Brian Carlson, PhD

Research Associate Professor, Molecular & Integrative Physiology

NCRC B10 A126
2800 Plymouth Rd.
Ann Arbor, MI 48105

734-763-8057

Biography

Dr. Carlson is a Research Assistant Professor in the Department of Molecular and Integrative Physiology. His lab has focused over the past decade on using physics and engineering based approaches to understand and describe physiological systems in health and disease.

Dr. Carlson earned PhD in Mechanical Engineering in 2001 where his thesis focused on alterations in blood flow patterns within the microvasculature in sickle cell disease. After completing his PhD he conducted postdoctoral research at the University of Arizona working with Dr. Timothy Secomb and at the University of Washington working with Dr. James Bassingthwaighte. Before joining the University of Michigan, he was Assistant Professor of Physiology at the Medical College of Wisconsin.

Areas of Interest

Dr. Carlson’s specific research interests center on: 

(1) Blood flow regulation. Mechanical (pressure and shear stress), neuronal (sympathetic tone), metabolic (ATP release) and humoral (circulating small molecules, e.g. Angiotensin II) stimuli are integrated locally in the resistance vessels of the vasculature to govern blood flow.  Research on this topic focuses on utilizing experimental and theoretical methods to define the mechanisms transducing these stimuli into changes in vessel caliber and hence blood flow.

(2) Cardiovascular dynamics. Sympathetic tone plays an important role in the acute response of the cardiovascular system to changes in pressure and blood volume.  Understanding how left ventricular pressure and volume changes with respect to changing sympathetic tone is of great interest and whole body cardiovascular models along with experimental studies are being used to quantify this relationship.

(3) Stem cell derived cardiomyocytes. Pluripotent stem cells can be differentiated into cardiomyocytes to provide a source of patient specific cells for pharmacological testing.  How cardiomyocyte-like these cells are is still an open question.  Theoretical work coupled with experimental work with collaborators at University of Wisconsin-Madison and Washington University at St. Louis are helping to understand how these cells change in their electrophysiological function and force generation capabilities immediately after differentiation and during cell maturation in culture.

(4) Semantic-based methods of model description and sharing. Computational models are developed with different standards and conventions in labs all over the world.  In order to share, reuse and merge these models within the community, a method of attaching unambiguous biological and physics-based descriptors to components of the model is needed.  Semantic-based methodologies to solve this problem are being developed with collaborators at the University of Washington and Medical College of Wisconsin.

Honors & Awards

  • University of Washington Bioengineering Training Grant Postdoctoral Fellow
  • University of Arizona IGERT Postdoctoral Fellow

Published Articles or Reviews

  • Carlson B.E., J. O. Vigoreaux, and D. W. Maughan. Diffusion coefficients of endogenous cytosolic proteins from rabbit skinned muscle fibers. Biophysical Journal (in press), 2014.
  • Tewari, S. G., S. M. Bugenhagen, Z. Wang, D. A. Schreier, B. E. Carlson, N. C. Chesler, and D. A. Beard. Analysis of cardiovascular dynamics in pulmonary hypertensive C57BL6/J mice. Frontiers in Physiology 4:355, 2013.
  • Menzies, R. I., R. J. Unwin, R. K. Dash, D. A. Beard, A. W. Cowley, Jr., B. E. Carlson, J. J. Mullins, and M. A. Bailey. Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats. Frontiers in Physiology 4:305, 2013
  • Beard, D. A., M. L. Neal, N. Tabesh-Saleki, C. T. Thompson, J. B. Bassingthwaighte, M. Shimoyama, and B. E. Carlson. Multiscale modeling and data integration in the Virtual Physiological Rat Project. Annals of Biomedical Engineering 40:2365-2378. 2012.
  • Bassingthwaighte, J. B., D. A. Beard, B. E. Carlson, R. K. Dash, and K. Vinnakota. Modeling to link regional myocardial work, metabolism and blood flows. Annals of Biomedical Engineering 40:2379-2398, 2012.
  • Carlson, B. E., and D. A. Beard. Mechanical control of cation channels in the myogenic response. American Journal of Physiology-Heart and Circulatory Physiology 301:H331-H343, 2011.
  • Mesrobian, H. G. O., M. E. Mitchell, W. A. See, B. D. Halligan, B. E. Carlson, A. S. Greene, and B. T. Wakim. Candidate urinary biomarker discovery in ureteropelvic junction obstruction: a proteomic approach. Journal of Urology 184:709-714, 2010.
  • Carlson, B. E., J. C. Arciero, and T. W. Secomb. Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. American Journal of Physiology-Heart and Circulatory Physiology 295:H1572-H1579, 2008.
  • Arciero, J. C., B. E. Carlson, and T. W. Secomb. Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses. American Journal of Physiology-Heart and Circulatory Physiology 295:H1562-H1571, 2008.
  • Gennari, J. H., M. L. Neal, B. E. Carlson, and D. L. Cook. Integration of multi-scale biosimulation models via light-weight semantics. Pacific Symposium on Biocomputing 2008:414-425, 2008.
  • Carlson, B. E., J. C. Anderson, G. M. Raymond, R. K. Dash, and J. B. Bassingthwaighte. Modeling oxygen and carbon dioxide transport and exchange using a closed loop circulatory system. In 34th Annual Conference of the International Society of Oxygen Transport to Tissue. K. A. Kang, D. K. Harrison, and D. F. Bruley, editors. Springer-Verlag Berlin, Lousville, Kentucky, U.S.A. 353-360, 2006.
  • Carlson, B. E., and T. W. Secomb. A theoretical model for the myogenic response based on the length-tension characteristics of vascular smooth muscle. Microcirculation 12:327-338, 2005.
  • Berger, S. A. and B. E. Carlson. Sickle cell blood flow in the microcirculation. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society 7:5057-5060, 2004.

Web Sites