MICHIGAN MEDICINE

GASTROENTEROLOGY UPDATE: A Case-Based Approach to Common GI Problems

STATE OF THE ART LECTURE SERIES

October 18-19, 2019 The Inn at St. John's, Plymouth, MI michmed.org/intmedcme

MICHIGAN MEDICINE

DEPARTMENT OF INTERNAL MEDICINE CME COURSE CALENDAR

The U-M Department of Internal Medicine offers continuing medical education (CME) activities to provide lifelong learning experiences for physicians and other healthcare professionals that highlight innovative procedures and technologies, examine current methods of treatment, and update you on cutting-edge advances in the understanding and treatment of disease. The scope of our educational efforts provides the highest quality learning activities that lead to excellence in patient care.

We offer a variety of courses each year. The content of our activities includes primary care, specialty and subspecialty topics in the broad field of medicine. We target and welcome all physicians and other healthcare professionals, locally, nationally, and globally.

UPCOMING COURSES

32nd Annual Update in Pulmonary and Critical Care Medicine

Friday - Saturday, November 1-2, 2019 The Inn at St. John's, Plymouth, MI

22nd Annual Liver Disease Wrap-Up

Saturday, December 7, 2019 The Inn at St. John's, Plymouth, MI

SAVE THE DATE!

Advances in Gastroenterology & Hepatology Friday - Sunday, February 7-9, 2020 Hyatt Regency Coconut Point Resort and Spa, Bonita Springs, FL

Updates in Nephrology for the Primary Care Provider

Saturday, May 9, 2020 The Inn at St. John's, Plymouth, MI

Health Delivery and Technology in Today's Diabetes Care

Saturday, April 4, 2020 The Inn at St. John's, Plymouth, MI

8th Annual Internal Medicine Spring Review

Friday - Saturday, May 15-16, 2020 The Inn at St. John's, Plymouth, MI

Update on Arrhythmias and Syncope Saturday, June 6, 2020

The Inn at St. John's, Plymouth, MI

38th Annual Internal Medicine Update

Friday - Sunday, July 31 - August 2, 2020 Grand Hotel, Mackinac Island, MI

33rd Annual Cardiology Update

Friday - Sunday, August 21-23, 2020 Grand Hotel, Mackinac Island, MI

TABLE OF CONTENTS

Program Schedule	1
Program Planning Committee /Program	2
Gastroenterology Division Contact Information	3
Activity Information	.4
M-Line Information	5

Lecture Materials - Friday, October 18

Eosinophilic Esophagitis

Joy Chang, MD	6
Heartburn with a Normal EGD Joan Chen, MD, MSCI	22
Gastroparesis William Hasler, MD	42
Health Maintenance in IBD Jami Kinnucan, MD	59
Current Landscape for the Treatment of Crohns Ryan Stidham, MD, MSc	90
Role of Diet in IBD Emily Haller, MS, RDN	108
Small Bowel Bleeding Michael Rice, MD	125
FMT: Present and the Future Michelle Muza-Moons, MD, PhD	160
Pelvic Floor Dyssynergia Stacy Menees, MD, MS	178

TABLE OF CONTENTS - CONTINUED

Lecture Materials - Saturday, October 19

Exocrine Pancreatic Insufficiency Matthew DiMagno, MD	
Gall Bladder Disease Erik Wamsteker, MD	224
HCC Surveillance Neehar Parikh, MD	243
Hepatitis B Andrew Tai, MD, PhD	262
Functional Diarrhea Richard Saad, MD, MS, FACG	280
Avoidant Restrictive Food Intake Disorder Kimberly Harer, MD	305
Role of Trauma in GI Disorders Christina Jagielski, PhD	326

PROGRAM SCHEDULE

FRIDAY, OCTOBER 18, 2019

- 7:30 am Registration & Continental Breakfast
- 8:00 Welcome and Announcements Michael Rice, MD Richard Saad, MD, MS, FACG

SESSION 1: UPPER GI

- 8:10 **Eosinophilic Esophagitis** Joy Chang, MD
- 8:45 Heartburn with a Normal EGD Joan Chen, MD, MSCI
- 9:20 Gastroparesis William Hasler, MD
- 9:55 Questions & Answers
- 10:10 Break

SESSION 2: IBD

- 10:25 **Health Maintenance in IBD** Jami Kinnucan, MD
- 11:00 Current Landscape for the Treatment of Crohns Ryan Stidham, MD, MSc
- 11:35 Role of Diet in IBD Emily Haller, MS, RDN
- 12:10 pm Questions and Answers
- 12:25 Lunch

SESSION 3: LOWER GI

- 1:30 Small Bowel Bleeding Michael Rice, MD
- 2:05 **FMT: Present and the Future** Michelle Muza-Moons, MD, PhD
- 2:40 **Pelvic Floor Dyssynergia** Stacy Menees, MD, MS
- 3:15 Questions and Answers
- 3:30 Session Adjourns

SATURDAY, OCTOBER 19, 2019

- 7:30 am Registration & Continental Breakfast
- 8:00 Welcome and Announcements Michael Rice, MD Richard Saad, MD, MS, FACG

SESSION 4: PANCREAS / BILIARY

- 8:10 **Exocrine Pancreatic Insufficiency** Matthew DiMagno, MD
- 8:45 Gall Bladder Disease Erik Wamsteker, MD
- 9:20 Question and Answers

SESSION 5: LIVER

- 9:30 HCC Surveillance Neehar Parikh, MD
- 10:05 **Hepatitis B** Andrew Tai, MD, PhD
- 10:40 Questions and Answers
- 10:50 Break

SESSION 6: FUNCTIONAL GI

- 11:05 **Functional Diarrhea** Richard Saad, MD, MS, FACG
- 11:40 Avoidant Restrictive Food Intake Disorder Kimberly Harer, MD
- 12:15 pm **Role in Trauma in GI Disorders** Christina Jagielski, PhD
- 12:50 Questions and Answers
- 1:00 Course Adjourns

PROGRAM PLANNING COMMITTEE / PROGRAM FACULTY

PROGRAM FACULTY

Joy Chang, MD

Clinical Lecturer, Division of Gastroenterology Department of Internal Medicine

Joan Chen, MD, MSCI

Lecturer, Division of Gastroenterology Department of Internal Medicine

Matthew DiMagno, MD

Assistant Professor, Division of Gastroenterology Department of Internal Medicine

Emily Haller, MS, RDN

Nutritionist, Division of Gastroenterology Department of Internal Medicine

Kimberly Harer, MD

Clinical Lecturer, Division of Gastroenterology Department of Internal Medicine

William Hasler, MD

Professor, Division of Gastroenterology Department of Internal Medicine

Christina Jagielski, PhD

Instructor, Division of Gastroenterology Department of Internal Medicine

Jami Kinnucan, MD

Assistant Professor, Division of Gastroenterology Department of Internal Medicine

Stacy Menees, MD, MS

Assistant Professor, Division of Gastroenterology Department of Internal Medicine

Michelle Muza-Moons, MD, PhD

Clinical Lecturer, Division of Gastroenterology Department of Internal Medicine

Neehar Parikh, MD

Assistant Professor, Division of Gastroenterology Department of Internal Medicine

Michael Rice, MD

Course Co-Director Assistant Professor, Division of Gastroenterology Department of Internal Medicine Medical Director, GI Inpatient Service

Richard Saad, MD, MS, FACG

Course Co-Director Assistant Professor, Division of Gastroenterology Department of Internal Medicine

Ryan Stidham, MD, MSc

Assistant Professor, Division of Gastroenterology Department of Internal Medicine

Andrew Tai, MD, PhD

Associate Professor, Division of Gastroenterology Department of Internal Medicine

Erik Wamsteker, MD Associate Professor, Division of Gastroenterology

PLANNING COMMITTEE

Department of Internal Medicine

Allison Picinotti

Program Manager, Continuing Medical Education Department of Internal Medicine

Erin Reau Program Coordinator, Continuing Medical Education Department of Internal Medicine

Michael Rice, MD

Course Co-Director Assistant Professor, Division of Gastroenterology Department of Internal Medicine Medical Director, GI Inpatient Service

Richard Saad, MD, MS, FACG

Course Co-Director Assistant Professor, Division of Gastroenterology Department of Internal Medicine

Emily Vandervoort

Program Coordinator, Continuing Medical Education Department of Internal Medicine

2

Department of Internal Medicine DIVISION OF GASTROENTEROLOGY

www.med.umich.edu/gi

The Division of Gastroenterology and Hepatology is one of the largest gastroenterology and hepatology practices in the country and is a leader in the prevention, diagnosis, and treatment of diseases of the gastrointestinal tract and liver. Our 60-plus physicians are experts in the diagnosis and treatment of all diseases of the gastrointestinal system, from simple to complex, including those of the esophagus, stomach, small intestine, colon, rectum, liver, gallbladder, pancreas, and biliary tract.

In addition to being leaders in clinical care, our faculty are also leaders in their respective areas of research, which span such varied interests as the role of peptides in the brain-gut interactions in functional bowel diseases to innovative treatments of viral hepatitis and liver cancer.

The Gastroenterology and Hepatology Division has created the following subspecialty clinics to better direct our clinical expertise to meet the needs of referring physicians and their patients:

CLINIC LOCATIONS

A. Alfred Taubman Health Care Center (888) 229-7408

Briarwood Health Associates Building 5 - Ann Arbor (888) 229-7408

Brighton Health Center (888) 229-7408

Canton Health Center (888) 229-7408

Dexter Health Center (888) 229-7408

M-LINE

M-LINE is a toll-free number for referring physicians and their staff seeking access to clinical services and faculty at the Health System. M-LINE physician representatives work closely with personnel across the Health System to provide efficient, personalized service and will stay on the line with your call until your request is met to your satisfaction.

One number, 24 hours a day, 7 days a week, providing:

- Physician-to-physician consultation
- Appointment scheduling
- Hospital-to-hospital transfer requests
- Inpatient status update
- Laboratory, test, and procedure results

M-LINE (800) 962-3555

East Ann Arbor Health and Geriatrics Center (888) 229-7408

Northville Health Center (888) 229-7408

Saline Health Center (888) 229-7408

Veterans Affairs Ann Arbor Healthcare System (734) 845-4341

Activity Information

Gastroenterology Update: A Case-Based Approached to Common GI Problems

October 18-19, 2019

Accreditation and Credit Designation:

The University of Michigan Medical School is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians.

The University of Michigan Medical School designates this live activity for a maximum of 11 AMA PRA Category 1 Credit(s) ™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to 11 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program. Participants will earn MOC points equivalent to the amount of CME credits claimed for the activity. It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting ABIM MOC credit.

Evaluation and Certificate:

Attendance must be registered within 6 months to be awarded credit. Please complete the following steps to fill out the course evaluation and print your certificate:

Login to your account at MiCME at <u>http://micme.medicine.umich.edu/</u>

Don't have an account? Click on the "Login or Create a MiCME Account" link at the top of the page and follow the instructions. *Note: You must have a MiCME account to claim credit for any University of Michigan Medical School (UMMS) CME activity.* On the Credit Center card on your Dashboard, click on *Claim Credits and View Certificates*.

- Locate the activity in the Activities Available for Credit Claiming section.
- Under Action, click on Claim.
- Under Action, click on Add Credit.
- Enter the number of credits you're claiming and the the "I Attest" button. (Note: This number should reflect credits claimed for the entire course, not just a single day.)
- Complete the evaluation form to provide feedback on the activity.
- Click the Submit button.
- Scroll down to the Awarded Credits section to view or print your certificate and/or comprehensive University of Michigan CME transcript.

For more information about this activity, contact Emily Vandervoort at vaemily@umich.edu, or visit www.micme.medicine.umich.edu.

M-LINE

M-LINE is a toll-free number for referring physicians and their staff seeking access to clinical services and faculty at the Health System. M-LINE physician representatives work closely with personnel across the Health System to provide efficient, personalized service and will stay on the line with your call until your request is met to your satisfaction.

