<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC</th>
<th>OBJECTIVES</th>
<th>INSTRUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 29</td>
<td>Lecture 1</td>
<td>Introduction</td>
<td>Dr. Laouar</td>
</tr>
</tbody>
</table>
| | | • Understand course requirement
• Meet the team
• Process of review session and exam preparation
• Introduction to the world of microbes and immune cells | |
| Aug 31 | Lecture 2 | Generation of the Immune System | Dr. Laouar |
| | | • Describe components of the immune system including cells and organs
• Introduce the concept of stem cell research
• Properties of hematopoietic stem cell (HSC)
• Describe the process of Hematopoiesis
• Describe lymphoid and myeloid progenitors
• Provide examples of diseases treated with HSC therapy | |
| Sep 5 | Lecture 3 | Innate defense | Dr. Laouar |
| | | • Describe the 1st line of defense:
- Anatomic barriers
- Physiologic barriers
- Chemical barriers
- Microflora barriers
- Inflammatory barriers
• Introduce the 2nd line of defense:
- Properties of Macrophages
- Properties of Granulocytes
- Properties of Natural Killer cells
- Properties of Dendritic cells | |
| Sep 7 | Lecture 4 | Mechanisms and consequence of sensing Pathogens | Dr. Laouar |
| | | • Explain the principal of Pathogen Associated Microbial Pattern (PAMP) recognition
• Study of some examples of Toll-like Receptor (TLR), Nod-like Receptor
• Introduce the concept of cytokine network
• Define what is a cytokine and a cytokine receptor
• Provide some examples to study the secretion, action, and roles of cytokine
• Nomenclature of cytokines
• Describe the principal of cytokine storm | |
| Sep 12 | Lecture 5 | T cells and Antigen presentation | Dr. Laouar |
| | | • Explain the functions and attributes of the adaptive immune system
• Describe properties of T lymphocytes
- Structure of TCR
- Structure of TCR/CD3 Complex
- Structure of MHC Co-receptors
- Antigen Peptide Processing
• Explain the process of antigen presentation
- Structure of MHC molecules
- Antigen Peptide Processing
- MHC class I presentation
- MHC class II presentation
• Overview of CD4 and CD8 T cell responses
• Explain difference between antigens and super-antigens | |
| Sep 14 | Lecture 6 | | Dr. Laouar |
| | | • Describes the steps of T cell development in the thymus including:
<p>|</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Topic</th>
<th>Content</th>
<th>Instructor</th>
</tr>
</thead>
</table>
| Sep 19 | Lecture 7 | Requirement & Consequences of T cell | - Define signal 1 and 2
- Explain the process of T cell anergy
- Describe elements of the immunological synapse
- Describe the process of T cell clonal expansion
- Describe the process of T cell memory | Dr. Laouar |
| | | Activation | | |
| Sep 21 | Lecture 8 | B cells and antibodies -I | - Define humoral immunity
- Describe the structure, class, and form of antibodies
- Explain the difference between secretory and membrane-bound antibodies
- Describe the process of VDJ recombination
- Explain the process of B cell development
- Explain how B cells are activated
- Discuss the importance of Plasma B cells and memory B cells | Dr. Laouar |
| Sep 26 | Lecture 9 | B cells and antibodies -II | - Describe the role of Immunoglobulins
 - Immobilization
 - Agglutination/Precipitation
 - Neutralization
 - Opsonization
- Explain the process of Ig Class switching
- Explain how memory B cells form
- Provide comparison between T and B cells
- Provide comparison between antibodies and TCR | Dr. Laouar |
| Sep 28 | Lecture 10| Vaccination & Immunotherapy | - Describe syndromes of immunodeficiency
- Describe disorders of autoimmunity
- Describe disorders of autoimmunity
 - Describe the principal of CAR Therapy
 - Cytokine therapy (IL-15)
 - Inhibitor of TGFb pathway
- Describe the principal of Vaccination | Dr. Laouar |
| Sep 29 | Pre-exam | Optional Virtual mode | 6-7pm | Dr. Laouar |
| | discussion| | | |
| Oct 2 | Exam Unit 1| Virtual mode | - Open book exam
- 50 questions
- 2 hours | Dr. Laouar |
| OCT 3 | Lecture 1 | Introduction to Viruses | - Virus structure
- Viral genomes
- How do we study and assay viruses | Dr. Imperiale |

End of the Immunology Module
<table>
<thead>
<tr>
<th>OCT 5</th>
<th>Principles of Replication I</th>
<th>OCT 10</th>
<th>Principles of Replication II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 2</td>
<td>Viral disease burden, Outcomes of infection</td>
<td>Lecture 3</td>
<td>Receptors, How viruses get into cells, How viruses traffic within cells, Early stages of the viral life cycle, Genome replication</td>
</tr>
<tr>
<td>OCT 12</td>
<td>Lecture 4</td>
<td>OCT 19</td>
<td>Lecture 5</td>
</tr>
<tr>
<td>Viral Pathogenesis</td>
<td>transmission, Epidemiology, Immune response, Immune evasion, How viruses cause disease</td>
<td>Influenza</td>
<td>Viral genetics, Zoonosis, Vaccines</td>
</tr>
<tr>
<td>OCT 24</td>
<td>Lecture 6</td>
<td>OCT 26</td>
<td>Lecture 7</td>
</tr>
<tr>
<td>Herpesviruses</td>
