implementation of dose escalation protocols. Int J Radiat Oncol Biol Phys. 27:689-695, 1993.  dx.doi.org/10.1016/0360-3016(93)90398-F
  • Thomas E, Chapet O, Kessler ML, Lawrence TS, Ten Haken RK: The benefit of using biological parameters (EUD and NTCP) in IMRT optimization for the treatment of intrahepatic tumors. Int J Radiat Oncol Biol Phys. 62:571-578, 2005.  dx.doi.org/10.1016/j.ijrobp.2005.02.033
  • Feng M, Kong F-M, Gross M, Fernando S, Hayman JA, Ten Haken RK: Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys. 73:1228-1234, 2009.  dx.doi.org/10.1016%2Fj.ijrobp.2008.10.054  PMCID: PMC3381895
  • Gay HA, Jin J-Y, Chang AJ, Ten Haken RK: The utility of normal tissue to tumor a/b ratio for evaluated the isodoses of isoeffective radiotherapy treatment plans.  Int J Radiat Oncol Biol Phys. 85:e81-e87, 2013.  dx.doi.org/10.1016/j.ijrobp.2012.09.021
  • Luo Y, El Naqa I, McShan DL, Ray D, Lohse I, Matuszak MM, Owen D, Jolly S, Lawrence TS, Kong F-M, Ten Haken RK.  Unraveling biophysical interactions of radiation pneumonitis in non-small-cell lung cancer via Bayesian network analysis.  Radiother Oncol 123:85-92, 2017.  DOI: 10.1016/j.radonc.2017.02.004  PMCID: PMC5386796
Locations

1500 E Medical Center Dr
Ann Arbor, MI 48109-5010

734-936-4320