One number, unlimited assistance. M-LINE. With it, referring physicians and their staff can reach more than 3,000 doctors and 26 departments, 24 hours a day, 7 days a week. Services include:

- Physician-to-physician consultation
- Appointment scheduling
- Hospital-to-hospital transfer requests
- Inpatient status update
- Laboratory, test, and procedure results

800-962-3555

Everyday Eosinophilic Esophagitis

Joy Chang, MD, MS Gastroenterology Update October 18, 2019

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Endos	copic	Featu	ires:	EREFS	Score
EDEMA (loss of vascular markings)	Grade 0	Grade 1	Grade 2	Grade 3	0: Distinct vascularity 1: Decreased 2: Absent
RINGS (trachealization)	-				0: None 1: Mild (ridges) 2: Moderate (distinct rings) 3: Severe (scope can't pass)
EXUDATES (white plaques)		1			0: None 1: Mild (≤ 10% surface) 2: Severe (> 10% surface)
FURROWS (vertical lines)	-	0			0: None 1: Mild 2: Severe (depth)
STRICTURE Hirano et al. Gut. 2013;62(4):489-95.		0			0: Absent 1: Present (+ luminal diameter)

Dilation 1	for EoE	
	Table 2. Efficacy and safety of dilation	
		Any dilation (n=164)
	Total number of dilations	486
	Number of dilations per patient (mean±s.d.)	3.0±3.7
.	Dilation method, n (%)	
	Savary	91 (19)
	Balloon	395 (81)
	Esophageal diameter (mm) before dilation (mean±s.d.)	12.5±3.0
Dilation	Esophageal diameter (mm) after final dilation (mean±s.d.)	15.2±2.9
Dilation	Increase in esophageal diameter (mean mm±s.d.)	2.6±1.4
	Symptom response, n (%) ^a	108 (87)
	Complications, n (%)	
Dilation is a safe and effective	Any complication	25 (5.1)
nothed for symptom improvement	Pain	21 (4.3)
nethod for symptom improvement	Bleeding	0 (0)
	ER visit	5 (1.0)
	Hospitalization	2 (0.4)
	Perforation	0 (0)
	Death	0.(0)

			A
	Medications	Diet	Dilation
Advantages	Histologic & symptom improvement	Histologic & symptom improvement	Symptom improvement
	Short response time	Drug-free remission	Periodic treatment
	Ease of use		
Disadvantages	Expensive without insurance coverage	Adherence to strict diet	Uncontrolled eosinophilic inflammation
	Inconvenience of daily or BID dosing	Several endoscopies to identify trigger foods	Repeat dilations
	Potential side effects of systemic exposure	6-18 months to complete	Potential complications (pain, perforation)

For worsening symptoms, what's your next step in management? Empirically A dose of OVB Switch from OVB to swallowed Fluticasone Add on elimination diet to the topical steroid Switch from OVB to diet therapy GD with biopsies +/- dilation EGD with dilation only (no bx)

Psychological Interventions – Brain-Gut Psychotherapies Psychoeducation Modification of arousal Diaphragmatic breathing Guided imagery or progressive muscle relaxation Esophageal-directed hypnotherapy Cognitive behavioral therapy Riehl ME, Dis Esophagus 2016 Coma S, Neurogastroenterol Motil. 2015

fety/l Glucos	Efficacy of In se Monitorin	nsulin g in [Pump Diabet	o Plus ic Gas	Cont stropa	tinuo aresis	SL ;
 Methods: 24 week open label study of CGM plus insulin pump in diabetic gastroparesis after screening and run-in Safety: 10 hypoglycemic events in 9 of 45 patients Efficacy: CGM plus insulin pump reduced A1c from baseline 9.3% by 1.1% at 12 and 24 weeks (P<0.01) and decreased time in hypo-, hyperglycemia on CGM 						12	
			,,	, ,, ,			
			Study Visit	, ,, ,	P Va	alue	
	Measure	Baseline	Study Visit 12 Weeks	24 Weeks	P Va Baseline vs. 12 Weeks	alue Baseline vs. 24 Weeks	
	Measure Total symptom score (0-45)	Baseline 29.3 <u>+</u> 7.1	Study Visit 12 Weeks -7.2 <u>+</u> 8.2	24 Weeks -6.6 <u>+</u> 8.8	P Va Baseline vs. 12 Weeks <0.0001	alue Baseline vs. 24 Weeks <0.0001	
	Measure Total symptom score (0-45) Nausea/vomiting subscore (0-15)	Baseline 29.3 <u>+</u> 7.1 8.1 <u>+</u> 4.2	Study Visit 12 Weeks -7.2 <u>+</u> 8.2 -2.9 <u>+</u> 4.0	24 Weeks -6.6 <u>+</u> 8.8 -2.8 <u>+</u> 4.1	P Va Baseline vs. 12 Weeks <0.0001 <0.0001	alue Baseline vs. 24 Weeks <0.0001 <0.0001	
Symptoms	Measure Total symptom score (0-45) Nausea/vomiting subscore (0-15) Fullness/early satiety subscore (0-20)	Baseline 29.3 <u>+</u> 7.1 8.1 <u>+</u> 4.2 14.1 <u>+</u> 3.6	Study Visit 12 Weeks -7.2 <u>+</u> 8.2 -2.9 <u>+</u> 4.0 -3.1 <u>+</u> 4.5	24 Weeks -6.6 <u>+</u> 8.8 -2.8 <u>+</u> 4.1 -2.4 <u>+</u> 4.5	P Va Baseline vs. 12 Weeks <0.0001 <0.0001	alue Baseline vs. 24 Weeks <0.0001 <0.0001	

Prokinetic Agents to Stimulate Gastric Emptying

Drug(s)	Mechanism	Evidence
Metoclopramide	5-HT ₄ agonist D ₂ antagonist 5-HT ₃ antagonist	13 trials (9 RCT)—benefits > placebo in most studies
Erythromycin, azithromycin	Motilin agonist	10 trials (3 RCT)—small samples, can cause N/V, tachyphylaxis, probably better for acute flares
Domperidone	Peripheral D ₂ antagonist	Benefits in 2/3 of 27 reports—low quality, not US approved FDA IND advocated

Sugumar et al., Clin Gastroenterol Hepatol 2008

Drug class	Examples	Published data		
H_1 antagonists	Dimenhydrinate, meclizine, promethazine	None		
M ₁ antagonists	Transdermal scopolamine	None		
D ₂ antagonists	Thiethylperazine, prochlorperazine	1 case report (thiethylperazine)		
5-HT ₃ antagonists	Ondansetron, granisetron	1 case report of intraperitoneal ondansetron in diabetics 2 case series of 36 and 54 pts with transdermal granisetron (50% and 76% response rates)		
NK ₁ antagonists	Aprepitant, rolapitant	2 case reports		
CB ₁ agonists	Dronabinol	None		
Benzodiazepines	Lorazepam	None		

RCT of Aprepitant (NK₁ Antagonist) for Gastroparesis Symptoms

- Methods: 126 pts (57% delayed gastric emptying) with gastroparesis symptoms and nausea 25 mm on 100 mm VAS given aprepitant 125 mg/d vs. placebo x 4 wk
- Results—Primary Outcome:
 - >25 mm reduction in VAS nausea score or nausea score <25 mm
 - No difference between aprepitant (46%) vs. placebo (40%)—RR 1.2 (95% CI 0.8-1.7, P=0.43)
- Results—Secondary Outcomes:
 - Aprepitant reduced daily hrs of nausea vs. placebo (-2.5 vs. -1.2, P=0.03)
 - Aprepitant reduced overall GCSI vs. placebo (-1.3 vs. -0.7, P=0.001)
 - Aprepitant reduced scores for nausea, vomiting, fullness, bloating, distention, upper pain and discomfort, GERD (P<0.05)

Pasricha et al., Gastroenterology 2018

Neuromodulators With Theoretical Benefit in Gastroparesis

Drug(s)	Mechanisms of Action	Reported Clinical Utility
Tricyclics (amitriptyline, nortriptyline, desipramine)	Norepinephrine reuptake inhibition with variable serotonin (and dopamine) reuptake inhibition	Functional dyspepsia Cyclic vomiting syndrome Functional vomiting Nausea and vomiting with diabetes
Mirtazapine	"Indirect" CNS 5-HT _{1A} agonism, 5-HT ₂ antagonism, 5-HT _{2C} inverse agonism, 5-HT ₃ antagonism, α_2 antagonism, H ₁ inverse agonism	Functional dyspepsia Nausea of pregnancy Postoperative nausea and vomiting Chemotherapy-induced nausea and vomiting
Olanzapine	$\begin{array}{c} \text{5-HT}_2 \text{ inverse agonism, 5-HT}_3 \text{ antagonism, M}_1 \\ \text{antagonism, M}_3 \text{ antagonism, D}_2 \text{ antagonism, H}_1 \\ \text{ inverse agonism} \end{array}$	Chemotherapy-induced nausea and vomiting
Buspirone	5-HT _{1A} partial agonist	Functional dyspepsia

Non-Medication Treatment of Gastroparesis **Pyloric therapies:** Botulinum toxin Pyloroplasty—uncontrolled studies show ~80% responses to accelerate gastric emptying Other surgeries: Gastric electrical stimulation Gastric resection—~60-70% improved with gastric bypass or subtotal gastrectomy for diabetic/idiopathic gastroparesis Pancreas transplant (diabetic gastroparesis)—no convincing benefits Supplemental nutrition: Improved health with J-tube feeds in 83% Hibbard et al., J Gastro Surg 2011 Mancini et al., Am Surg 2015 Zehetner et al., Surg Endo 2013 Papsavas et al., Surg Obes Rel Dis 2014

Bhayani et al., J GI Surg 2015

Fontana, Barnett, Am J Gastroenterol 1996

NOT SO BAD		CHALLENGING			
Therapy	Monthly Cost	Therapy	Cost	Coverage by Payers	
Metoclopramide	\$6	Prucalopride	\$200 monthly	Online pharmacies (Canada); not covered	
riccociopramiae	ΨŬ	Dronabinol	\$500 monthly	Only covers chemotherapy induced vomiting	
Erythromycin	\$7	Aprepitant	\$5,700 monthly	Only covers chemotherapy induced vomiting	
Prochlorperazine	\$30	Transdermal granisetron	\$2,500 monthly	Only covers chemotherapy induced vomiting	
Promethazine	\$15	Pyloric botulinum toxin	\$5,000/3-6 months	Not covered by Medicaid/Medicare, some 3 rd parties cover	
Ondansetron	\$35	Gastric stimulator	\$40-75,000	Covered by Medicaid/Medicare, many 3 rd parties do not cover	

Γ

Need for Tertiary Referral for Gastroparesis Care? Desire for advanced diagnostics: Wireless motility capsule to measure transit in small bowel and colon Use of EndoFLIP to assess pyloric dysfunction (when considering pyloric therapies) Consideration of alternate diet/medication therapies: Dietician referral Concern about metoclopramide toxicity Access to domperidone Use of neuromodulators, high-end antiemetics (aprepitant) and prokinetics (prucalopride) Availability of non-medication therapies: Pyloric therapies (botulinum toxin, G-POEM) Gastric stimulation Enteral/parenteral nutrition

	Crohn's and Colitis Foundation: "Top Ten" Measures (2013)				
	Processes	Outcome			
	Steroid sparing therapy (if steroids >4m)	Steroid-free clinical remission			
	Pre-treatment: Testing for TB	Days lost from work/school			
	Pre-treatment: TPMT before thiopurine	Days hospitalized			
	Education for vaccinations	ED visits			
	Smoking cessation in Crohn's disease	Malnutrition			
	LGD: Colectomy OR close surveillance	Anemia			
	Testing for C. difficile in active flare	Narcotic use			
	Flex sig for CMV evaluation in steroid	Fecal incontinence			
	refractory hospitalized patients	Normal health-related QOL			
		Nocturnal symptoms			
L	.GD= low grade dysplasia	Melmed G <i>IBD</i> 2013			
(Crohn's and Colitis Program				

ACG Preventative Health Clinical Guideline (2017)

		JIKONG			
	Recommendation	Guideline			
1a	Annual influenza vaccination (C)	AGA, CCF, PQRS			
2	Pneumonia vaccination in patients on immunosuppression (C)	AGA, CCF, PQRS			
3	Adults (>50) should be vaccinated against Herpes Zoster (S)				
4	Adults should be assessed for prior exposure to varicella (C)				
5	Travel to endemic areas of yellow fever should consult travel spec (C)				
6	Adolescents should receive meningococcal vaccination (C)				
7	Household members of immunosuppressed patients \underline{can} receive LIVE vaccination (C)				
8	Adults should receive age-appropriate vaccinations	CCF			
9	Vaccination to Tdap, HAV, HBV, HPV per ACIP guidelines (C)	CCF			
10	IBD women on immunosuppression should undergo annual pap (C)				
11	Screening for anxiety and depression is recommended in all patients (C)				
12	a- IBD patients should undergo screening for melanoma, independent of biologic therapy (S) b- Immunomodulator use should have <u>annual</u> screening for NMSC (S)				
13	Patients with risk factors should undergo BMD evaluation at diagnosis (C)	AGA, PQRS			
14	Crohn's disease patients should have counselling to quit smoking (S)	AGA, CCF, PQRS			
roh	ohn's and Colitis Program MICHIGAN MEDIC				

AÇG

40 year old female with Crohn's disease on infliximab with azathioprine (5 years) currently in clinical remission presents for routine follow-up exam. Recent MRI shows no signs of active disease. Focus this visit is on preventative health for this patient. What are important preventative health measures are recommended on thiopurines?

MICHIGAN MEDICINE

- A. Nothing- she is in remission
- B. Cervical cancer screening- annual
- C. Skin cancer education and screening- annual
- D. Both B+C

Crohn's and Colitis Program

ASGE Guidelines: Dysplasia and Colon Cancer Screening in IBD

Indication	Screening	Surveillance	Recommendations	Comments			
UC: left-sided or extensive CD: >1/3 colon involvement	Starting at duration 8y*	Every 1-3y based on risk factors**	Techniques: -4-quadrant biopsies every 10 cm limited to greatest extent of prior involvement (minimum 33 biopsies) -Chromoendoscopy with pancolonic dye spray and targeted biopsies	*PSC starting at diagnosis and then annually			
 **<u>Risk factors:</u> Active inflammation, anatomic abnormality (stricture, multiple pseudopolyps), history of dysplasia, family history of CRC (FDR), primary sclerosing cholangitis (PSC) *Starting 8 years after disease in <u>at risk</u> patients, they should begin colon cancer screening program. 							
CCF Recom ASGE Guide	mendation line Based		ASGE	Guidelines. <i>GIE</i> 2015.			
Crohn's and C	olitis Progra	n		AN MEDICINE of michigan			

Quality IBD Care: Crohn's and Colitis Foundation Checklist!