<td>Persistent infection, Latency and reactivation</td>
<td>HIV and Other STIs</td>
<td>Retroviruses, Chronic infections, Vaccine hurdles, Viral reservoirs, Antivirals and resistance</td>
</tr>
<tr>
<td>OCT 31</td>
<td>Lecture 8</td>
<td>OCT 31</td>
<td>Lecture 8</td>
</tr>
<tr>
<td>Oncogenic Viruses</td>
<td>Cellular growth control, Oncogenes, Tumor suppressor genes, Viral oncogenes, Vaccines</td>
<td>Oncogenic Viruses</td>
<td>Cellular growth control, Oncogenes, Tumor suppressor genes, Viral oncogenes, Vaccines</td>
</tr>
<tr>
<td>Nov 2</td>
<td>Emerging Viruses and SARS-CoV-2</td>
<td>Nov 2</td>
<td>Emerging Viruses and SARS-CoV-2</td>
</tr>
<tr>
<td>Lecture 9</td>
<td>Insect vectors, Central nervous system viruses, Hemorrhagic viruses, COVID-19, Zoonoses, Vaccines and antivirals, Future spillovers</td>
<td>Lecture 9</td>
<td>Insect vectors, Central nervous system viruses, Hemorrhagic viruses, COVID-19, Zoonoses, Vaccines and antivirals, Future spillovers</td>
</tr>
<tr>
<td>Nov 3</td>
<td>Pre-exam discussion</td>
<td>Nov 3</td>
<td>Pre-exam discussion</td>
</tr>
<tr>
<td>Optional Virtual mode</td>
<td>6-7pm</td>
<td>Optional Virtual mode</td>
<td>6-7pm</td>
</tr>
<tr>
<td>Nov 6</td>
<td>Open book exam</td>
<td>Nov 6</td>
<td>Open book exam</td>
</tr>
<tr>
<td>Exam Unit 2</td>
<td>Virtual mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>End of the Virology Module</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Nov 7** Lecture 1 | Intro to Bacteria | • Describe bacterial size, shape & aggregation patterns
• Describe the major bacterial cell structures & their functions
• Understand differences between Gram positive and Gram-negative bacteria and the basis for the Gram stain
• Understand basics of bacterial genetics
• How do bacteria cells & genetics differ from those of eukaryotic cells? | Dr. Hanna |
| **Nov 9** Lecture 2 | Antibiotics & Resistances | • Understand the underlying principles for anti-bacterial therapeutics
• Describe the major classes of antibiotics, their cellular targets and modes of action
• Understand the causes and consequences of current & emerging resistances to antibiotics
• Describe the genetics and physiology of antibiotic resistance | Dr. Hanna |
| **Nov 14** Lecture 3 | Bacterial Pathogens & their Virulence Factors | • Know & apply the principles of Koch’s Postulates
• Describe the major classes of virulence factors, with examples, & and their specific contributions to infections
• Describe the molecular actions of bacterial toxins and their roles in pathology during infection | Dr. Hanna |
| **Nov 16** Lecture 4 | The Staphylococci | • Describe the various infections & associated pathologies of Staphylococcal infections
• Describe the virulence mechanisms of *S. aureus* and *their specific roles in infections*
• Describe the role of host during *S. aureus* infections | Dr. Hanna |
| **Nov 21** Lecture 5 | The Streptococci & Pneumococci | • Describe the various infections & pathologies for these major human pathogens
• Understand and describe the roles of the major *S. pyogenes* virulence factors
• Understand and describe the roles of the major *S. pneumoniae* virulence factors
• Describe the roles of host during these infections | Dr. Hanna |
| **Nov 28** Lecture 6 | Corynebacterium & Listeria | • Compare and contrast these pathogens, their infections & associated pathologies
• Describe *C. diphtheriae* specific virulence factors & mechanisms
• Describe *L. monocytogenes* specific virulence factors & mechanisms
Compare & contrast the various roles of the host immune responses for each infection | Dr. Hanna |
| **Nov 30** Lecture 6 | GI Infections - I | • Describe infections caused by *H. pylori*, *V. cholerae* & *C. difficile*
• Understand specific virulence factors employed by each pathogen | Dr. Hanna |
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 5</td>
<td>Lecture 8 GI Infections - II</td>
<td>• Be able to differentiate between each, and compare & contrast with each other (including those from next lecture) • Describe infections caused by the E. coli & the Shigella • Understand specific virulence factors employed by each pathogen • Be able to differentiate between each, and compare & contrast with each other (including those from previous lecture)</td>
<td>Dr. Hanna</td>
</tr>
<tr>
<td>Dec 7</td>
<td>Lecture 9 The Mycobacteria</td>
<td>• Describe the infections caused by M. tuberculosis • Describe the infection caused by M. leprae • Describe the virulence strategies for each • Describe the role of the host for each</td>
<td>Dr. Hanna</td>
</tr>
<tr>
<td>Dec 8</td>
<td>Pre-exam discussion Optional Virtual mode</td>
<td>6-7pm</td>
<td>Dr. Hanna</td>
</tr>
<tr>
<td>Dec 11</td>
<td>Exam Unit 3 Virtual mode</td>
<td>• Open book exam • 50 questions • 2 hours</td>
<td>Dr. Hanna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End of the Bacteriology Module</td>
<td></td>
</tr>
<tr>
<td>Dec 17</td>
<td></td>
<td>END of COURSE</td>
<td></td>
</tr>
</tbody>
</table>