Intensity Modulated Radiation Therapy (IMRT) QA Rotation

Resident: ________________________________

Rotation staff mentor/ advisor(s): Dale Litzenberg, Kelly Younge, and Jean Moran (supplemental training)

Rotation duration: 2 months
Rotation Dates: _______________________

A medical physics resident in radiation oncology at the University of Michigan will be expected to demonstrate the following competencies associated with IMRT QA. These are considered the minimum standards.
Contents Outline

Knowledge Factors
- List of reading assignments
- QA Discussion Points

Practical Factors
- Discussion points
- Training and observation
- Exercises

Case Participation

Bi-monthly Progress Review

Knowledge Factors – List of reading assignments

11. TG 119: IMRT Commissioning

12. TG 120: IMRT Measurements
Knowledge Factors – QA Discussion Points
Discuss and demonstrate understanding of the following topics:

1. The distinctions between patient-specific QA, equipment QA, and process QA.

 Signature / Date

2. Distinctions of different types of IMRT planning and delivery.
 a. Optimization goals and algorithms
 b. Accuracy of dose calculation algorithms for optimization compared to final calculation
 c. Field-in-field compared to beamlet-based

 Signature / Date

3. Various IMRT delivery techniques
 a. Physical compensation
 b. Tomotherapy
 c. MLC-based IMRT (SMLC & DMLC delivery types)
 i. Tongue and groove
 ii. Leaf travel limits
 iii. Rounded leaf ends
 iv. Transmission
 v. QA
 d. Static-gantry IMRT vs. VMAT

 Signature / Date

4. QA measurements
 a. Composite measurements
 b. Gantry-zero measurements

 Signature / Date

5. Detectors for QA Measurements
 a. Detector arrays

 Signature / Date

b. Ion chambers
c. Film, processing and digitization
d. Commissioning detectors
e. Strengths and weaknesses of detectors
f. Absolute vs. relative comparisons

Signature / Date

6. QA for advanced delivery techniques – machine-based
 a. Commissioning of IMRT or VMAT
 i. Appropriate detectors for commissioning
 ii. Frequency, type, spatial resolution, and accuracy considerations
 b. Implementing an IMRT QA program

7. Patient-specific QA process and measurements
 a. Calculations on phantom geometries
 b. Selection of detectors
 c. Ion chamber placement, when used
 d. Plan validation following the transfer process.

 Signature / Date

8. QA Analysis, Evaluation and Criteria
 a. What is calced and what is measured?
 Methods of comparison and evaluation (e.g., Gamma, DTA, and Gradient compensation)
 b. Calc and measurement uncertainties
 c. Evaluation criteria
 d. Limitations of measurement-based QA

 Signature / Date

9. Trouble Shooting
 a. Modulation
 b. Chamber placement
 c. Verifying shifts
 d. Film, processor and digitization problems
 e. Calibration issues

 Signature / Date
Practical Factors – Training and Exercises

Over the course of training, the Resident should be able to perform the procedures below independently:

At least 3 IMRT QA calculations on the ArcCHECK, including any necessary shifts.

<table>
<thead>
<tr>
<th>Signature / Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perform at least 2 IMRT QA calculations and measurements on phantoms containing an ion chamber (one with micro-chamber, one with Farmer-type chamber), including any necessary shifts.

<table>
<thead>
<tr>
<th>Signature / Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perform at least 1 IMRT QA calculations and measurements on phantoms containing film.

<table>
<thead>
<tr>
<th>Signature / Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Export all calculation data for analysis.

<table>
<thead>
<tr>
<th>Signature / Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measure four IMRT QA cases using the ArcCHECK.

<table>
<thead>
<tr>
<th>Date</th>
<th>Site</th>
<th># of beams; dose per fraction</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measure two cases with an ion chamber.

<table>
<thead>
<tr>
<th>Date</th>
<th>Site</th>
<th># of beams; dose per fraction</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>