Health Mair	tenance Cher	cklist for A	dult IBD Pat	tients	CROHN'S&COLITIS
Vaccine-Preventable	Which Patients	Check Titer	How Often	licities	FOUNDATION
Influenza (non-live)	All	No	Annually		
PCV13 (Prevnar) and PPSV23 (Pneumovax)	All ≥ 65 years All on/planning immunosuppression	No	 If ≥ 65 years: P If ≥ 19 years AI later; 2nd dose 	PCV13 then PPSV23, sep ND immunosuppressed of PPSV23 after 5 yea	arated by ≥ 1 year : PCV13 then PPSV23 at least 8 weeks rs
Tdap	All	No	 1st dose ≥ 19 ye Tetanus and di 	ears if not previously giv iphtheria toxoid (Td) bo	en oster every 10 years
HPV	All ≤ 26 years	No	3-dose series at	o, 1–2, and 6 months	
Group B Meningococca meningitis	al Ages 16–23 at high risk	No	 MenB-4C, 2 do MenB-FHbp, 2 	oses, \geq 1 month apart doses, \geq 6 months apar	rt
Hepatitis A	All	Yes (HAV IgG)	 2-dose series: 3-dose series: 	Havrix at o and 6 month Twinrix (HepA-HepB) o	ns or Vaqta at o and 6–18 months apart , 1 and 6 months
Hepatitis B	All	Yes (HBsAg, HBsAb, HBc Ig	 2-dose series: 3-dose series: 0, 1 and 6 mon 	Heplisav-B at least 4 we Engerix-B, Recombivax ths	eeks apart HB or Twinrix (HepA-HepB) given at
MMR (live vaccine)*	If non-immune	Yes (IgG titers)	2-dose series, at	least 4 weeks apart (>	4 weeks before immunosuppression')
Varicella/Chicken Pox (live vaccine)*	ricella/Chicken Pox Jf non-immune ster (recombinant ccine preferred) All patients > 50 Any starting tofacitin		• 2-dose series,	4–8 weeks apart (≥ 4 w	veeks before immunosuppression')
Zoster (recombinant vaccine preferred)			 2-dose series, 	2–6 months apart (min	imum 4 weeks apart)
Cancer Prevention	Which Patients	How Often	Other Screenings	Which Patients	How Often
Cervical PAP Smear	All women on systemic immunosuppression'	Annual	DEXA Scan	Women ≥ 65, and all at high risk ^a	Once identified, and no sooner than 2 years later based on DEXA findings
Full Skin Screen	All on systemic immunosuppression'	Annual	PPD or IGRA	Prior to anti-TNF or anti-IL-12/23	Once (annual repeat if potential TB exposure or in a high-risk region)
Colonosconu	All with extensive	Every 1 Dueser	Smoking status	All	Annual
colonoscopy	disease for > 8 years	Every 1-3 years	Depression check	All	Annual

Current Landscape in the Treatment of Crohn's Disease

Ryan Stidham, MD, MSc Inflammatory Bowel Disease Program Division of Gastroenterology and Hepatology University of Michigan

October 18, 2019

EDICINE

Outline

- Modern Disease Activity Monitoring
- Current Treatment Landscape
- Biosimilars in IBD
- Biologic Drug Monitoring and Assessing Loss of Response
- Emerging Treatments

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Imaging for Crohn's Disease: CT and MR-Enterography

- Enterography protocol is superior to standard CT/MR
- · Provides structural damage information in CD
- Essential for initial CD workup, every few years for those with known fistulas/strictures
- MR and CT not helpful in UC

Extraintestinal Manifestations of IBD Synovitis/Arthritis Enteropathic Arthritis (15-25%) Ankylosing Spondylitis Skin Disease Erythema Nodosa (5-15%) • Psoriasis (5-10%) **Erythema Nodosa** Pyoderma gangrenosum Pyoderma Gangrenosum (<3%) • Hepatobiliary PSC (most patients have IBD) ٠ Occular • Uveitis (5-8%) • Episcleritis Other PSC Psoraisis • Nephrolithasis Venous Thromboembolic disease MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Biosimilars Have Arrived						
PRODUCT NAME adalimumab	PROPRIETARY N Humira	IAME DATE OF LICENSURE <u>12/31/02</u>				
adalimumab-adbm	Cyltezo	8/25/17				
adalimumab-atto	Amjevita	9/23/16				
<u>infliximab</u>	<u>Remicade</u>	<u>8/24/98</u>				
infliximab-abda	Renflexis	4/21/17				
infliximab-dyyb	Inflectra	4/5/16				
infliximab-qbtx	lxifi	12/13/17				
https://www.fda.gov						

Therapeutic Drug Monitoring (TDM)

Drug	Trough Level	
Infliximab	<u>></u> 5 mcg/ml (luminal) 10-15 mcg/ml (perianal)	
Adalimumab	≥ 7.5 mcg/ml	
Certolizumab	<u>></u> 20 mcg/ml	
Golimumab	>2.5 mcg/ml (induction) >1.2 mcg/ml (maintenance)	
Vedolizumab	≥ 14 mcg/ml	
Ustekinumab	<u>></u> 4.5 mcg/ml	

These are baseline guides for monitoring, we typically run patients higher this pending clinical response

AGA Guideline on Therapeutic Drug Monitoringin Inflammatory Bowel Disease. Feuerstein et al; Gastroenterology. 2017

Slide Courtesy of Jami Kinnucan, MD

Updated Medications in Late Phase Development

Crohn's Treatment Update 2019

- Objective Resolution of Inflammation is the Primary Treatment Target
- New Mechanisms Have Unique Efficacy and Safety Profiles
- Minimizing the Use of Thiopurines (Azathioprine and 6-Mercaptopurine)
- Biosimilars Effectiveness Indistinguishable from Originator.
- Drug Monitoring Aids in Decision Making in Anti-TNF Users
- Treatment Pipeline Outlook is Optimistic

Role of Diet in IBD

Gastroenterology Update: A Case-Based Approach to Common GI Problems

Emily Haller, MS, RDN

🍠 @ea_haller

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Proposed Mechanisms of Diet's Role in IBD Development Mediterranean diet Western diet Fruits and vegetables, hole grains and seafood Red meat and processed food, refined sugar and saturated fat Microbiome Microbiome Dysbiosis Diversity Barrier function Barrier function Intact permeability Impaired permeability Gut lumen Microbiota Immune function Immune function Epithelial cell Tolerance versus inflammation 200 T_H17 T_H17 cell cell 0 Immune cells Keshteli.Nutrients 2019, 11, 1498 MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Provide Meal and Snack Ideas

<u>Mediterranean Sample Menu</u> Breakfast

½ cup oatmeal, ½-1 cup fresh berries, walnuts, made with skim/2% or plant-based milk of choice

Greek yogurt layered with crunchy cereal, chia seeds, and blueberries for a breakfast parfait

2 eggs (or 1 egg + 2 egg whites) or tofu scramble, 1 slice whole grain toast ½-1 cup cantaloupe

2 egg omelet (or egg whites) with sautéed veggies: tomatoes, spinach, mushroom etc., 1-ounce low fat cheese Roasted potatoes

Hard-boiled egg slices with sliced vegetables (cucumber, tomatoes, bell peppers) in a wholewheat pita

Toasted whole-wheat bread topped with sliced avocado, cumin, black pepper, with 1/2 cup pineapple

Whole-grain bagel or 2 slices of toast with nut butter, 100% fruit preservatives, hummus, or tahini

Breakfast burrito-beans, veggies, salsa and avocado

1 cup low fat cottage cheese, sliced peach or other fruit, 1 tbsp nuts/seeds

Lunch/Dinner

Sandwich on whole-wheat bread, lean turkey, hard cheese, lettuce, tomato, mustard, with 1 cup (15-17) grapes and serving of baked chips

Chicken and rice or vegetable soup (low sodium), whole-grain crackers, ½ cup mandarin oranges

Tacos or burrito filled with beans, lettuce, tomato, salsa, guacamole, brown rice, and lean protein (chicken, lean ground turkey, tofu, or tempeh)

Large tossed salad with lean protein (chicken, tuna, or chickpeas), cucumber, tomato, shredded carrots, feta, and olive oil/balsamic vinegar or vinaigrette dressing, sunflower or pumpkin seeds, apple or orange

Veggie burger with lettuce, tomato, mustard on a whole-grain bun, sweet potato fries

Stir-fry: firm tofu or lean chicken sautéed with bok choy, carrots, red bell pepper, broccoli bits, onion, with ½ cup brown rice and low sodium soy sauce

Grilled chicken, medium baked potato, Earth Balance butter, 1 tbsp sour cream, roasted carrots

Baked pork chop, ½ cup sweet potato Spinach salad with olive oil/balsamic vinegar or vinaigrette dressing

1-2 slices veggie pizza with low fat cheese (try making at home), side salad Grilled scallops, quinoa with sautéed vegetables (peppers, broccoli bits, carrots, corn, garlic, onion, etc.), 1 cup raspberries with whipped cream

Grilled kabobs with chicken, green bell pepper, tomato, mushroom, onion, zucchini, brown rice or quinoa

Whole-wheat pasta with tomato sauce plus vegetables (mushrooms, tomatoes, eggplant, peppers, spinach), parmesan cheese

Grilled salmon or white fish with lemon, herbs Baked potato or brown rice, 1 cup steamed broccoli, spinach or other veggie of choice.

Sushi – California roll, salmon avocado, spring roll, etc. low sodium soy sauce, side of edamame

Snacks:

- 5-7 whole-grain crackers or pita with 1- ounce low fat cheese or % cup hummus
 Piece of fruit and a handful of nuts or 1-2 tbsp.
- of natural nut butter • Edamame
- Sliced bell peppers, carrots, cucumbers and ½
- cup hummus
 3 cups air-popped popcorn tossed with 1 teaspoon coconut oil or Earth Balance butter

NE

- Greek yogurt topped with 2 tablespoons natural granola and/or strawberries
- Half of a sandwich made with whole-grain bread
- Baked apples with cinnamon

Eating with a Stricture

Avoid foods that might get "stuck"

- Fibrous, fatty meats
- Raw veggies
- Popcorn / Corn
- Nuts (large amounts)
- Fruits with skins
- (Insoluble fiber)

Customary recommendations, per ESPEN: •Asymptomatic stenosis: Low *insoluble* fiber diet

•Symptomatic stenosis: Low *insoluble* fiber plus soft texture or liquid diet

MICHIGAN MEDICINE

Forbes et al. Clin Nutr 2017

FODMAP Diet & IBD

<u>F</u>ermentable

Oligosaccharides – few simple sugars linked together (fructans, galactans) Disaccharides – double sugar (lactose) Monosaccharides – single sugar (fructose) And

Polyols - sugar alcohols (sorbitol, mannitol, isomalt, xylitol, glycerol)

- Short chain carbohydrates
- Poorly absorbed in the small intestine & delivered to the colon
- Rapidly fermentable by gut bacteria resulting in gas and SCFA
- Small, osmotically active molecules increasing water load to the intestine

MICHIGAN MEDICINE

Reassessment // Implement Challenge Phase

12/12/2018 On Low FODMAP diet ~ 4 weeks. Tracking her Bowel movements, medications, food in Cara app. Using Pinerest for low FODMAP recipes. Some issues with cramping when she stopped taking her the probiotic so she restarted it. Having regular bowel movements. The patient endorsed an overall 80% improvement in GI symptoms with the elimination phase.

Diet recall:

- B: couple of eggs, sourdough bread; zipfizz
- L: leftovers from dinner the night before
- D: chicken + veggies (carrots, spinach, green beans) + potato or rice OR short ribs, or shepherds pie OR GF pasta + Prego sensitive sauce
- Snacks: LF yogurt + kind granola + almond milk or grapes, clementine, FODY bars or trail mix, string cheese, banana
- Beverages: water, tea -green, early grey, sweet n spicy OR red wine or beer.

MICHIGAN MEDICINE

Personalization Phase

2/4/2019

- <u>Triggers:</u> Greek yogurt (lactose) -cramps and diarrhea; celery (mannitol) - belching, increased gas, bloating; onions (fructan) gas, bloating, diarrhea
- <u>Tolerated</u>: Avocado (sorbitol), honey (fructose), garlic (fructan), wheat bread (fructan), black beans (GOS)- a little bit boating
- <u>GOAL</u>: consume a modified low FODMAP diet bringing back in foods that did not bother her. Limit/avoid high FODMAP foods that trigger symptoms
- Review importance of portion sizes and re-challenging FODMAP trigger foods in the future as desired

Case #3: Short Gut Syndrome

56 y.o. female with stricturing Crohn's disease s/p multiple resections currently on ustekinumab. Diagnosed 1984. Underwent multiple bowel resections (1984, 1993, 2003, 2015) including but not limited to jejunectomy, ileocolectomy, R hemicolectomy, and appendectomy. Precise length of remaining bowel is unknown.(?) Experiencing symptoms of short gut syndrome since at least 2008.

Symptoms: 8-13 bowel movements per day. Has nothing but watery stools. Notes she can't expel gas, will cause pain as well as loud gurgling. Bloating with distension daily - worse after eating. Vomiting 3 times per week when she tries to make herself eat.

