Building a Scientific Community for the Learning Health System

Learning Health Systems: Lessons from Distributed Health Data Networks

48th Hawaii International Conference on System Sciences
Learning Health System Symposium

Jeffrey Brown, PhD
Associate Professor
Department of Population Medicine
Harvard Pilgrim Health Care Institute & Harvard Medical School
January 2015
Outline

• View of a Learning Health System
• Distributed Health Data Networks
• Lessons from the Field
 – Mini-Sentinel
• Core Opportunities
Vision of a Learning Health System

Spent last several years designing and building health data research networks for multiple purposes

- HMORN Network
- FDA Mini-Sentinel / Sentinel
- MDPN
- NIH Collaboratory
- ONC Compliant
- PCORnet

- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014

- Dozen Data Providers
- 50 Million Patient Lives
- 18 Networks
- 100’s of Data Providers
- 20 Data Providers
- 180 Million Patient Lives
- 18 Networks
- 100’s of Data Providers

Contact: Jeff_brown@hphc.org
Vision of a Learning Health System

- Connect networks into one Network of Networks
 - Really a Network of **Network Data Participants (nodes)**

- Create interfaces to engage with network data partners
 - Right partner, right data, right time, right relationship

- Provide an environment for stakeholders to
 - Advertise research capabilities (data and services)
 - Engage in trade of needs and capabilities
 - Publish the resulting knowledge
 - Learn and evolve
Distributed Data / Distributed Analysis

• Data partners **keep and analyze** their own data
• Standardize the data using a **common data model**
• **Distribute code** to partners for local execution
• **Provide results**, not data, to requestor
• **All activities audited and secure**
Distributed Analysis

1- User creates and submits query (a computer program)
2- Data partners retrieve query
3- Data partners review and run query against their local data
4- Data partners review results
5- Data partners return results via secure network
6 Results are aggregated
Mini-Sentinel Partner Organizations

Lead – HPHC Institute

Data and scientific partners

Scientific partners

Contact: Jeff_brown@hphc.org
Intussusception Risk after Rotavirus Vaccination in U.S. Infants

W. Katherine Yih, Ph.D., M.P.H., Tracy A. Lieu, M.D., M.P.H., Martin Kulldorff, Ph.D., David Martin, M.D., M.P.H., Cheryl N. McMehill-Walraven, M.S.W., Ph.D., Richard Platt, M.D., Nandini Selvam, Ph.D., M.P.H., Mano Selvan, Ph.D., Grace M. Lee, M.D., M.P.H., and Michael Nguyen, M.D.
Dabigatran and Postmarketing Reports of Bleeding

Mary Ross Southworth, Pharm.D., Marsha E. Reichman, Ph.D., and Ellis F. Unger, M.D.

“In the months following the approval of the oral anticoagulant dabigatran ... in October, 2010, the FDA received through the FDA Adverse Event Reporting System many reports of serious and fatal bleeding events associated with use of the drug.”
Comparative Risk for Angioedema Associated With the Use of Drugs That Target the Renin-Angiotensin-Aldosterone System

Sengwee Toh, ScD; Marsha E. Reichman, PhD; Monika Houstoun, PharmD; Mary Ross Southworth, PharmD; Xiao Ding, PhD; Adrian F. Hernandez, MD; Mark Levenson, PhD; Lingling Li, PhD; Carolyn McCloskey, MD, MPH; Azadeh Shoaibi, MS, MHS; Eileen Wu, PharmD; Gwen Zornberg, MD, MS, ScD; Sean Hennessy, PharmD, PhD

- Used data for 3.9 million new users of anti-hypertensives in 18 organizations
- Propensity score matched analysis
- **No** person-level data was shared
- **Five months and $250,000** required for programming and analysis – compared to 1-2 years and $2 million without analysis-ready distributed dataset
Can we reduce the effort, time, and cost?

Yes, we can now do this in days or weeks as part of routine capability

- No person-level data was shared
- Five months and $250,000 required for programming and analysis – compared to 1-2 years and $2 million without analysis-ready distributed dataset
Impact / Dissemination

• 4 FDA drug safety communications
 – Tri-valent inactivated flu vaccine and febrile seizures
 (no increased risk)
 – Rotarix and intussusception (label change)
 – Dabigatran and bleeding (no increased risk)
 – Olmesartan and sprue-like enteropathy (label change)

• 70 peer-reviewed articles

• 48 methods reports / white papers

• Thousands of unique queries and comparisons contributing to over 140 formal assessments

www.mini-sentinel.org
Key Contributors to Mini-Sentinel’s Progress

• **Tightly Coupled** network
• Frequent and coordinated interactions between FDA, data partners, content experts, epidemiologists, and statisticians
• Clear ownership and goals
• Established agreements and contracts
• Distributed data network (no central repository)
• Public health practice
• Focused on best understood and useful data for purpose
 – **First**: Claims and administrative data, plus access to full text records
 • Syntax and semantics are clear and understood
 – **Then**: electronic medical records, registries, ...
 • Much more complex to understand, standardize, and use for research
• Rapid cycle development of capabilities
Core Opportunities

