Insights from the NIH Undiagnosed Diseases Network

World Rare Disease Day Symposium

University of Michigan February 25, 2022

William A. Gahl, MD, PhD Director, NIH Undiagnosed Diseases Program

Acknowledgments

Director of Pediatric UDP: Cynthia Tifft, MD, PhD Director of Bioinformatics: David Adams, MD, PhD UDP Chief Neurologist: Camilo Toro, MD Support from NHGRI, the NIH Office of Rare Diseases Research, the NIH Clinical Center, and the NIH Common Fund, Office of the Director

50-100 dedicated support personnel and volunteer consultants at NIH.

Kind and collaborative patients and families!

- Goals:
 - To assist patients with unknown disorders reach an accurate diagnosis
 - To discover new diseases that provide insight into human physiology and genetics

Intramural UDP Operations

- Applicants submit medical records
- Referring physician sends summary letter
- UDP Director triages submitted records
- Intramural NIH consultants review records
- UDP Director makes final disposition
- Patients/physicians receive a standard letter; advice conferred in ~25% of cases
- If accepted, 1-week inpatient CC admission

UDP Investigations

- 1. Customized (Personalized) patient phenotyping to rule out known diseases.
- 2. Genetic studies
 - a. Commercial testing
 - **b.** SNP arrays
 - c. Exome and genome sequencing
- 3. Functional studies (assays, model systems)

UDP Numbers

- Medical Records: >4500
- Admitted & Evaluated: ~1500
- Children:
- Neurological:
- Publications
- Some diagnosis:

~40% ~50% >190 ~30%

UDP 10898

- 18 month female; failure to thrive 2.5 mo
- Intestinal dysmotility; TPN dependent
- Cutaneous hypopigmentation; poor visual acuity
- Hepatosplenomegaly; nephromegaly
- Storage in liver, duodenum, colon
- Hypotonia; severe developmental delay
- Brain MRI: Delayed myelination
- Frequent respiratory infections and UTIs
- NO osteopetrosis

18 months

Delayed Myelination

Dr. Austin Larson, Children's Hospital of Colorado

Foamy Histiocytes

Cell Inclusions

Vacuoles

Fibroblast Vacuoles

Patient 2

- 14 month Ghanaian male
- Cutaneous hypopigmentation
- Hepatosplenomegaly; nephromegaly
- Storage documented in kidney
- Developmental delay
- Brain MRI: Delayed myelination
- Hearing loss
- NO osteopetrosis

Delayed Myelination

Kidney Macrophages Inclusions

Lymphocyte Inclusions

Fibroblast Vacuoles

Exome Analysis

- BOTH children have a *de novo* mutation in *CLCN7; i.e.,* c.2144G>A; p.Y715C
- CLCN7: chloride transporter on late endosome/lysosome
- Chloride balances the protons that acidify the lysosome
- CLCN7 loss of function mutations cause osteopetrosis
- Our patients have one normal allele & NO osteopetrosis
- ?Gain of function mutation?

Alissa Becerril, Joseph Mindell, NINDS

Chloride Currents in Xenopus Oocytes Expressing Wild-type and Y715C CIC-7

Oregon Green Fluorescence Measuring Fibroblast Lysosomal pH

Mary Weston, Joseph Mindell, NINDS Wild-type Fibroblasts Transfected with CLCN7-Y715C Recapitulate the Patients' Cellular Phenotype: Large Cytoplasmic Vacuoles

Mary Hackbarth

A Mouse with Knock-in of the Human CICN7 Y715C Paralogue (Y713C) Mimics the Human Phenotype

Chloroquine Alkalinizes Endosomal and Lysosomal Compartments

LysoTracker Red Staining

Alissa Becerril, Joseph Mindell

Chloroquine Treatment

- Dr. Debra Day-Salvatore, St. Peter's Hospital, New Brunswick, NJ
- IRB-approved protocol; written informed consent
- 1 or 2 mg/kg weekly chloroquine Gtube
- Chitotriosidase fell 26% (5690 to 4184 nmol/h/ml)
- Decreased kidney size on ultrasound
- Increased energy and activity
- Both children eventually succumbed.