Height: 163.8cm Weight: 106 lbs (4/2019) BMI: 17.9 UBW: 175-185 lbs (2/2018)

Nutrition Interventions

- Increase caloric/protein intake: Recommend smaller more frequent meals/snacks (~5-6 per day)
- High quality protein at each meal and snack
- Generous complex carbohydrate intake (pasta, rice, potatoes, breads, quinoa, etc.)
- Avoid high sugar/concentrated sweets/HFCS
- Adequate fluid intake, minimize fluid intake at meals to ~ 4 ounces, consume most of liquids in between meals
- NO oral supplements (Boost, Ensure)
- Trial of ORS
- · Recommend daily Multivitamin chewable or liquid

Parrish, CR. A Patient's Guide to Managing a Short Bowel, 4th Ed. June 2016:1-66. Available at no cost to patients & clinicians @ www.shortbowelsyndrome.com/sign-up

<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Follow Up 2 Months Later

Symptoms: Decreased bowel movements, nausea, and vomiting B: eggs and grits or steak and eggs or veggie omelet w/ onions, peppers, cheese, tomatoes

L: soup- chicken noodle or tomatoes, cucumbers and ranch dressing

D: steak or fish, vegetables-string bean, lima beans, carrots, tomatoes, with potato or rice, baked beans

Beverages: juice - diluted, soda-diluted, no koolaid - feels this has been helpful - less urgency, less diarrhea

Sonde enteroscopy

- Tada 1977
- Long flexible fiberoptic enteroscope
 - Without controls
 - Passively propelled by intestinal peristalsis
- Endoscopic exam is performed during withdrawal
- Time consuming (7 hours)
- Patient discomfort
- Does not permit biopsy or therapeutic maneuvers
- Rarely performed

HEALTH SYSTEM

Capsule Retention Rates			
Volunteers/Patients	Frequency	1 1 Salta Care	
All	0.75%	te	
Healthy Volunteers	0%	C AHE S	
Suspected Crohn's	1.4%	The ALL	
Known Crohn's	5%	A P	
Obscure GIB	1.5% (up to 5%)		
Neoplastic Lesions	2.1%		
Suspected Bowel Obstruction	21%		
		HEALTH SYSTE	

FABLE 3. Multivariate logistic regression analysis for factors associated with incomplete CE procedures*				
Variable	OR	95% CI	P	
Previous small-bowel surgery	5.64	2.09-15.27	.001	
GTT > 45 min	3.03	1.57-5.83	.001	
Hospitalization	2.87	1.19-6.93	.019	
	2 000000000	1 20 5 5 4	00	

<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

DOUBLE BALLOON ENTEROSCOPY

- Serial inflation and deflation of balloons
- Pressure-controlled pump
- Alternating pushing and pulling maneuvers
- Small bowel telescoped onto the overtube

DOUBLE BALLOON ENTEROSCOPY

- Diagnostic and therapeutic advantages
 - Biopsies
 - Hemostasis
 - Polypectomy

(refractory, SB malignancy)

- Dilation
- Tattoos
- Foreign body removal

HEALTH SYSTEM

Potential Uses For DBE • Obscure GI bleeding • Abnormal imaging or capsule endoscopy • Enteropathies • Foreign body removal - Crohn's, NSAIDS, UJI, XRT Retained capsules, PD • Small bowel strictures stents • Post-surgical anatomy Management of (Whipple, Bariatric) polyposis syndromes (PJS) Celiac disease

• Difficult colonoscopy

MICHIGAN MEDICINE

• D-PEJ

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Capsule Retention Rates Volunteers/Patients					
All	0.75%	A Charles Carl			
Healthy Volunteers	0%	C CHA S			
Suspected Crohn's	1.4%	CONSCIENCES (CTU)			
Known Crohn's	5%	T			
Obscure GIB	1.5% (up to 5%)				
Neoplastic Lesions	2.1%				
Suspected Bowel Obstruction	21%				
		HEALTH SYST			

Common	causes	Rare causes	
Under age 40 years	Over age 40 years	Henoch–Schoenlein purpura	
Inflammatory bowel disease	Angioectasia	Small bowel varices and/or portal hypertensive enteropathy	
Dieulafoy's lesions	Dieulafoy's lesions	Amyloidosis	
Neoplasia	Neoplasia	Blue rubber bleb nevus syndrome	
Meckel's diverticulum	NSAID ulcers	Pseudoxanthoma elasticum	
Polyposis syndromes		Osler-Weber-Rendu syndrome	
		Kaposi's sarcoma with AIDS	
		Plummer–Vinson syndrome	
		Ehlers–Danlos syndrome	
		Inherited polyposis syndromes (FAP, Peutz–Jeghers)	
		Malignant atrophic papulosis	
		Hematobilia	
		Aorto-enteric fistula	
		Hemosuccus entericus	
FAP, familial adenomat	ous polyposis; NSAID,	nonsteroidal anti-inflammatory	

Case #1

- 28y M patient present with 12 days of diarrhea
 - 6-8 small, loose stools daily
 - Slight greenish color with mucous
 - No abdominal pain
 - No weight loss
 - Recent dental work including root canal
 - Completed 7 days clindamycin prior to endodontic procedure

MICHIGAN MEDICINE

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

C. Diff testing: Who?

- Diarrhea
 - >3 loose BMs/24 hours
 - No alternate explanation
- Ileus + leukocytosis
- · Colitis on imaging
- Acute abdomen with bowel wall thickening
- Toxic megacolon
- Pseudomembranes on endoscopy

MICHIGAN MEDICINE

Who should NOT be tested?

- Asymptomatic Patients
- Colonization
 - 60-70% of infants
 - 3% of healthy adults
 - 20-50% of adults in LTACs
- While on therapy
- Immediately following therapy
 - Prolonged shedding in 50% @ 6
 weeks
- Post infectious IBS

GI update 2019 • FMT: Present & Future

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Summary difficile In Must be combined with a	of Available fection, in De	Tests for <i>Clos</i> creasing Ord	s <i>tridium</i> ler of Sens	sitivity
Test	Sensitivity	Specificity	Substance	Detected
Toxigenic cultur	DSA guideli	nes: (any of	these) ^{ge}	tative cells
Nucleic acid amplification tes	GDH + te	oxin	า กเ อร	icleic acid)
Glutamate dehydrogenase	GDH + t	oxin +/- NAA	47 👓	mmon
Cell culture cyto neutralization as	NAAT +	toxin	S	
Toxin A and B e immunoassays			3	
	Clinical Infection	<i>us Diseases</i> , Volume 66, Is	ssue 7, 19 March 20	18, Pages e1–e
HIGAN MEDICI	NE	G	I update 2019 ● FM	T: Present & Fut

MICHIGAN MEDICINE

Case #2 - recurrent C. diff

- 54y woman
 - h/o SLE/RA overlap and hypogammaglobulinemia
- C. difficile infection, treated with flagyl
- 3 weeks later, recurrence of diarrhea, tested positive for C. diff
- Treated with vancomycin prolonged taper
 - Patient responded with normal stools for about one month then acute onset diarrhea
 - Started on vancomycin again, 250mg QID

MICHIGAN MEDICINE

MICHIGAN MEDICINE

GI update 2019 • FMT: Present & Future

167

Case #4 - FMT

- 54y woman
 - h/o SLE/RA overlap and hypogammaglobulinemia
- C. difficile infection, treated with flagyl
- · 3 weeks later, recurrence of diarrhea, tested positive for C. diff
- Treated with vancomycin prolonged taper
 - · Patient responded with normal stools for about one month then acute onset diarrhea
 - Started on vancomycin again, 250mg QID and referred for FMT
- 250cc of commercially available donor stool delivered via colonoscopy (terminal ileum)
- At 6 week follow up, her diarrhea had resolved without any further episodes of abd pain, loose stools, fevers/chills, nausea or weight loss.

MICHIGAN MEDICINE

GI update 2019 • FMT: Present & Future

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Short Term Complications Minor (common)³ Serious (rare) Complication of endoscopy (perforation, bleeding, complication of sedation) abdominal discomfort Bloating Rare transfer of infection (reported cases of norovirus) but not seen with increased screening Flatulence Diarrhea fever and E. coli bacteremia¹ 17% of IBD patients experience Constipation flare Borborygmi Multi-center restrospect of immunosuppressed recipients.² Vomiting two deaths · aspiration event related to procedure transient fever · secondary to progressive pneumonia 1 Quera R, Espinoza R, Estay C, et al. J Crohns Colitis. 2014;8:252-3.

MICHIGAN MEDICINE

2 Am J Gastroenterol. 2014;109:1065-71. 3 Gastroenterology. 2015 Jul; 149(1):223-237.

GI update 2019 • FMT: Present & Future

Long Term Complications Infectious disease Chronic diseases · development of diseases/conditions possible transmission of related to changes in the gut microbiota infectious agents via FMT report the development of new conditions, including autoimmune disease, ovarian cancer, myocardial infarction, and stroke unrecognized infectious · Conditions linked to microbiota (partial list) agents · Obesity Historical lesson of HepC and Diabetes HIV Atherosclerosis IBD · colon cancer non-alcoholic fatty liver disease irritable bowel syndrome Asthma autism Gastroenterology. 2015 Jul; 149(1):223-237 MICHIGAN MEDICINE GI update 2019 • FMT: Present & Future

Recent FDA warning and safety concern

- One death and one severe ICU illness due to ESBL-producing *E. coli* infection.
 - Two immunocompromised adults received experimental/investigational FMT from same donor
 - Donor stool tested positive for identical strain of bacteria
 - FDA has recommended increased informed consent, mandatory testing of all donated stool for MDROs (ESBL, VRE, CRE) and screening of all donors for higher risk of colonization, recommended quarantine of all previous stool that does not meet this standard
 - The largest commercial stool bank, Openbiome, tests for these organisms and excludes donors who are colonized.

MICHIGAN MEDICINE

GI update 2019 • FMT: Present & Future

FMT and Regulation

- Regulation Guidelines
 - None in Australia, China or Europe
 - Canada classifies as "new biologic drug" and requires Clinical Trials Application
 - United States Food and Drug Administration (FDA) has determined that administered stool constitutes a biological product and a drug in that it is intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease or is intended to affect the structure or function of the body FDA classifies stool as drug, requires IND ¹
 - The FDA will not enforce its own requirement that FMT be done under IND, as long as providers obtain informed consent, detail risks around the procedure, and explain that FMT is considered an investigational therapy. The enforcement discretion policy does not extend to other uses of FMT such as IBD. Furthermore, clinical trials of FMT for *C. difficile* do not fall under enforcement discretion and require an IND.² 1 U.S. Food and Drug Adminstration. FDA Drug Definition. FDA Glossary of

Terms. Accessed May 1 2015: 2 U.S. Food and Drug Adminstration. Guidance for Industry: Enforcement Policy Regarding Investigational New Drug Requirements for Use of Fecal Microbiota for

Regarding Investigational New Drug Requirements for Use of Fecal Microbiota for Transplantation to Treat Clostridium difficile Infection Not Responsive to Standard Therapies. 2013 Jul; Accessed May 1 2015

MICHIGAN MEDICINE

Primary indications for FMT

- Recurrent or relapsing CDI:
 - Three or more episodes of mild-to-moderate CDI and failure of a 6–8 week taper with vancomycin with or without an alternative antibiotic (e.g., rifaximin, nitazoxanide or fidaxomicin).
- At least two episodes of CDI resulting in hospitalization and associated with significant morbidity.
- Moderate CDI not responding to standard therapy (vancomycin or fidaxomicin) for at least a week.
- Severe (even fulminant CDI) with no response to standard therapy after 48 hours.

Bakken JS, Borody T, Brandt LJ, et al. Clin Gastroenterol Hepatol. 2011;9:1044–9 Surawicz CM, Brandt LJ, Binion DG, et al. Am J Gastroenterol. 2013;108:478–98. Trubiano JA, Gardiner B, Kwong JC, et al. Eur J Gastroenterol Hepatol. 2013;25:255–7

MICHIGAN MEDICINE

GI update 2019 • FMT: Present & Future

FMT for C. diff in special populations

· IBD patients with recurrent C. diff

- Decreased effectiveness (75-82%) with some patients requiring multiple transplants
- If you include multiple transplants for recurrent C. diff, efficacy approaches 90%
- However, ~14% of patients may experience a worsening of IBD or acute flare after FMT
- Immunosuppressed (BMT, solid organ transplant) patients with recurrent C. diff
 - · FMT appears effective and safe without increased risk of infection ***
- Pediatrics
 - · Limited to case reports and small studies (recurrent C. diff and IBD)
 - Reports of treating C. diff with NG tube instillation, colonoscopy and capsules
 92% cure rate with no serious adverse events reported
 - Data is mixed for children with recurrent C. diff and IBD, also mixed results in children with IBD alone
 - Shared concern for long term consequences of microbiome manipulation in children as this is unknown.

MICHIGAN MEDICINE

Expanded applications for FMT

- Dysbiosis (variations in the microbiome) has been associated with a variety of diseases
- FMT is being explored as a potential therapeutic approach
 - · promotion of colonization resistance against drug-resistant bacteria
 - inflammatory bowel disease
 - · irritable bowel syndrome
 - liver disease hepatic encephalopathy
 - metabolic syndrome
 - Checkpoint inhibitor colitis
- 316 Studies found for fecal transplant on clinical trials.gov

MICHIGAN MEDICINE

GI update 2019 • FMT: Present & Future

Colonization resistance against drug resistant bacteria

- · Similar mechanism to recurrent C. difficile treatment
- Bilinski and colleagues successfully decolonized 60% of subjects 1 month following FMT and 93% of subjects at 6 months
- Mahieu and colleagues also showed the ability of FMT to decolonize the gut of vancomycin-resistant *Enterococci* (VRE) and carbapenemase-producing *Enterobacteriaceae* (CPE).

Bilinski J,et al. Clin Infect Dis. 2017. Mahieu R, et al. J Inf Secur. 2017;75(1):75–7.

MICHIGAN MEDICINE

FMT and inflammatory bowel disease

- Systematic review suggests efficacy
 - Ulcerative colitis 36% clinical remission
 - Crohns disease 50.5% clinical remission
 - Pouchitis 21.5%
- Ulcerative colitis 3 RCTs
 - Improvement noted in one study, two others were halted due to futility
 - Moayyedi et. al, N=75 active UC weekly FMT or water enema for 6 weeks. Remission (full Mayo score <3 and complete mucosal healing) was achieved in 24% of patients after FMT and 5% with placebo
 - 50 patients with mild to moderately active UC, donor feces or autologous fecal transplant via naso-duodenal tube. FMT was administered at the start of the study and again 3 weeks later with no significant difference in outcomes
- Crohns disease
 - Small open-label trial, improvement in 58% of enrolled patients

Gastroenterology. 2015 Jul; 149(1):223-237.

