Fall Kickoff
and Poster Session
September 18, 2018
<table>
<thead>
<tr>
<th>Poster No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engaging the Ethical, Legal, and Social Implications of Computable Biomedical Knowledge</td>
<td>Jodyn Platt, PhD, MPH; Elizabeth Cope, PhD, MPH; Melissa Creary, PhD, MPH; Emily Dibble; Frank Manion, PhD; Dorene Markel, MS, MHSA; Paige Nong; Minakshi Raj, MPH; Kayte Spector-Bagdady, JD, MBE; M. Grace Trinidad, MPH; Joshua Rubin, JD, MBA, MPP, MPH</td>
</tr>
<tr>
<td>2</td>
<td>The Knowledge Grid for Health: A technical platform for managing and deploying computable biomedical knowledge at scale</td>
<td>Boisvert, Peter; Farris, Greg; Flynn, Allen; Friedman, Charles; Gittlen, Nate; Meng, George; Raths, Brooke</td>
</tr>
<tr>
<td>3</td>
<td>Mobilizing Computable Biomedical Knowledge: A Growing Community to Transform Health</td>
<td>Matthew Fiorillo, Charles Friedman, Rachel Richesson, Peter Boisvert, Lisa Ferguson, Allen Flynn, Jodyn Platt, Josh Rubin</td>
</tr>
<tr>
<td>4</td>
<td>Merging 3 Communities in an LHS for Diagnostic Excellence: Leveraging Disciplinary Differences</td>
<td>Katherine Satterfield, Joshua C. Rubin, & Charles P. Friedman</td>
</tr>
<tr>
<td>5</td>
<td>Identification of High Risk Characteristics Through Implementation of the Comprehensive Diabetic Retinopathy Program: Modifications to Clinic Workflow and Data Infrastructure to Support a LHS</td>
<td>Anjali Shah MD, Nish Patel BA, Lilia Verchinina MA PhD, Patrick Hughes BS MBS, Michele Wichorek PhD, Thomas W. Gardner MD MS, Dorene Markel MS MHSA, Jennifer Wyckoff MD</td>
</tr>
<tr>
<td>6</td>
<td>Infrastructuring for D2K in Learning Health Systems: The Experience of one Node on PCORnet</td>
<td>Marcelline Harris, PhD, RN; Airong Luo, PhD; PhD, Lisa Ferguson, MSI</td>
</tr>
<tr>
<td>7/8</td>
<td>Developing and Implementing Large-Scale Community-Driven Integrated Care</td>
<td>Buyuktur, A.G. I; Ackerman, M.S.; Rubinstein, E.B.; Platt, J.; Spiroff, M.; Klinkman, M.S.</td>
</tr>
<tr>
<td>9</td>
<td>Poster not available for publication</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Harnessing Data to Unveil Discoveries & Transform Health: Michigan Integrated Center for Health Analytics & Medical Prediction (MiCHAMP)</td>
<td>Joan Kellenberg, Akbar Waljee, Ji Zhu, Jenna Wiens, Michael Sjoding, Marcy Harris, Brahmajeet Nallamothu</td>
</tr>
<tr>
<td>11</td>
<td>Extending the Reach of Learning Systems: Using a MOOC-Based MicroMasters to Support Educational Innovation and Improvement with a Global Reach</td>
<td>Cathy Hearn, Rebecca Quintana, and Donald J. Peurach</td>
</tr>
<tr>
<td>12</td>
<td>The Center for Healthcare Engineering and Patient Safety</td>
<td>CHEPS</td>
</tr>
<tr>
<td>Poster No.</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>Pharmacy INformatics Group (PING): A LHS and College of Pharmacy Collaboration</td>
<td>Corey A Lester PharmD PhD, Michael P Dorsch MS PharmD, Antoinette Coe PharmD PhD, Karen B Farris PhD, Allen J Flynn PharmD PhD</td>
</tr>
<tr>
<td>15</td>
<td>Linking the Knowledge Grid, Michigan Tailoring System and Fitbit data within a patient centered mobile application for heart failure</td>
<td>Dorsch MP, Arzac J, Hummel SL, Koelling TM</td>
</tr>
<tr>
<td>16</td>
<td>The Michigan Surgical Quality Collaborative Learning Health System: Changing Practice and Improving Outcomes for Elective Colon Surgery</td>
<td>Joceline V. Vu, MD; Elizabeth Seese, MS; Stacey D. Collins, MA; Samantha Hendren, MD, MPH; Michael J. Englesbe, MD; Darrell A. Campbell, MD; Greta L. Krapohl, PhD, RN</td>
</tr>
<tr>
<td>17</td>
<td>Precision Health at the University of Michigan</td>
<td>Sachin Kheterpal and Rachel Dawson</td>
</tr>
<tr>
<td>18</td>
<td>State Innovation Model: Towards a Learning Health System to Reduce Emergency Department Visits in Livingston and Washtenaw County</td>
<td>The State Innovation Model Workgroup in the Center for Healthcare Research and Transformation</td>
</tr>
<tr>
<td>19</td>
<td>The Learning Health System (LHS) Collaboratory:</td>
<td>Charles Friedman, Douglas Van Houweling, Lisa Ferguson, Cindy Diakow</td>
</tr>
<tr>
<td>20</td>
<td>Using Participatory Design to Co-create a Community Health Information Hub in Jackson, MI</td>
<td>Michael Klinkman, Mark Ackerman, Ken Toll, Joshua Williams, Bob Fike, Amy Sintes, Marty Woodruff, Aaron Wootton, Richard Thoune, Keven Mosely-Koehler, Laurie Gustafson, Amy Schultz</td>
</tr>
</tbody>
</table>
Background

In a learning health system cycle, data and experience are used to generate new knowledge, this knowledge is into practice, to generate new data. Learning occurs throughout this cycle to improve health.