New Disease-Gene Associations as of 2019

1. Arterial calcifications	NT5E
2. Spastic paraplegia, spinocerebellar ataxia	AFG3L2
3. Skin/skeletal lesions, FGF23 abnormal	NRAS
4. Upregulated interferon signaling	IFIH1
5. Stroke and vasculopathy	ADA2
6. Epileptic encephalopathy	AARS
7. Ablepharon macrostomia	TWIST2
8. York Platelet Syndrome	STIM1
9. Developmental delays	CAD
10. Cirrhosis, developmental delays	PP1R15B
11. Dystonia	KMT2B
12. Neurodevelopmental disorder	EBF3
13. Mitochondrial encephalopathy	TIMM50
14. Developmental and growth delays	GARS
15. Infantile parkinsonism	WARS
16. Developmental neuroregression	UBTF
17. Saul-Wilson syndrome	COG4
18. Microcephaly, seizures, cerebral atrophy	VARS
19. Developmental delays, dysmorphisms	TRAF7
20. Delays, cardiac defects, dysmorphisms	TMEM94
21. Delays, hair & liver defects, dysmorphisms	CCDC47
22. Neuropathy, ataxia, dystonia	COX20
23. Delays, microcephaly, brittle hair & nails	CARS

Rare Diagnoses

- Kearns-Sayre with cerebral folate deficiency
- Neuroaxonal dystrophy with spheroids
- Call-Fleming syndrome (vascular strokes)
- CSF tetrahydrobiopterin deficiency
- Spastic paraplegia due to SPG7 mutations
- Hereditary Spastic Paraplegia with SPG4 muts
- Stargardt's due to ABCA4 mutations
- Noonan syndrome due to PTEN mutation
- Amyotrophic lateral sclerosis with SOD1 mut
- GM1 gangliosidosis due to GLB1 mutations
- Progressive supranuclear palsy
- Joubert syndrome

Very Rare Diagnoses

- Telomerase deficiency
- IgG4 sclerosing fibrosis
- Anti-synthetase syndrome
- NOD2 mutations (father & child)
- FOXG1 mutation in 2 year old
- Dejerine-Sottas syndrome/hypertrophic neuro
- POLG1 in late-onset ataxia
- DNAH1 ciliopathy
- SLE with cerebellar ataxia and anti-GWB Abs
- Smith-Magenis syndrome with RAI1 mutation
- Pitt-Hopkins syndrome with TCF4 mutation
- Amyloid myopathy
- Dystonia, dysarthria due to ND3 mito mut

Very Very Rare Diagnoses

Myoclonus epilepsy without renal failure – due to *SCARB2* mutations (5 in world)
 Ichthyosis Follicularis with Atrichia and Photophobia (IFAP) with *MBTPS2* mutations (6 families in world)
 Neurodegeneration with brain iron due to

c19orf12 mutations (20 families)

- ALS-Frontotemporal Dementia due to c9orf72 expansion

- Cytosolic PEPCK deficiency due to PCK1 muts

- KDCT7 in two sibs with ataxia, Sz (2 families)

Nephrolithiasis & 24-hydroxylase deficiency (few families)

Very Very Rare Diagnoses

 Congenital Disorder of Glycosylation type 2b (2nd and 3rd cases in world then) Adducted Thumb-Clubfoot Syndrome & CHST14 mutations (1st case in U.S.) Spinocerebellar ataxia, myoclonic epilepsy & AFG3L2 muts (1st AR case) Autosomal Dominant Leukodystrophy & LMNB1 duplication (~10 in world then) - Adenylosuccinate lyase def. (~60 cases) - Hereditary Muscular Neuropathy type 6 due to IGHMBP2 muts (oldest pt. known) - Fatty acid 2-hydroxylase def. (~50 cases)

<u>More Diagnoses - 1</u>

- Leukodystrophy & spheroids with CSFR1 muts
- Leucoencephalopathy, Calcifications, and Cysts due to SNORD118 mutations
- Oculodentodigital Dysplasia due to GJA1 mutation
- Dysmorphisms & delays due to TRAF7 mutation
- Microcephaly, dysmorphisms, autism spectrum due to CTNNB1 de novo mutation
- Dysmorphisms & delays due to KMT5B de novo
- Vomiting, ITP, delays due to DDX3X mutation
- Neu-Laxova Syndrome 2 due to PSAT1 muts.

<u>More Diagnoses - 2</u>

- Tremor and spasticity due to GAN de novo mutation
- Connective tissue and GI disorder due to TUBB2B de novo
- Mitochondrial disorder due to MTATP6 mutation
- Kleefstra Syndrome due to EHMT1 de novo
- Fahr's due to SLC20A2 mutations
- XMEN (X-linked immunodef, EBV infection, neoplasia due to *MAGT1* mutation
- Relapsing polychondritis
- Hereditary Spastic Paraplegia 76 & CAPN1 muts
- AR Limb-Girdle MD 2Z due to POGLUT1 muts