• Learning Health System envisioned as a **loosely coupled network**
• Goal is enhanced data liquidity that can generate VALID results
• Different opportunities for **intra-institutional** versus **inter-institutional** learning

• **Intra**: How do we encourage creation of learning systems within institutions?
 – Hospitals, payers, providers

• **Inter**: How do we leverage ongoing work to create a **network of network data** that enables rapid and efficient data analysis?
 – Across institutions that are already engaged
 – Within and across National boundaries
Intra-Institutional Learning

• All data are available within system (inside a firewall)
• System wants to learn (eg, pragmatic trials)
• Core issues are data syntax, semantics, and liquidity
• Learnings limited to activities observed within system
• Examples - Approaches to:
 – Manage MRSA within the ICU and across hospitals
 – Reduce medication errors, improve vaccination rates
 – Reduce inappropriate procedures
• Intra-institutional learning systems most viable 1st step
• Core Opportunities
 – Create willingness ("Learning Health System" accreditation?)
 – Timely and trusted data analytics and responsiveness (unprecedented volume and flow of information)
 – How to effectively share learning
METHODS
We conducted a pragmatic, cluster-randomized trial. Hospitals were randomly assigned to one of three strategies, with all adult ICUs in a given hospital assigned to the same strategy.

CONCLUSIONS
In routine ICU practice, universal decolonization was more effective than targeted decolonization or screening and isolation in reducing rates of MRSA clinical isolates and bloodstream infection from any pathogen.

Inter-Institutional Learning

• Data held across institutions introduces additional complexities for enabling a **loosely-coupled LHS**

• Need ways to communicate information about every request for use of data so others can efficiently evaluate the request and respond (query APIs)
 – Query description
 – Intended use
 – Data requirements
 – Response description

• **Core Opportunity**: Enable machine-readable distributed queries
 – Taxonomy, meta-data, etc to enable automation of the research and learning process
 – Marketplace to encourage participation, costs are real and benefits diffuse
 • Look to other industries that share information but not raw data for benefit of all
Re-hospitalization rate for knee replacement surgeries

• **Query Description:** Matched cohort design to assess the rate of re-hospitalization 1-183 days post-discharge

• **Intended use:** 1) Stratified rates of re-hospitalization and a propensity-score matched study comparing different surgical approaches; results will be published

• **Data needed:** Longitudinal capture of inpatient, outpatient, and pharmacy data for 12 months before and 6 months after surgery

• **Data returned:** Person-level file with indicators for all study-defined characteristics

• **Data aggregation:** Data will be aggregated across contributing institutions
What would be helpful for my work

• Querying taxonomy and metadata
• Health data metadata
• Better ways to
 – Translate queries across data sources, models, types
 – Translate data into common model
• Better understanding of patient identification risks and how they relate to specific LHS approaches
 – Ninja defense
Lessons

• What I typically ignore
 – Ontology mapping and “standardized” phenotyping efforts
 – Promises about data standards and how things are just about to get better

• Medicine is local and driven by payment (just in US?)
 – System designed for payment, not documentation of health status
 – Providers document well what is needed for payment
 – Investments made to lower cost, generate revenue, or otherwise improve local performance

• Policy levers (waiting for the world to turn rational is not a winning strategy)
 – Finance
 – Regulation
 – Patients: Will patients demand change and are they willing to pay for it?
Conclusions

• Find opportunities to succeed by solving clear and small problems
 – Infections control in hospitals
 – Influenza surveillance

• Remember the healthcare levers

• Look for the place where all actors gain
 – Messaging clearinghouse (validate HL7, XML message against a standard)
 – Population health and public health
 • Institutions do not want to share data, but will share information
 – Invoke patient demand for improvement

• Create the facts on the ground
Thank you!
• Launched November 2012
• Real time access to ambulatory EHR data to inform public health
• Automatically identifies reportable and chronic diseases and enables flexible querying
• Massachusetts Department of Public Health (MDPH) epidemiologists have submitted hundreds of queries
• Now an operational suite of systems supported by MDPH
PopMedNet Website
popmednet.org

PopMedNet Wiki
popmednet.atlassian.net/wiki
Links

- mehi.masstech.org/what-we-do/hie/mdphnet/about
- www.pcornet.org
- www.mini-sentinel.org
- nihcollaboratory.org/Pages/distributed-research-network.aspx

NIH Collaboratory Distributed Research Network Presentations

- https://www.nihcollaboratory.org/Pages/Grand-Rounds-11-14-14.aspx
Selected references

Contact: Jeff_brown@hphc.org
Mini-Sentinel Query Fulfillment Process

1. Request Query
2. Review Query & Log Request
3a. Design Technical Specifications
3b. SAS Program Development
4. Review Query Technical Specifications
5. Develop and Test Query
6. Review and Approve Query
7. Distribute Query
8. Review Query
9. Run Query
10. Review Query Results
11. Aggregate Query Results
12. Create Final Query Report
13. Review Final Query Report
15. Receive Final Query Report via Secure Portal
16. Manage Query Request and Fulfillment Process

Contact: Jeff_brown@hphc.org
“The Mini-Sentinel provides an essential public health service. The current configuration — the data model, the methods development, and the investigative team — represents an impressive achievement.”