MICHIGAN MEDICINE

GI update 2019 • FMT: Present & Future

FMT and checkpoint inhibitor colitis

- Immune checkpoint inhibitors (PD1, CTLA-1, PD-L1) are associated with colitis that can range from mild to severe and debilitating.
- · Checkpoint inhibitor colitis therapy
 - Currently treated similar to IBD with corticosteroids, anti-TNFs
 - Case series looking at FMT for refractory ICI-colitis were successful at resolving colitis
- Recent data indicate microbial dysbiosis may alter efficacy of ICI therapy. "Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors" <u>Science.</u> 2018 Jan 5;359(6371):91-97

Mature Medicine 2018, 24, 1804.

MICHIGAN MEDICINE

FMT and IBS

- Single center study 69% experienced improvement, but only 46% achieved long term patient-specific treatment goals
- Slow transit constipation (STC) in 36.7% of subjects 12 weeks following FMT, in comparison to 13.3% in the control group
- In combination with dietary fiber and probiotics, FMT resulted in clinical remission in 12/23 (52.5%) of STC
- Treatment of chronic intestinal pseudo-obstruction (CIPO) with FMT resulted in 44.4% of subjects regaining the ability to eat normally 8 weeks after treatment

Curr Infect Dis Rep. 2017 Sep;19(9):31.

GI update 2019 ● FMT: Present & Future

MICHIGAN MEDICINE

FMT and Liver Disease · NASH (non-alcoholic steatohepatitis) is associated with microbial dysbiosis Improvement in animal model after 8 week FMT therapy Severe alcoholic hepatitis (steroid ineligible) resolution of ascites and hepatic encephalopathy following FMT alongside an improved 1-year survival rate compared to controls (87.5% compared to 33.3%) Hepatic encephalopathy • Hepatology, 2017; two studies (England and US, Virginia) looking at FMT vs SOC for HE and dysbiosis. Promising with decreased hospitalizations and improved cognition. Hepatology April 2019, phase 1 trial with FMT capsules, appears safe, improved dysbiosis markers (LBP, AMP and EncephalApp scores) Hepatology. 2019 Apr 30. Hepatology. 2017 Dec;66(6):1727-1738 Curr Infect Dis Rep. 2017 Sep;19(9):31. MICHIGAN MEDICINE GI update 2019 • FMT: Present & Future

Obesity

- Global epidemic
- Lean and obese individuals have dramatically different microbiomes
- Transfer of gut microbiota from lean and obese individuals can recapitulate the metabolic phenotype in ex-germ free mice.
- double blind RCT transferred stool from lean individuals to obese
 - improved insulin sensitivity
 - · increased gut microbial diversity
 - increased butyrate-producers following transplant.
- Highlights promising possibilities for obesity, metabolic syndrome and diabetes treatment

MICHIGAN MEDICINE

GI update 2019 @PMIT?Present@Puture

- My Experience
 - Patients are calling for this therapy
 - · Many find it significantly more appealing than antibiotics
 - · IBD patients accept this easier than immunosuppression
- The social media experience
 - · Multiple patient groups and websites advocating for FMT
 - Some concerning discussions of home based FMT enemas
 - "DIY" fecal transplants and risks

MICHIGAN MEDICINE

GI update 2019 • FMT: Present & Future

TRANSPLANT TEAM MEETING

Who let stinky in?

Thank you!

MICHIGAN MEDICINE

GI update 2019 • FMT: Present & Future

Functional Defecation Disorder

- Prevalence: 20-81%
 - Tertiary care centers, may be false positives
 - Women 3x more likely than men
- Etiology? Unclear
 - Began in childhood-31%
 - Particular event: pregnancy, trauma or back injury-29%
 - Unidentifiable-40%
 - 60% report intermittent passage of hard stool
 - Does excessive straining to expel hard stools predispose?

MICHIGAN MEDICINE

• Sexual abuse 22% and physical abuse in 32%

Functional Defecation Disorders

- Symptoms:
 - prolonged or excessive straining
 - a feeling of incomplete evacuation,
 - use of perineal or vaginal pressure during defecation to allow the passage of stool
 - digital evacuation of stool

How Good is Digital Rectal Exam?

- 4 studies N=781
- Heterogeneity (I²=91%)

Comparator	Sensitivity	Specificity	PPV	NPV
HRM	93	59	91	61
ARM +BET	73	85	97	31
ARM + CTT	83	95	98	65
DEF +EMG	58	88	62	87

- Pooled Sensitivity: 80%; 95% CI 64-90%
- Pooled Specificity: 84%; 95% CI 64-94%

Caetano AC, Can J Gastroenterol Hepatol. 2016; Article ID 8654314, 8 pages

Nonpharmachologic Treatment

- Toilet training
 - Instruct patients to:
 - Attempt BM at least bid, 30 minutes after a meal
 - Not ignore urge to defecate
 - Diaphragmatic breathing while defecating
 - Avoid straining when passing stool
 - Not stay on the toilet for more than 5–10 minutes

/ | MICHIGAN MEDICINE

<text><text><image>

Treatme	ent
 Pelvic Floor 70% Ac More th Diazepam 23% Ad EMG with Placebo 38% Ad 	Diseases of the Colon & Rectum April 2007, Volume 50, ISSUE 4, pp 428-441 Cite as Randomized, Controlled Trial Shows Biofeedback to be Superior to Alternative Treatments for Patients with Pelvic Floor Dyssynergia-Type Constipation Authors Authors and affiliations Steve Heymen ▷, Volanda Scarlett, Kenneth Jones, Yehuda Ringel, Douglas Drossman, William E. Whitehead Physical Therapy with Biofeedback dequate symptom relief an 50% decrease in EMG during simulated defectation equate symptom relief th simulated defectation worsened equate symptom relief

- 2 comparative studies
 - Botox vs. Division of PR
 - Botox vs. Division of PR vs. pelvic floor physical therapy with biofeedback

MICHIGAN MEDICINE

• Too few for meta-analysis

Ref.	Country	Туре	n	Male	Mean age (yr)	Duration of complaint (mo)	Follow up (mo)	Dose of BTX-A (IU)	Site of injection
Shafik et al ^[17]	Egypt	Prospective	15	2	41.2	105.6	14.6	25	Lateral (3, 9 o'clock)
Ron et al ^[18]	Israel	Prospective	24	9	23.7	Not reported	61.0	10-20	Lateral and posterio
Maria et al ^[19]	Italy	Prospective	24	10	56.0	28.0	39.0	60	Lateral (3, 9 o'clock)
Farid <i>et al</i> ^[12]	Egypt	Prospective RCT	15	15	34.7	71.1	14.7	100	Lateral (5, 7 o'clock)
Farid et al ^[20]	Egypt	Prospective RCT	24	7	34.7	Not reported	12.0	100	Lateral (5, 7 o'clock
Hompes <mark>et al^[21]</mark>	United Kingdom	Retrospective	56	20	47.5	Not reported	19.2	100	Lateral (3, 9 o'clock
Zhang et al ^[22]	China	Retrospective	31	18	50.1	67.2	8.4	100	Lateral and posterior 6, 9 o'clock)

 Both groups showed improved constipation scores Botox success 86.7% → 40% Surgery success 100% → 66.6% 							
Table 2 Co	— Surg	preoperative-injection	and postoperative-	→ 66.6%	tients		
Table 2 Co	— Surg mparison between Preop-inj.	preoperative-injection a Early postop-inj.	and postoperative- Late op-inj.	→ 66.6% injection constipation scores in our pa Student <i>t</i> test	tients		
Table 2 Co	— Surg	preoperative-injection a Early postop-inj.	and postoperative- Late op-inj.	→ 66.6% injection constipation scores in our pa Student <i>t</i> test Preop-inj. vs. early postop-inj.	tients Preop-inj. vs. late postop-in		
Table 2 Co Group I Group II	— Surg mparison between Preop-inj. 11.20±0.94 11.40±0.74	preoperative-injection a Early postop-inj.	ss 100% and postoperative- Late op-inj. 8.20±2.57 6.13±1.69	→ 66.6% injection constipation scores in our pa Student t test Preop-inj. vs. early postop-inj. 0.0001 0.0001	tients Preop-inj. vs. late postop-ir 0.0001 0.0001		

Complications

- Botox None
- Surgical division of the puborectalis
 - Wound infection/disruption 66.7%
 - Flatal incontinence 13%
 - Rectal intussusception 26.7%

Take Home Points

Biofeedback

- Established treatment for pelvic floor dyssynergia
- Success rate 75-85% of patients
- Randomized Control Trials: Both short and long term efficacy of biofeedback in dyssynergic defecation
- Botox for dyssynergic defecation should be considered for patients who do not have success with biofeedback
 - Short term success approaches 80%
 - Low complication rates
 - Likely need repeated injections for efficacy

Disclosures – All Academic / Educational (Last 24 months)

Funding

2016-2018 NIH R21 – acute pancreatitis

Honoraria (all for academic /educational activities)

- 2008-2018 British Medical Journal: chapter & updates on chronic pancreatitis, published in BMJ Point of Care
- 2013-2018 Oakstone Publishing, LLC: podcasts for Practical Reviews, Gastroenterology

Consultant / Speakers Bureau (all for academic /educational activities)

2016-2017 Consultant, Cystic Fibrosis Foundation Therapeutics (CFFT), Inc. (Bethesda, MD, USA).

Editorial Board Membership: Pancreatology, Pancreas

- Advisory Board Membership (all for academic /educational activities)
 - 2012- Faculty of 1000 Research (www.f1000research.com)
 - 2016-2018 AGA Institute Council Pancreatic Disorders (PAN) Section Committee
 - 2017-2019 The National Pancreas Foundation (NPF) State Chapter of Michigan

No conflicts of interest related to this program

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Terminology: Maldigestion vs Malabsorption

Maldigestion

- Defective hydrolysis of nutrients within intestine
- Examples: enzyme deficiency (pancreatic, lactase, etc)

Malabsorption

- Defective mucosal absorption
- Causes: maldigestion, defective absorption/transport (e.g. celiac)

Use of terms

- When distinction not clinically important, malabsorption used

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Malabsorption *From* Luminal Pancreatic Enzyme Deficiency

Primary EPI - reduced secretory capacity

Mandalia A, DiMagno MJ. Exocrine pancreatic insufficiency and nutritional complications. In Cystic Fibrosis. 2020

- Pancreatitis primarily chronic but also acute pancreatitis (up to 1/3)
- Pancreatic resection
- Cystic fibrosis
- Schwachman-Diamond Syndrome
- · Adult pancreatic lipomatosis or atrophy
- Johanson-Blizzard Syndrome
- Isolated lipase deficiency
- Congenital pancreatic hypoplasia
- Agenesis of the pancreas

Malabsorption *From* Luminal Pancreatic Enzyme Deficiency

Secondary EPI - preserved secretory capacity

Obstruction:	pancreatic / ampullary neoplasm
Decreased CCK release:	small bowel diseases (e.g. Celiac, Crohn's)
Intraluminal lipase inactivation:	gastrinoma, lipase inhibitor
Postcibal asynchrony:	gastrointestinal surgery, dysmotility (poor mixing, ↓ CCK release, ↓ contact time)
Enterokinase deficiency:	\downarrow luminal activation pancreatic proteases
Reduced synthesis:	protein calorie malnutrition (marasmus, Kwashiorkor) reversible with repletion of essential amino acids

Mandalia A, DiMagno MJ. Exocrine pancreatic insufficiency and nutritional complications. In Cystic Fibrosis. 2020. CCK, cholecystokinin; EPI, exocrine pancreatic insufficiency

Symptoms of Exocrine Pancreatic Insufficiency (EPI)

In Mild-Moderate EPI

- Asymptomatic
- · Mild abdominal discomfort / bloating

In Severe EPI (enzyme output falls below 10% lowest normal)

- Oily, bulky, foul smelling stools
- Excess flatulence
- Postprandial crampy abdominal pain and/or bloating
- Appetite may increase (ravenous) or decrease
- Weight loss

NOTE: Symptoms not specific to EPI

Select Complications of Severe Exocrine Pancreatic Insufficiency

- Weight loss
- Muscle wasting
- Edema
- Non-traumatic bone fractures
- Night-blindness
- Bleeding tendencies
- Neuropathy
- Dermatitis & alopecia

protein malnutrition protein malnutrition vitamins D & K, copper vitamin A vitamin K vitamin E, copper zinc

Clinical Manifestation of Fat Soluble Vitamin and Select Mineral Deficiencies

Vitamin A	Xerophthalmia Night blindness Bitot's spots Follicular hyperkeratosis Immune dysfunction	Vitamin E	Peripheral neuropathy Spinocerebellar ataxia Skeletal muscle atrophy Retinopathy Anemia	Zinc	Dermatitis Alopecia Diarrhea Weight loss Infection
Vitamin D	Rickets Bowed legs Osteomalacia	Copper	Neutropenia Impaired bone calcificatio	n	Hypogonadism
Vitamin K	Elevated prothrombin time Coagulopathy \downarrow bone health	e	Neuropathy Anemia		

Mandalia A, DiMagno MJ. Exocrine pancreatic insufficiency and nutritional complications. In Cystic Fibrosis. 2020.

