WHAT EMG CAN TELL YOU AND WHAT IT CAN'T

Anthony Chiodo, MD, MBA Michigan Medicine Department of Physical Medicine and Rehabilitation

Purpose of Nerve Conduction Studies

Make diagnosis of nerve injury

- Identify pattern of nerve conduction studies that are abnormal to make diagnosis; i.e. sural, peroneal motor, and tibial motor amplitude loss in lumbosacral plexopathy
- Identify pattern of abnormalities in nerve conduction studies to make diagnosis; i.e. sensory amplitude loss in dorsal ganglionopathy
- Rule out diagnoses

Keys to Diagnosis

- Pattern of abnormality
- Sites of abnormality
- Areas of normal function

Nerve Conduction Study Measurements

- Amplitude: a measure of the number of axons
- Distal latency: a measure of the speed of the fastest fibers distally
- Conduction velocity: a measure of the speed of the fastest fibers between two points

Nerve Conduction Study Slowing

- Slowing does not always equal demyelination: the exception is in large fiber axonal loss
- Demyelination noted by slowing across a segment (>20% reduction), proximal amplitude decrement (motor responses > 20% reduction), and temporal dispersion (distal response < 70% proximal response duration)
- Key again is pattern of abnormality: focal vs. multi-focal vs. diffuse, proximal vs. distal, motor vs. sensory

Other Ways to Utilize Nerve Conduction Studies

- Repetitive nerve stimulation
- F-response latency: alpha-motor neuron response
- H-reflex: tibial mono-synaptic reflex arc

Types of Studies

- Sensory: stimulate nerve, recording electrode over nerve, reference electrode 3-4 cm distal
- Motor: stimulate nerve, recording electrode over motor endplate, reference electrode over electrically neutral site
- Mixed: midpalmar responses: stimulate nerve, recording electrode over nerve, reference electrode 3-4 cm distal

Influences on Nerve Conduction Studies

- Height/Length
- Temperature
- Display Gain
- Stimulus Intensity
- Measurement Errors
- Age
- Volume conduction
- Distance from endplate in Motor NCS

Variation in Nerves and Segments

- Longer nerves conduct more slowly
- Conduction velocity faster in proximal segments: larger fibers, warmer temperatures, increased internodal distances

Upper Extremity Studies

- Median: sensory, motor, and mixed
- Ulnar: sensory(2), motor, and mixed
- Radial: sensory and motor
- Lateral antebrachial cutaneous: sensory
- Musculocutaneous: motor
- Medial antebrachial cutaneous: sensory
- Accessory: motor
- Others: axillary, suprascapular, long thoracic

Lower Extremity Studies

- Sural: sensory
- Peroneal: sensory and motor(2)
- Tibial: motor
- Saphenous: sensory
- Lateral femoral cutaneous: sensory
- Femoral: motor

Other Nerve Conduction Studies

Phrenic: motor

Needle Examination

- Discover the pattern of motor axonal loss
- Need to evaluate a pattern of muscles that will make the diagnosis and exclude likely alternative diagnoses
- So, need to have experience in needle sampling a variety of muscles to make the diagnosis

What to look for on Needle EMG

- What does the muscle feel like when you enter the muscle?
- What is the spontaneous activity of the muscle?
- Is spontaneous activity the same throughout the muscle?

Spontaneous Activity

- Normal: muscle should be at rest
- Evidence of muscle fiber denervation: fibrillation and positive waves
- Evidence of motor unit excitability: fasciculations and myokymic discharges
- Evidence of muscle fiber irritability: complex repetitive discharges, myotonic discharges

Insertional Activity

- Look for the same responses as on spontaneous activity
- Motor fiber and unit excitability in response to an injury current

Motor Unit Evaluation

Recruitment

- Number of units firing per unit of strength generated
- Rate of firing (next order fires at less than 10 Hz)
- Full interference pattern
- Appearance

Motor Unit Appearance

Percent polyphasia (less than 20%)

- Motor unit variability
- Amplitude (large or small dependent on muscle)
 - Motor unit variability
- Duration

Appearance and Time Frame in Axonal Disorders

- Wallerian degeneration in 1-3 weeks depending on length of nerve
- Initially NCS will be normal but recruitment will be impaired (not necessarily demyelinating, just not completed Wallerian degeneration)
- Begin to see motor unit polyphasia and duration changes in 4-6 weeks
- Begin to see motor unit amplitude changes in 3 months

INTERRATER RELIABILITY OF THE NEEDLE EXAMINATION IN LUMBOSACRAL RADICULOPATHY Kendall and Werner, Muscle and Nerve, 2006.

- Unblinded electromyographer using clinical and EMG data
- Blinded electromyographer using needle examination data
- 6 cases reviewed by 66 examiners
- 21 faculty and 10 residents
- Diagnostic agreement was 46.9%
- 60.5% faculty level
- 28.5% resident level

Results

- Faculty-level examiners: twice as likely to agree on the final diagnosis as resident-level examiners
- Odds ratio, 1.9; P 0.019
- Correct diagnosis were more confident in their diagnostic decision than those who chose the incorrect diagnosis
- Mean 7.2/10 certainty with correct diagnosis vs. 4.8 certainty with incorrect diagnosis, P 0.0004

Conclusion

- Extensive training is necessary for electromyographers
- Abnormal spontaneous activity and MUAP analysis

The clinician effect on "objective" technical components of the electrodiagnostic consultation Yamakawa, Haig, et al, 2007.

- 150 subjects (55-79): controls, back pain or lumbar stenosis and 88 follow-up studies
- Blinded electromyographer (5 muscles and paraspinal mapping)
- Unmasked physiatrist performed a very limited electromyogram of a single paraspinal level randomly chosen ahead of time by an assistant

Results

- If the unmasked thought the patient had stenosis, they scored higher (p < .001)
- Bias was related to degree of training (most trained/experienced had significantly less subjectivity when unmasked)

Issues in Training

- Experience in surface anatomy and needle placement
- Experience in working with patients in an anxiety provoking environment
- Experience with nerve conduction studies
- Experience with machine
- Experience in waveform analysis
- Experience in clinical application
- Experience with maintaining objectivity

Putting it all Together: Summary

- Pattern of nerve conduction studies: abnormal and normal
- Pattern of needle examination studies: abnormal and normal

Putting it all Together: Interpretation What EMG Can Tell You

- Normal or abnormal study?
- Electrodiagnostic evaluation of what disorder?
- Severity
- Focal or diffuse
- Demyelination (focal or diffuse) or axonal loss
- What time frame for the axonal loss?
- Ruled out what other pertinent conditions?
- Clinical correlation statement

Condition	Sensitivity	Specificity
Carpal Tunnel Syndrome	80	90
AIDP	72	64
CIDP	75	75
Mild lumbar stenosis	48	100
Severe lumbar stenosis	90	100
Radiculopathy	55-80	90
Myasthenia Gravis	76	100

What EMG Can't Tell You

- Normal study does not mean that the problem is not there.
 - Radiculopathy
 - Compression neuropathies
 - Early demyelinating neuropathies
 - Non-necrotizing myopathies (steroids, statins)
 - Was enough of a study done (NMJ disorders, ALS)
- Normal study does not mean that the patient's problem is not physiological
 - Although commonly used in medico-legal situations
- Abnormal study does not always help you with etiology.

Questions?