More Diagnoses - 3

- Leigh syndrome and mitochondrial complex I deficiency due to biallelic NDUFAF6 mutations
- SMA type II-III with no SMN1 and 3 copies of SMN2
- VEXAS (<u>Vacuoles</u>, <u>E</u>1 enzyme, <u>X</u>-linked, <u>Autoinflammatory</u>, <u>Somatic</u>) in several patients with somatic mutations in <u>UBA1</u>
- Dysmorphisms, hepatitis, bruising, lipodystrophy due to C1r (complement subcomponent) mutation
- Late-onset metachromatic leukodystrophy
- 15 year old boy with ataxia, dysarthria, weakness due to a de novo *IRF2BPL* mutation
- Sanfilippo C with only neurodegeneration

<u>More Diagnoses - 4</u>

- Neurodegeneration due to bariatric surgery and methotrexate treatment causing folate deficiency
- Demyelinating peripheral neuropathy, CMT-like, due to a de novo *POLR3B* mutation
- Cardiac abnormalities and dysmorphisms due to iduronidase deficiency (mild Hurler syndrome)
- Sensorimotor neuropathy due to AAGGG expansions in the RFC1 gene
- Developmental and intellectual delays, ataxia, dysarthria, seizures due to a *DNML1* mutation
- Autoimmune polyglandular syndrome type 2 due to a de novo BACH2 mutation

Treatable Diagnoses

65 Year-old Man with Recurrent Meningitis

- Age 59 First episode of meningitis; followed by autoimmune sensorineural hearing loss
- Acute: Headache, unsteady gait
- Chronic: Uses wheelchair, memory decline
- Age 59-65 27 more episodes
- LPs: Lymphocytic pleocytosis
- Aseptic; steroid responsive
- Negative imaging & rheumatology evaluation
- Normal labs, including CRP, ESR

65 Year-old Man with Recurrent Meningitis

 Exomes: Thr915Met in NLRP3
 NLRP3: Familial cold autoinflammatory syndrome or Muckle-Wells syndrome

 Heterozygous; gain of function

Donna Novacic, MD

 NLRP3 is part of the Inflammasome.
 A gain of function mutation will increase IL-1 activity.

We treated with the IL-1 receptor inhibitor, anakinra In 4 hours, he walked and talked normally

UDP 11763: 3 Year-old Boy with Irritability

- Global developmental delays
- Macrocephaly (>95%)
- Short stature (<5%)
- Dysmorphic features
- Dysplastic pulmonic valve
- Irritable, aggressive & injurious behavior
- Optic atrophy
- Interstitial lung disease
- CSF Tetrahydrobiopterin 8 (18-50 nmol/L)

Precilla D'Souza, Cynthia Tifft

Genetics

Negative or Normal

 PIK3CA, NRAS, Noonan Spectrum Panel, Chromosome Analysis

Positive or Candidates

- Chromosome Microarray 277 KB interstitial deletion of 7q11.22-q11.22
- Baylor: SETD2, IL1RAPL1, POLA1
- NIH Pipeline: GABRE, JMJC1C, KLHL8, PSMC3IP, SLC2A11

Cranial X-Rays and Brain MRI Under Anesthesia

- Copper-beaten skull, pancraniosynostosis
- Paucity of subarachnoid space and thinning of the ventricles

 Frontal lobes herniating through the orbits

Gilbert Vezina, MD

Emergency Decompression Surgery by World Expert Saved this Boy's Life

Dr. James T. Goodrich MD, PhD 1946-2020 Director, Pediatric Neurosurgery Montefiore Medical Center Professor at Albert Einstein College of Medicine Died of Covid in 2020 caring for others.

UDP 10656 – A 10 Year-old Girl with Necrotizing CNS Vasculitis

- Normal early development
- Age 6 years: Headache, pharyngitis, ataxia
- MRI: Cerebellar FLAIR enhancing lesions
- CSF: 10 WBCs (88% lymphs), gluc 58, protein 31, 2 RBC
- Several clinical & MRI relapses; headaches, ataxia
- 2010: Cerebellar biopsy: T-cell perivascular infiltrate
- 2011 Thalamus biopsy: Similar
- Refractory to steroids, IVIG, cyclophosphamide, Cellcept, natalizumab

NIH UDP Admission - 2015

- Not infectious, oncologic, paraneoplastic, rheumatologic
- Flow cytometry (Dr. Bibi Bielekova NIAID)

WBCs/ml	46 000
CSF	(ref range <5000 cells/ml)
Innate	+++ granulocytes and monos

- Genetic testing: Compound heterozygous mutations in PRF1
 - Perforin is a T-cell protein that opens pores in target cells
 - Loss-of-function mutations can cause CNS-isolated Hemophagocytic Lymphohistiocytosis (HLH)
- Functional studies in proband
 - Absent perforin expression in cytotoxic cells
 - Decreased NK cell function

Treatment: Bone Marrow Transplant

- Result: CNS inflammation subsided; weaned off chronic steroids; improved neuromotor disability
- Implications:
 - Brother tested for PRF1 mutations
 - At referring medical center, 3 other children with refractor idiopathic brain inflammation were tested, found to have HLH, and transplanted.