Primary EPI: PANCREATITIS

Acute

- Acute inflammation
- Acute abdominal pain
- Elevated pancreatic enzymes in serum
- Self-limiting

AGA Institute teaching slides

Chronic

- Chronic inflammation
- Recurrent or chronic abd pain
- Progressive loss of pancreatic
 - \circ endocrine function and
 - exocrine function

Classification of Chronic Pancreatitis by TIGARO System Plus Celiac Disease

Toxic metabolic

- Alcohol
- Tobacco
- Hypercalcemia (
 [↑] PTH)
- ↑ Triglycerides (familial)
- Chronic kidney disease

Idiopathic (early vs late onset) Genetic

- Autosomal dominant
- PRSS1 (hereditary pancreatitis)
- Autosomal recessive/modifier genes
- CFTR (cystic fibrosis)
- SPINK 1 (tropical pancreatitis)
- Others

Historically 60-90% of CP worldwide due to alcohol. Now perhaps less frequent

<u>Autoimmune</u>

- Type 1
- Type 2

Recurrent & severe pancreatitis Necrosis

Obstruction

- Neoplasm
- Post-traumatic
- Celiac disease

Etemad et al. Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology. 2011; 120:682-707 Sadr-Azodi et al. CGH 2012;10:1136-1142; Ludvigsson et al. CGH 2007;5:1347-1353; Patel et al. GIE. 1999;50:823-827. Worning H. Clin Gastroenterol. 1984;13:871-894; Yadav et al. Arch Intern Med. 2009;169:1035-1045

Case #1 (Illustrates Pancreatitis Terminology)

A 38 year-old man had 3 hospitalizations for pancreatitis in 2009, described as severe epigastric abdominal pain radiating to the back along with marked increases in serum lipase. He is asymptomatic between attacks. Between 2010-15 he has relapsing but less severe attacks at varying intervals. Pancreatitis risk factors include alcohol (8 beers / day x 15 yrs) & 1 pack of cigarettes daily. He now has diabetes, steatorrhea and CT findings of pancreatic calcifications and dilation of the main pancreatic duct.

2009: Chronic Relapsing Pancreatitis

2015: Established Chronic Pancreatitis

Progression to CP over 2-15 yrs: pooled prevalence 65% 95% Cl 48%-80%

Pancreatitis due to any etiology (Dutch series of 15 hospitals)

4 variables independently predicted progression to CP

Current smoking
 Idiopathic etiology
 Alcohol etiology
 Necrotizing pancreatitis

Future Goal: Identify biomarker to strengthen predictive model
Sankaran et al. Frequency of progression from acute to chronic pancreatitis and risk factors : A meta analysis. Gastroenterology. 2015; 149:1490-1500
Ahmed et al. Risk of recurrent pancreatitis and progression to chronic pancreatitis after a first episode of acute pancreatitis. CGH. 2016;14:738-746

Secondary EPI: Post-Gastrectomy Surgery Letter to the Editor **Digestive** Published online: January 16, 2019 **Dig Surg** Surgery DOI: 10.1159/000496433 **Exocrine Pancreatic Insufficiency after Gastrectomy for Cancer Is Not Severe**

Matthew J. DiMagno

Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA

3 studies of patients with post-surgical duodenal continuity (not Roux-En-Y anatomy) EPI mild-moderate, not severe enough to cause steatorrhea - related to denervation

Roux-En-Y gastrectomy: steatorrhea from mixing disorder, bacterial overgrowth, etc.

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Implications for treating exocrine pancreatic insufficiency

Pancreatic Enzyme Replacement Therapy (PERT)

Product	Formulation	Manufacturer	Lipase content/capsule or pill
Zenpep [®]	Enteric-coated porcine	Allergan	3000, 5000, 10000, 15000, 20000, 25000, 40000
Creon [®]	Enteric-coated porcine	AbbVie	3000, 6000, 12000, 24000, 36000
Pancreaze®	Enteric-coated porcine	Janssen	4200, 10500, 16800, 21000
Viokace [®]	Non-enteric coated porcine	Allergan	10440, 20880
Pertzye®	Enteric-coated porcine with bicarbonate	Digestive Care	4000, 8000, 16000
	Often	under-dosed	
alia A & DiMagno MJ. E avis, M Rosenfeld, J Chn	xocrine pancreatic insufficiency and nutrition niel editors. Springer International Publishing ,	al complications. In Cystic Fibros AG, Cham, Switzerland, (in Pres	sis, 1st Edition, ss)

Persistent Ste	eatorrhea Despite PERT for Severe EPI
PERT	- Inadequate dose, non-adherence, limited efficacy
Mixing disorder	- Timing of PERT, gastroparesis, intestinal surgery
Acid	- (pH <4.5) degrades uncoated PERT - Delays release of coated PERT (jejunum) - Precipitates/inactivates bile acids
Bile acid deficiency	 Pacterial overgrowth (deconjugation) Biliary obstruction & ileal disease
Duodenal disease	- Celiac disease plus others; Infection (e.g. giardia)
Alternative dx	- Pancreatic cancer
Don't forget bone l	nealth, Vitamin D, calcium, other micronutrients
DiMagno EP et al. NEJM 1973;288(16):813-8 Capurso et al. United European Gastroentero 63(1):25-32: Ludvigsson et al. Clin Gastroen	115; Regan et al. NEJM . 1977;297:854-858; Dominguez-Muñoz et al. Gut 2006;55:1056–7; ol J. 2016;4(5):697-705; Tabaqchali et al. Lancet 1966;2:12–15; DiMagno EP et al . Gastroenterology 1972; Interol Henry 2007: 5(11):1347-53; Dominguez-Muñoz, LF et al. Aliment Pharmacol Ther 2005;21:993–1000

Symptoms

- Constipation treatment may unmask underlying constipation
- Nausea
- Abdominal cramps
- Diarrhea

Other

- Hyperuricosuria
- DKA

Summary of Exocrine Pancreatic Insufficiency

Etiology

- Chronic pancreatitis (CP)
 - Definite CP defined by Mayo Score of >4 of 16 points
 - Diagnostic features of CP often delayed (varies by etiology)
 - EUS useful for ruling in or out CP (large diagnostic gray area)
- Acute pancreatitis
 - Up to 1/3 have EPI following attack of pancreatitis
 - Progression to CP in ~10% after 1st attack pancreatitis
- Cystic fibrosis

Summary of Exocrine Pancreatic Insufficiency

Evaluation

- · Pancreatic function testing under-utilized
- Definition of severe exocrine pancreatic insufficiency (EPI)
 - 72 hour quantitative fecal fat >7 gm/24 hrs
- Fecal elastase: <100 ug/g stool suggests severe EPI
 - >100 ug/g stool has 99% NPF for severe EPI unreliable with watery stool

Summary of Exocrine Pancreatic Insufficiency

Management - Pancreatic enzyme replacement therapy (PERT)

- Incomplete treatment common
- Often under-dosed: 90,000 USP units lipase/meal (1/2 with snacks)
- Timing: 1/4 first couple bites, 1/2 middle of meal, 1/4 last couple bites
- · Have familiarity with causes of PERT failure
 - · Small intestinal bacterial overgrowth

Summary of Exocrine Pancreatic Insufficiency

Nutritional Screening

- Weight and body mass index (BMI)
- Micronutrient deficiencies
- Bone health (non-traumatic fractures)

Case #1

Vignette: A 52 year old man has had 3 previous admissions for acute alcoholic pancreatitis. He returns complaining of a 20-pound weight loss. He stopped drinking but continues to smoke 1 ppd. Appetite is normal. He reports mild constant epigastric pain. Physical examination is notable for evidence of loss of muscle mass. Laboratory tests include a prealbumin of 16, albumin 3.1, normal liver chemistries, and an amylase of 22. A CT scan reveals an atrophic pancreas with a pancreatic duct of 6 mm, with some calcification in the side branches of the pancreatic duct. No mass is noted.

What is the most appropriate additional treatment for steatorrhea?

- A: Fecal elastase
- B: Serum CA 19-0
- C: Endoscopic ultrasonography (EUS)
- D: Endoscopic retrograde cholangiopancreatography (ERCP)
- E. Surgical Consultation

Case #2

Vignette: A 60 year-old has a 4-year history of bulky, semisolid, foul-smelling bowel movements, a ravenous appetite, weight loss and episodic epigastric pain. Pancreatitis risk factors include former heavy alcohol & smoking. He has cachexia, temporal wasting, poor dentition, anicteric sclera, mild epigastric tenderness & boryborygmi. Liver panel is abnormal for low albumin. Celiac testing is negative. CT shows pancreatic calcifications but no mass. 72 hour quantitative fecal fat testing reveals a stool fat of 40 g/d, falling to 32 g/d (still abnormal) on pancreatic enzymes (30,000 units lipase / meal).

What is the most appropriate additional treatment for steatorrhea?

- A: Bile acid sequestrant
- B: Increase pancreatic enzymes to 90,000 units / meal
- C: Gluten free diet
- D: 10 grams soluble fiber daily

Case #2

Vignette continued: The 60 year-old man with definite chronic pancreatitis and steatorrhea increases pancreatic enzyme dosing to 90,000 units of lipase per meal, ingested throughout the meal, and starts a proton pump inhibitor. Weight loss slows but persists. 72 hour stool fat falls from 32 to 20 g/d (still abnormal) and multiple blood micronutrient levels are low.

What is the best next management step?

- A: Stool C diff toxin
- B: Testing for small intestinal bacterial overgrowth
- C: Exclude colitis
- D: TSH

Case #3

Vignette: A 48 year old woman with idiopathic chronic pancreatitis who recently moved to your area is seen in clinic. She has previously undergone CT, which revealed an atrophic pancreas with a 6 mm pancreatic duct. She notes little pain but does complain of weight loss of 10 pounds over the last year. She had also noted greasy stools. She has been treated 6 months with enteric-coated enzymes, 40,000 USP units of lipase with each meal. She also takes calcium and vitamin D. She still notes some oil in her stools. In addition to increasing the dose of enzymes....

What is the most appropriate additional treatment for steatorrhea?

- A: Add a PPI daily
- B: DEXA scan
- C: Endoscopic ultrasonography (EUS)
- D: Endoscopic retrograde cholangiopancreatography (ERCP)
- E: Refer to surgery for pancreaticojejunostomy

Gallbl	adder diseases
– Gallstone disea	ase
Risk factors	
Not modifiable	Modifiable
Family history	Obesity/metabolic syndrome/diabetes mellitus/dyslipidemia
Genetic predilection	Drugs - ceftriaxone, octreotide, thiazide diuretics, female sex hormones
Ethnic background	Reduced physical activity
Female sex	Rapid weight loss
Age	IPN
1589	Diet
105	Underlying disease: cirrhosis, Crohn's disease
TPN, total parental nutrition.	
	Stinton et. al. 2012
Division of Gastroenterology	MICHIGAN MEDICINE

MOC Part II post test questions

• T or F

 Due to the high incidence of post bariatric surgery gallstone development, prophylactic cholecystectomy should be performed in these patients.

Surveillance for Hepatocellular Carcinoma

Disclosures

- Advisory/Consulting: Wako Diagnostics, Eisai, Exelixis, Eli Lilly, Bristol Myers-Squibb, Freenome
- Research Funding: Bayer, Target Pharmasolutions, Exact Sciences, Glycotest

DIGESTIVE & LIVER HEALTH

Case:

- 56 yo M with a history of diabetes, obesity, hypertension and hyperlipidemia presents with a new diagnosis of cirrhosis.
- What is his risk of development of hepatocellular carcinoma (HCC)?
- What are best practices in order to reduce his risk of death from HCC?

Hepatocellular Carcinoma

- Most common primary hepatic malignancy
- 80-90% cases in US arise in the setting of cirrhosis

DIGESTIVE & LIVER HEALTH

Incidence and Mortality

NASH HCC Risk

• Among liver transplant candidates, NASH is a rapidly growing cause of HCC

What about Hepatitis B?

- · Hepatitis B can lead to HCC in the absence of cirrhosis
- Recommendation to survey patients with HBV at highest risk:
 - Asian born men>40 yo
 - Asian born female>50 yo
 - African patients >20 yo
 - Family history of HBV induced HCC

DIGESTIVE & LIVER HEALTH

Does etiology matter?

Table 3. Groups for whom HCC surveillance in recommended or in whom the risk of HCC is increased, but in whom efficacy of surveillance has not been demonstrated

Population group	Threshold incidence for efficacy of surveillance (> .25 LYG)(%/year)	Incidence of HCC	
Asian male hepatitis B carriers over age 40	0.2	0.4-0.6%/year	
Asian female hepatitis B carriers over age 50	0.2	0.3-0.6%/year	
Hepatitis B carrier with family history of HCC	0.2	Incidence higher than without family histor	
African/North American Blacks with hepatitis B	0.2	HCC occurs at a younger age	
Cirrhotic hepatitis B carriers	0.2-1.5	3-8%/yr	
Hepatitis C cirrhosis	1.5	3-5%/yr	
Stage 4 primary biliary cirrhosis	1.5	3-5%/yr	
Genetic hemachromatosis and cirrhosis	1.5	Unknown, but probably $> 1.5\%$ /year	
Alpha 1-antitrypsin deficiency and cirrhosis	1.5	Unknown, but probably $> 1.5\%$ /year	
Other cirrhosis	1.5	Unknown	
Surveillance benefit uncertain			
Hepatitis B carriers younger than 40 (males) or 50 (females)	0.2	< 0.2%/ m yr	
Hepatitis C and stage 3 fibrosis	1.5	< 1.5%/yr	
Non-cirrhotic NAFLD	1.5	< 1.5%/yr	

Bruix and Sherman, *Hepatology*. 2010.

DIGESTIVE & LIVER HEALTH

Randomized trial in HBV patients

Variable	Screen Group (n=9373)	Control Group (n=9443)	
HCC cases	86	67	
% Stage I	60.5%	0%	
% Curative treatment	46.5%	7.5%	
# HCC death	32	54	
Mortality (per 100,000)	83.2	131.5	
Rate Ratio	0.63 (0.4-0.9)		

Zhang et al, J Cancer Res Oncol 2004

UNIVERSITY OF MICHIGAN HEALTH SYSTEM

The Problem:

· HCC surveillance is underutilized

- Current surveillance guidelines are intensive with many points of failure:
 - Provider recognition of at risk patient
 - · Provider ordering ultrasound
 - · Patient obtaining ultrasound
 - Documentation US completed
 - Provider interpretation of results

Singal et al. JGIM. 2012.

Every 6 months

Provider barriers to surveillance

Provider-reported barriers	Safety-net health system (n=77)	Tertiary care system (n=100)
Lack of knowledge about guidelines	68.2%	79.1%
Competing interests in clinic	51.6%	37.4%
Lack of time in clinic	40.5%	52.8%
Difficulty recognizing at-risk patients	35.4%	30.0%
Ultrasound capacity	23.0%	10.1%
Responsibility of subspecialists > PCP	5.3%	29.4%

Dalton Fitzgerald et al. Clin Gastro Hep 2015 Simmons et al Clin Gastro Hep 2018

DIGESTIVE & LIVER HEALTH

Patient reported barriers to surveillance

Farvardin et al. Hepatology 2017

How do we survey for HCC?

- AASLD guidelines recommends: Ultrasound every 6 months
- No specific recommendation for use of AFP, but recent meta analysis showed improvement in early detection with addition of AFP

US sensitivity varies significantly

at are predictors o	of inade	equate U	IS?	
Table 2 Factors associated with inad	lequate ultrasound c	• uuality (N = 941)		
	Univariate a	nalysis	Multivariable	e analysis
Characteristic	OR	95% CI	OR	95% CI
Male gender	1.42	1.01-2.01	1.68	1.14-2.48
Child Pugh B or C cirrhosis	2.17	1.56-3.00	1.93	1.32-2.81
BMI category				
Normal (BMI <25)	Ref	Ref	Ref	Ref
Overweight (BMI 25-29.99)	2.12	1.28-3.54	2.29	1.35-3.88
Obesity class II (BMI 30-34.99)	2.88	1.70-4.89	2.95	1.67-5.20
Obesity class II (BMI 35-39.99)	5.35	2.96-9.66	6.37	3.35-12.12
Morbid obesity (BMI ≥40)	6.29	3.45-11.47	8.22	4.30-15.73
Actiology of liver disease				
Hepatitis C	Ref	Ref	Ref	Ref
Hepatitis B	1.09	0.49-2.42	1.87	0.79-4.39
Alcohol-related	2.73	1.80-4.16	2.11	1.33-3.37
Non-alcoholic steatohepatitis	3.16	1.97-5.07	2.87	1.71-4.80
Other	0.66	0.23-1.93	0.67	0.22-2.04
ALT >40 U/L	0.70	0.50-0.97	0.93	0.64-1.34
	1.00	109 2 22	1 5 5	101 2 27

Surveillance – What are my Options?

- Ultrasound, Ultrasound and AFP, CT, or MRI?
- US based surveillance is most cost-effective, but consider the population
 - Obesity
 - Cirrhosis
 - Ascites
- More data needed, but cross-sectional imaging may be right for certain patients – discuss with your radiologist
- We need better screening and risk stratification tools is blood based surveillance the answer?

DIGESTIVE & LIVER HEALTH

GALAD Score

- Recently developed and validated composite score of AFP, AFP-L3, DCP and age, sex
- Derivation cohort of 670 patients (331 with HCC) from the UK – AUCs >0.95

			Sensitivity		
			Maximum sensitivity	Maximum specificity	Maximum both
Staging system/ treatment type	Criteria for early or late disease	Number of patients	Cutoff = −1.36	Cutoff = 0.88	Cutoff = −0.63
BCLC				\sim	
Early	0 and A	42	93	55	86
Late	B, C, and D	327	96	83	94
TNM 6					
Early	1 and 2	154	93	70	89
Late	3 and 4	143	99	90	97
Tumor size					
Early	≤5 cm	169	92	67	88
Late	>5 cm	166	99	92	98
Treatment intent					
Early	Curative	61	85	56	75
	Dolliotivo	252	98	86	98

Johnson et al. Cancer Epidemiol Biomarkers Prev. 2014

GALAD Score

- Validation in a retrospective multinational cohort of 6,834 patients (2,430 with HCC)
- Model performed well in all cohorts with AUC>0.90
- Sensitivity 80.2%-81.2% in early stage (within Milan) HCC
- Ongoing Phase III biomarker study being conducted

Berhane et al. Clin Gastroenterol Hepatol. 2016.

Case

- · Your patient comes to clinic after receiving an US
- You get a call from your radiologist prior to going in:
 - Patient has a new 1.3 hyperechoic mass in the R lobe of his liver
- Labs:
 - Bili 0.9, Platelets: 113, INR: 1.0; AFP: 14
- What do you do next?

UNIVERSITY OF MICHIGAN HEALTH SYSTEM

Nodule on Surveillance – Now What?

- Patient is undergoing surveillance for HCC and a hyperechoic nodule is found on ultrasound.
- Nodules on US surveillance are very common
 - In two cohort studies up to 25% of patients had a nodule on surveillance US that necessitated dynamic cross-sectional imaging
 - However nearly three-quarters of these patients did not end up developing HCC
- For nodule work-up imaging with multiphasic CT or MRI is the next step

DIGESTIVE & LIVER HEALTH

N.

Atiq et al. *Hepatology* 2017 Konerman et al. *Liver Tr<u>ansolant.</u> 2019*

Triple phase imaging

Liver imaging requires an: 1. Arterial phase 2. Venous phase 3. Delayed phase

Lesions that have arterial enhancement with washout have a sensitivity and specificity of >90% for being HCC

Marrero JA, et al. *Liver Transpl.* 2004.

Imaging modality: CT vs MRI

Modality	Studies (n)	Sensitivity (95% Cl) P (%)	Р	Specificity (95% Cl) P ² (%)	P	+ Likeli- hood Ratio (95% Cl)	Р	 Likeli- hood Ratio (95% CI) 	P	Diagnostic Odds Ratio (95% Cl)	P
All studies irrespective	of cohort ye	ear									
Contrast- enhanced CT	19	$\begin{array}{c} 0.66 \\ (0.60-0.72) \\ f^2 = 72.53 \end{array}$	0.0003	$\begin{array}{c} 0.92 \\ (0.84 \text{-} 0.96) \\ \ell = 86.74 \end{array}$	0.83	8.1 (4.1-16.2)	0.86	0.37 (0.30-0.44)	0.001	22 (10-50)	0.24
MRI with and without contrast	19	$\begin{array}{c} 0.82 \\ (0.75 \text{-} 0.87) \\ \ell^2 = 72.90 \end{array}$		0.91 (0.82-0.95) $\beta^2 = 89.81$		8.8 (4.6-16.9)		0.20 (0.15-0.28)		43 (20-92)	
All cohorts started in th	e year 20 <u>0</u>	0 or later									
Contrast- enhanced CT	17	$\begin{array}{c} 0.69 \\ (0.63 - 0.76) \\ l^2 = 73.9 \end{array}$	0.002	$\begin{array}{c} 0.94 \\ (0.87 \text{-} 0.98) \\ \ell = 88.93 \end{array}$	0.82	11.9 (5.1-27.7)	0.96	0.32 (0.26-0.40)	0.01	37 (15-90)	0.3
MRI	17	0.84		0.93 (0.84-0.97)		12.3 (5.1-29.5)		0.17 (0.11-0.25)		73 (29-181)	

Roberts et al. Hepatology. 2018

CT/MRI LI-RADS® v2018 COF	RE
Untreated observation without pathologic proof in patient at high risk for HCC	
If cannot be categorized due to image degradation or omission	→ LR-NC
	→ LR-TIV
If definitely benign	→ LR-1
If probably benign	→ LR-2
- If probably or definitely malignant but not HCC specific (e.g., if <u>targetoid</u>)	→ LR-M
Otherwise, use CT/MRI diagnostic table below	
If intermediate probability of malignancy	→ LR-3
- If probably HCC	→ LR-4
If definitely HCC	→ LR-5
	STIVE & LIVER HEALTH

CT/MRI Diagnostic Table						
Arterial phase hyperenhancement	(APHE)	No /	APHE		Nonrim APH	E
Observation size (mm)		< 20	≥ 20	< 10	10-19	≥ <mark>2</mark> 0
Count additional major features: • Enhancing "capsule" • Nonperipheral "washout" • Threshold growth	None	LR-3	LR-3	LR-3	LR-3	LR-4
	One	LR-3	LR-4	LR-4	LR-4	LR-5
	≥ Two	LR-4	LR-4	LR-4	LR-5	LR-5

LR3 and LR4 – What do we do?

- There is ongoing uncertainty on the work-up and management of indeterminate nodules
 Uncertainty of when to biopsy these masses and how long to follow them
 - Routine discussion of individualized management in a tumor board setting is at this time best practice

van der Pol et al. *Gastroenterology* 2018

Atypical HCC

- Approximately 15% of lesions >2 cm will not have typical radiologic features of HCC
- Atypical lesions greater the 2 cm should be biopsied in cirrhotic patient, as they have a high likelihood of being HCC

–Risk of tumor seeding <0.5%

Bolondi L, et al. Hepatology. 2005.

Case

- Our 56 yo patient undergoes an MRI
- 1.6 cm segment 5 lesion near the dome LR5
- CT chest (staging) negative for mets
- Undergoes a lap wedge resection negative margins, no vascular invasion
- Follow-up imaging 6 weeks later shows no evidence of cancer
- Management now?

Post-HCC surveillance

- Patient after curative HCC therapy need lifelong surveillance
 - Every 3 months X 2 years
 - After 2 years every 6 months
- Risk of recurrence is highest in first 2 years post, 30-70% after 5 years
- Important to adjust risk modifiers
 - Treat viral hepatitis
 - Alcohol cessation
 - Smoking cessation
 - Weight loss, diabetic control

Case

- Your patients father was just diagnosed with cirrhosis with decompensation.
- He is 84 years old with coronary disease, atrial fibrillation, history of a stroke, decreased mobility, using a walker
- He has developed abdominal ascites and HE
- Labs: Na: 133, Alb: 2.1; INR: 2.4; Cr: 2.1; Bili: 2.3
- Should you offer him surveillance?

Who do you not survey?

- No stringent guidelines here, but Child Pugh C patients who aren't transplant candidates probably shouldn't be offered surveillance
- Patients with declining or severely impaired functional status
- · Patients with significant comorbid conditions
 - Surveillance recommendations should be individualized

Conclusions

- In patients with cirrhosis and select patients with hepatitis B, surveillance is recommended and associated with improved early detection and improved survival
- Current surveillance recommendations are US or US+AFP every 6 months
- Once something is seen on US then multiphasic imaging is indicated
 - · HCC can be routinely diagnosed non-invasively
 - Indeterminate lesions should be followed with serial imaging or biopsied

DIGESTIVE & LIVER HEALTH

<text><text><text><text><section-header><text><text>

This patient is from an HBV-ei Five clinical phases of infectio -Serology (HBeAg, HBsAg status) -HBV DNA level -Hepatic inflammation (ALT) and fibro	ndemic region n based on sis
1. Immune tolerant	HBeAg+ chronic infection
2. Immune active	HBeAg+ chronic hepatitis
3. Inactive carrier	HBeAg- chronic infection
4. HBeAg- negative chronic hepatitis B	HBeAg- chronic hepatitis

Update on preferred regimens

Entecavir

-0.5 mg daily (1 mg daily if lamivudine-experienced or decompensated cirrhosis)

Tenofovir dipovoxil fumarate (TDF)

-300 mg daily -Small risk of renal adverse events (GFR decline) or BMD loss

Tenofovir alafenamide (TAF)

-25 mg daily, approved 2016 -Lower risk of renal or bone adverse events vs TDF but magnitude of benefit and cost-effectiveness unclear/controversial

Endpoints of HBV therapy After 3 years of continuous therapy: **Tenofovir (TDF)** Entecavir HBV DNA suppression (%) 61 76 68-81 ALT normalization 68 22-25 HBeAg loss (%) HBeAg seroconversion (%) 21-22 21 4-5 8 HBsAg loss (%) Terrault et al, Hepatology 2018 MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Case 2

44 yo man with a history of chronic HBV on entecavir •Had **eAg-positive chronic hepatitis B** ("immuneactive")

•Most recent labs: ALT 21, HBV DNA undetectable, HBeAg–, HBeAb+, HBsAg+, HBsAb–

He has eAg seroconverted; if noncirrhotic and remains eAb+/eAg- for >1 yr, can consider stopping tx

HBV reactivation

When initiating immunosuppressive or cytotoxic therapy, consider:

1.HBV status

2. Type of immunosuppression

Monitoring for HBVr

Moderate risk of HBVr -Monitoring versus prophylaxis -Monitor by HBsAg (if HBsAg- HBcAb+), HBV DNA, ALT q3mo

Low risk of HBVr

- Monitor

What is functional diarrhea?