22 year old woman with dystonia

- Abnormal pen gripping
- Right foot deformity and twisting with gait
- Involuntary tongue movements
 - ✓ Speech
 - Swallowing
 - Nutrition
- Monoallelic KMT2B mutation
- Histone lysine methyltransferase deficiency

Dr. Manju Kurian, director of a Dystonia Clinic in London, sees KMT2B on the UDP's list of candidate disease-causing genes and calls Dr. Gahl. She has >20 dystonia patients with KMT2B mutations, is writing it up as a new disease gene, and says that several patients responded well to deep brain stimulation (DBS). She publishes a paper in <u>Nature Genetics</u>, including our patient, and another paper in **Brain**, showing the benefit of DBS.

Ariane Soldatos, MD, sees a 20 year old with progressive dystonia in the UDP

• 3y: Toe-walking

- 4y: Hypernasal and declining speech
- 5-6y: Left foot drag; "clumsy"
- 11y: Impaired gait, wheelchair for long distances, dystonia, choreoathetoid movements of upper extremities; started oral baclofen
- 14y: Intrathecal baclofen pump; non-ambulatory
- 15y: Lost ability to write; anarthria
- 20y: Spells letters with fingers to communicate; opisthotonic posturing; IT and oral baclofen, trihexyphenidyl, tizanidine, diazepam, clonazepam

Diagnostic testing

Negative testing for:

- DYT1 GAG946 deletion
- PKAN gene
- Mitochondrial DNA (MELAS, NARP)
- Exome sequencing
- CSF neurotransmitters
 and pterins
- Muscle biopsy: Not nemaline rod myopathy

Research genome positive for:

- De novo KMT2B mutation:
 c.12_24dup13:
 p.Sor0ChrfoX111
 - p.Ser9GlyfsX111
- 13bp duplication in exon 1 introducing a premature stop codon

Post-Deep Brain Stimulator

Conclusions

- *KMT2B* (DYT-28) is a relatively common cause of monogenic dystonia.
- Oromotor involvement is prominent.
- Some cases are reminiscent of NBIA.
- It is very responsive to DBS.
- Sharing to find similar cases is critical for new gene/disease discovery and treatment!

Sharing by the NIH UDP to find second cases of new diseases

1. UDPICS Database

- Phenotypes Phenotips ontology
- Exome sequences, variant analyses
- 2. Search UDPICS for variants in your gene.

The Undiagnosed Diseases Network (UDN); Phase I (2014-18)

- UDP, 7 Clinical Sites, Coordinating Center, 2 Sequencing Cores, Metabolomics Core, Model Organisms Screening Center, Central Repository
- Formal data sharing agreements
- Consent: PII to be shared within UDN, de-identified data with others.
- First patients: August 2015.

Seven clinical sites, a coordinating center, two DNA sequencing cores, a metabolomics core, a model organisms screening center, and a central biorepository

UDN: 8/15-1/22

- Applications
- Accepted
- Evaluated
- Diagnosed
- Patient exomes
- Patient genomes

The UDN: Phase II-2018-2022

 11 Extramural Clinical Sites (Harvard, Vanderbilt, Duke, Baylor, Stanford, UCLA, Wash U, U. Washington, CHOP-Penn, Miami, Utah)
 Coordinating Center, Sequencing Core, Metabolomics, Model Organisms, Repository

NIH The UDN Gateway

Click "Apply" button on any UDN website for more information

http://undiagnosed.hms.harvard.edu/apply/

Worldwide Access: UDNI

Undiagnosed Diseases Network International(UDNI): White Paper for Global Actions to Meet Patient Needs *Molecular Genetics and Metabolism 116:223-5, 2015.*

Undiagnosed Diseases Network

Website:

http://www.udninternational.org/

UDNI Meetings

(NIH Common Fund, Wilhelm Foundation, Local **Sponsors**)

- Rome September 2014

- Budapest June 2015
 Vienna February 2016
 Tokyo November 2016
 Stockholm August 2017

- Naples June 2018
 New Delhi April 2019
 Nijmegen February 2020
 Mayo Clinic, Minnesota April 2021
 Torino, Italy January 2022

UDNI Charter, Committees, Data Sharing Policy, Best Practices

CONCLUSIONS: Rare and Undiagnosed Diseases Programs

- Require strong phenotyping of patients
- Foster new disease discovery
- Lead to insights into common diseases
- Help desperate patients
- Often require functional studies
- Sometimes do not need NGS
- Hugely benefit from data sharing
- Are needed throughout the world