- Chronic or recurrent diarrhea not explained by structural or biochemical abnormalities
 - May include symptoms of bloating, abdominal pain, cramping, urgency, fecal incontinence

Organic Causes of Chronic Diarrhea to Consider

- Infection
 - C diff, Giardia, other parasitic infections
- Celiac disease
- Inflammatory bowel disease
- Microscopic colitis
- Small intestinal bacterial overgrowth
- Pancreatic insufficiency

- Fecal antigen or PCR for Giardia
- IgA-tTG and serum IgA
 IgG-tTG or IgG deaminated gliadin peptide if serum IgA low
- ESR and CRP not recommended
- CBC?
- Testing for bile acid malabsorption if available

Smalley et al. AGA Practice Guideline on the laboratory evaluation of FDr and IBS-D in adults. Gastroenterology. 2019;157:851-854

Additional Diagnostic Testing: Chronic Diarrhea

Other testing as clinically indicated

- Colonoscopy
 - blood in stool, family history, age, anemia, elevated fecal calprotectin/fecal lactoferrin, immunosuppression
- EGD with biopsy for positive celiac antibody screening
- Abdominal xray
 - Constipation history with concern for fecal loading
- Stool for C diff or O/P
 - Travel history/ recent immigration from endemic area
- Stool for fecal elastase
 - Concern for pancreatic insufficiency
- Breath testing
 - Glucose, lactulose, fructose, lactose

General Dietary/Lifestyle Considerations

- Elimination of alcohol, caffeine, coffee
- Limit artificial sweeteners
- Avoidance of specific trigger foods
- Reduce fried, processed and fatty foods
- Increased dietary fiber (insoluble vs. soluble)
- Regular, unhurried meals

Systemic review with meta-analysis

- 53 RCTs (up to July 2018)
- 5545 total participants
- Beneficial effects on global IBS symptoms and abdominal pain shown with particular strains, species and combinations

Conclusions:

"Which particular combination, species or strains of probiotics are effective for IBS remains, for the most part, unclear"

Ford AC et al. Aliment Pharmacol Ther. 2018 Nov;48(10):1044-1060

Alosetron: Contraindications

- Constipation
- History of obstruction, stricture, perforation or toxic megacolon
- Adhesions
- Ischemic colitis
- impaired intestinal circulation
- Thrombophlebitis
- Hypercoagulable state
- IBD 📕
- History of diverticulitis
- Severe hepatic impairment
- Use of fluvoxamine

Alosetron Side Effects

Serious

- Ischemic colitis (0.2% in 3 mos, 0.3% in 6 mos)
- Complications of constipation (0.1%)
 - Obstruction, ileus, impaction, toxic megacolon

Other

- Constipation (29%)
- Abdominal pain (7%)
- Nausea (6%)
- Heartburn, regurgitation, reflux (2%)
- Hemorrhoids (2%)

Eluxadoline Dosing

- 100 mg PO BID with food
- 75 mg PO BID with food
 - Intolerance to 100 mg
 - Use of OATP1 BI inhibitors (cyclosporine, gemfibrozil, antiretrovirals, rifampin, eltrombopag)
 - Hepatic impairment
- Do not double next dose, if one missed
- Discontinue if constipated > 4 days

- Known/suspected bile duct obstruction
- Known/suspected sphincter of Oddi dysfunction
- Alcoholism/alcohol abuse
 - 3 or more alcoholic beverages/day
- Hx of pancreatitis or pancreatic structural disease
- Severe hepatic impairment (Child's Class C)
- Severe constipation
- Known or suspected mechanical GI obstruction

TARGET 1 & 2:Diarrhea ResponseFirst 4 weeks following therapy			
	Rifaximin	Placebo	P value
Adequate relief of abdominal pain & loose, water stool			
TARGET 1	46.6 (n=309)	38.5 (n=314)	0.04
TARGET 2	46.7 (n=315)	36.3 (n=320)	0.0008
Combined	46.6 (n=624)	37.4 (n=634)	< 0.001
Odds Ratio of response the 3 months of the stur TARGET 1 TARGET 2 Combined	e at 3 months in fa idy: 1.36 (1.01-1.83), 1.44 (1.08-1.92), 1.40 (1.14-1.72), entel et al. N Engl J	vor of rifaximin o p = 0.04 p = 0.01 p = 0.001 Med. 2011 Jan 6;	over 364(1):22-32

TAR	GET 3	: Resu	lts
1074 of 257	9 (44%) re	esponders	s to OL tx
– 36% remair	ned respon	ders (over	18 weeks)
- 636 of 692	relapsing e	ntered R,D	B,PC trial
Response rates following first retreatment:			
	Rifaximin	Placebo	p value
Overall response	38.1%	31.5%	0.03
Abdominal pain	50.6%	42.2%	0.018
Diarrhea	51.8%	50%	NS
Response rates fo	Dilowing sec	ond retreat	ment were N

Rifaximin: Safety In Clinical Trials

- AEs similar to placebo
- No cases of c difficile or ischemic colitis
- 3 courses of therapy (vs 1 course) of therapy did not affect:
 - Bacterial sensitivity to other antibiotic classes
 - Promote pathogenic bacterial growth
 - Alter the overall microbiota
 - increase the occurrence of opportunistic infections

Lembo A et al. Gastroenterology. 2016 Dec;151(6):1113-1121

Bile Acid Resins: Clinical Caveats

- Evidence is essentially anecdotal
- Cholestyramine is unpleasant (take with applesauce)
 - Alternatives include colestipol and colesevelam
- Will lower cholesterol (may elevated triglycerides)
 - Avoid if triglycerides > 200 mg/dL
- Drug interactions with anion drugs
 - Warfarin, thiazide diuretics, propanolol, phenobarbital, thyroid and thyroxine preparations, estrogens, progestins, and digitalis, should be administered 1 hour before or 4 hours after the resin
 - Not so with colesvelam (theoretically)
- Long term use could affect fat soluble vitamin levels

Patient Case

- 43 year old diabetic female, gastroparesis for 10 years
- · Last year was particularly challenging- daily abdominal pain, nausea, and vomiting
- Restricted her diet to mainly ice tea, bread, and soup.
- Started on a new medication regimen and she reports her symptoms have been well controlled for the past 6 months
- Despite reported improved nausea and vomiting, she struggles with expanding her diet.
- She frequently complained of bloating, not eating due to the fact "it will cause pain and nausea".
- · Currently, drinking only ice tea and primarily eats a few foods she identifies as safe.
 - She states all other liquids and foods cause pain and nausea.
 - Drinking 2 ensures a day and weight is stable

DIVISION OF GASTROENTEROLOGY & HEPATOLOGY

MOU1 MMOU18 MOU29

Symptoms & Warning Signs

- Restricted or reduced food intake
- Frequent complaints about bodily discomfort with no organic cause
- Lack of appetite or interest in food
- Fear of negative effects of eating food (e.g., choking, vomiting)
- Inability or reluctance to eat in front of others
- Picky eating that is unresolved by late childhood

DIVISION OF GASTROENTEROLOGY & HEPATOLOGY

Health Consequences of ARFID: Failure to thrive Anemia Weight loss Gallbladder disease Malnutrition Osteoporosis or osteopenia Dependence on tube feeds or TPN Death Eating disorders have the highest mortality rate of any mental illness. Increased health care costs (particularly when not diagnosed) DIVISION OF GASTROENTEROLOGY & HEPATOLOGY

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

MOU29 **ARFID vs Anorexia in Adolescents** ARFID patients were younger (12.4 vs. 15.1 years, p < .0001) were more likely to be male (41% vs. 15%, p < .0002) • were less likely to be admitted to the hospital (14.2% vs. 27.6%, p = .02) • were less likely to experience acute weight loss vs. chronic weight loss (p = .0001) reported significantly fewer symptoms of depression, anxiety, perfectionism, clinical impairment, concerns about weight and shape (all p < .0001). No differences were observed by race, anxiety disorder, orthostatic instability, suicidal ideation, and history of eating disorder treatment. Keery H, LeMav-Russell S, Barnes TL, Eckhardt S, Peterson CB, Lesser J, et al, Attributes of children and adolescents with avoidant/restrictive food intake disorder. J Eat Disord 2019;7:31. https://doi.org/10.1186/s40337-019-0261-3. MICHIGAN MEDICINE **DIVISION OF GASTROENTEROLOGY & HEPATOLOGY** UNIVERSITY OF MICHIGAN

MOU4 MOU2	4		
	• ARFID in Gastro	enterology	
	 Paucity of data Dietary changes Concern for ARF Often due to a " 	are common in patients with (ID raised when dietary habits <u>(</u> fear of negative consequence"	GI conditions <u>exceed</u> expected changes
	GI Diagnosis	Expected Dietary Change Example	Avoidant/Restrictive Behavior Example (concerning for ARFID)
	Gastroparesis	"When my symptoms flare, I consume a liquid diet and then slowly start to add foods back in."	"Ice tea is the only fluid I can drink. All other fluids, even water, cause nausea and vomiting."
	Irritable Bowel Syndrome	"I followed a low FODMAP diet and am currently working on slowly reintroducing foods."	"I am on a strict low FODMAP diet, and have found 10 'safe' foods on the list. I do not want to attempt the food reintroduction protocol."
DIVIS	SION OF GASTROENTE	ROLOGY & HEPATOLOGY	

MOU7

• Results: Demographics

	ARFID Patients (N=28)
Age (mean years)	39.5 (range 19-84)
Gender	
Male	5 (17.9%)
Female	23 (82.1%)
Mean BMI at GI presentation	22.9 (range 13.9–37.7)
Weight loss (mean lb)	19.04 (range 6-60)
Time weight loss occurred over (mean)	13.1 months

	ВМІ	
Underweight (<18.5)	10.7%	
Normal (18.5-24.9)		67.9%
Overweight (25-29.9)	10.7%	
Obese (>30)	10.7%	
0%	MOU3120% 30% 40% 50% 60% MOU46 PERCENTAGE OF COHORT	70% 80%

DIVISION OF GASTROENTEROLOGY & HEPATOLOGY

	ARFID Patients (N=28)	
Behavioral Health		
GI visits prior to GIBH referral (mean)	2.8 (range 1-8)	
GIBH visits (mean)	6.7	
Prior Psychiatric History		
History of psychiatry visit	2 (7.1%)	
Active psychotropic medication use	4 (14.3%)	
History of eating disorder	1	
At least 1 psychiatric diagnosis	8 (28.6%)	4078
Anxiety disorder	5 (17.9%)	
Depression disorder	5 (17.9%)	
PTSD	1 (3.6%)	
Other	1 (3.6%)	

Importance of diagnosing ARFID Delay in ARFID treatment Mis-assignment of dietary restriction to uncontrolled GI symptoms can result in Increased testing Use of ineffective or even harmful therapies (i.e. prescribing restrictive diets like the low FODMAP diet) DIVISION OF GASTROENTEROLOGY & HEPATOLOGY

Back to the case....

- 43 year old diabetic female, gastroparesis for 10 years
- · Severely restricted diet
- · After further questioning, patient identifies fear of introducing new foods
- Looks at food and thinks "it is going to hurt me"
- You are concerned for ARFID
- But now what do you do?

DIVISION OF GASTROENTEROLOGY & HEPATOLOGY

Treatment Paucity of data in adults, and none in adult GI patients Likely multi-disciplinary approach for GI patients Psychology (cognitive behavioral therapy, exposure therapy, etc.) Nutrition (slow food reintroduction) GI (continued GI symptom management) Medications No current evidence in adult population SSRIs ,Remeron, and olanzapine trials in children DIVISION OF GASTROENTEROLOGY & HEPATOLOGY

Concluding Remarks

- ARFID complicates the clinical picture of GI patients
 - Clinical presentation is a casserole, not single item dish
 - It is not ARFID or GI diagnosis, it is most often BOTH GI diagnosis, it is most often BOTH GI diagnosis.

DIVISION OF GASTROENTEROLOGY & HEPATOLOGY

Outline

- · Overview on trauma
- Impact of trauma on health
- · Mediating factors
- Impact of trauma on the health system
- · Assessing for trauma in the medical setting
 - Why it's important
 - Factors that may increase suspicion for abuse

- Approaching the patient
- · Additional resources

Defining Abuse

- Physical Abuse Use of force resulting in pain, discomfort or injury. (i.e. assault, threats of assault or forcible confinement.)
- Emotional Abuse Speech and/or behavior that's controlling, punishing, or manipulative. (i.e. gaslighting, withholding love, support, or money as means of control and maintaining power.)
- Sexual Abuse Unwanted sexual activity, with perpetrators using force, making threats or taking advantage of victims not able to give consent.

Abuse Statistics

- · Physical abuse
 - In 2015 ~683,000 children were victims of physical abuse or neglect (NCA)
 - ~10 million Americans are victims of intimate partner violence each year (NCADV.org)
- Sexual Assault/Abuse
 - Sexual assault occurs every 98 seconds in the US (RAINN)
 - 63,000 children are victims of sexual abuse each year (RAINN)
 - 1 in 5 women, and 1 in 71 men have been a victim of rape in their lifetime (NCADV.org)

Impact on the Medical System

- medical symptoms
- A doctors visits
- refractory symptoms
- requests for procedures and tests
- **↑** surgeries
- · Challenges with the HCP/Pt relationship

Nonverbal communication

- Importance of rapport/trust
 - Active listening
 - Empathy
- Power dynamics
- The role of silence
- Body language
 - Eye contact
 - Face patient with open posture

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Empathic responding

- Validation
- · Respect patient right to share or not disclose
- · Do not need to ask about details
- · Consider a referral to a mental health provider
- If referring to a mental health provider, remind them you will still provide medical care
- There is hope. Therapy can help!

Additional Resources

How to find a mental health provider (see handout)

MICHIGAN MEDICINE

MICHIGAN MEDICINE

Adverse Childhood Experiences Study (ACES) https://www.cdc.gov/violenceprevention/ childabuseandneglect/acestudy/index.html National Children's Alliance (NCA) www.nationalchildrensalliance.org Rape, Abuse & Incest National Network (RAINN):

www.rainn.org National Coalition Against Domestic Violence (NCADV):

www.ncadv.org

Thank you!