Addressing ethical, legal, and social implications of learning health systems (ELSI-LHS) is a core aspect of ensuring learning health systems achieve their potential to improve health, deliver higher quality care, and health delivery organizations are better places to work.

The ELSI-LHS Team in the Department of Learning Health Sciences at the University of Michigan aims to tackle important questions in this area in order to advance LHS policy, practices, and interdisciplinary research. Programmatically, the team is dedicated to: (1) identifying and promoting research on key issues in need of theoretical and empirical exploration; (2) providing service and informing practice in local, state, national, and global initiatives; (3) cultivating support for students, faculty, staff, and communities with educational and collegial opportunities related to the impact of learning health systems on science, practice, and society; and (4) translating research findings for greatest impact and meaning to practice and policy.

To foster responsible research and innovation, ELSI-LHS adopts the imperative that diverse stakeholders work together throughout the learning cycle to better inform decisions affecting health and align process and outcomes with social values, needs, and expectations.

This poster considers what and ELSI-LHS approach might look like as learning health systems take new knowledge into practice.

The LHS Knowledge to Practice ecosystem

The generation and implementation of knowledge spans a number of roles, each held by individuals within organizations and systems.

The ELSI Approach

<table>
<thead>
<tr>
<th>Principle</th>
<th>Definition</th>
<th>Conventional Approach</th>
<th>The ELSI Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction of Knowledge</td>
<td>Knowledge production is dependent on the social circumstances of its creation.</td>
<td>The belief that empirical research carried out properly is impermeable to social or cultural influences</td>
<td>Stakeholders critically engage with majority and minority sources in literature review and R&D processes to consider implications for equity and inclusion on an individual and systemic level.</td>
</tr>
<tr>
<td>Structural Determinism</td>
<td>The fundamental role of micro-level forces in driving and sustaining inequities</td>
<td>Emphasizing individual or interpersonal factors</td>
<td>Work considers policy and systemic-level factors that may promote inequities.</td>
</tr>
<tr>
<td>Social Reflexivity</td>
<td>Deep awareness of one’s social position; awareness of social stratification processes operating in ostensibly objective contexts</td>
<td>Believing in the irrelevance of discrimination, often by misattributing causal factors (e.g., conflating socioeconomic status and race)</td>
<td>Individuals clarify biases before beginning work.</td>
</tr>
<tr>
<td>Voice</td>
<td>Prioritizing the perspectives of marginalized persons; Privileging the experiential knowledge of outsiders within</td>
<td>Routine privileging of majority perspectives</td>
<td>Stakeholders intentionally pursue feedback from affected communities not represented by majority perspectives.</td>
</tr>
<tr>
<td>Critical Approaches</td>
<td>To dig beneath the surface and develop a comprehensive understanding of one’s biases</td>
<td>To accept phenomena or explanations at face value</td>
<td>Stakeholders consider alternative explanations for findings than those previously posted; review policies and operating procedures with diverse stakeholders and frameworks.</td>
</tr>
<tr>
<td>Disciplinary Self-Critique</td>
<td>The systematic examination by members of a discipline of its conventions and impacts on the broader society</td>
<td>Limited critical examination of how a discipline’s norms might influence knowledge on a topic</td>
<td>Stakeholders examine the implications of the words they use to describe their work, and encourage and report unintended consequences and unequal outcomes that may result from the use of their tool.</td>
</tr>
</tbody>
</table>

Ensuring FAIRness is fair, the ELSI approach is based on principles adapted from Chandra Ford’s anti-racism praxis framework and theories of epistemic privilege, (social positions of power are likely to generate and propagate perspectives that are different than others), epistemology of ignorance, (recognizing that one cannot fully understand the complex practices of knowledge production and the variety of features that account for why something is known, without also understanding the practices that account for not knowing), and situated/partial knowledge, (knowledge specific to a particular situation are often embedded in language, culture, or traditions). Most problems have to be solved by taking advantage of a partial understanding of the problem context and problem data.

Implications going forward

Generating new knowledge and putting it into practice will advance an important part of what we know can have a lasting and meaningful impact on health and healthcare. Attention to the ethical, legal, and social implications of what is and is not encoded in knowledge artifacts will be a critical factor in ensuring LHS-generated knowledge realizes its full potential and in its future development and sustainability. An ELSI requires prioritization of research and practice that examines perspectives of multiple stakeholders engaged in the design, development, and clinical and policy implementation and is self-critical in its capacity for inclusion.
What is the Knowledge Grid?

In short, the Knowledge Grid is technical infrastructure to support curating, managing, and utilizing computable biomedical knowledge. These functions are enabled through the interaction of three main components when they form a grid:

Component 1. KNOWLEDGE OBJECTS
Packages for computable biomedical knowledge (CBK) which enable a variety of services to make CBK findable, accessible, interoperable, and reusable

Component 2. ONLINE LIBRARY
An online, open-source library system purpose-built for curating and managing large collections of Knowledge Objects that hold CBK resources.

Component 3. ACTIVATOR
The technical system and framework which allows the CBK within Knowledge Objects to be accessed through Application Programming Interface (API) services.

The Printing Press gives way to Server Clusters that in turn make the Knowledge Grid possible

1400s

1990s

2020s

Some Example Use Cases for the Knowledge Grid are

Use Case 1: Calculating and Using Reliable Risk Prediction Scores in Clinical Practice

The era of “Big Data” is upon us and a wide variety of statistical techniques can now be used to create risk prediction models to inform complex health decisions. As one example of this, it is now possible to predict someone’s risk of being diagnosed with lung cancer over the next 5 to 10 years with good accuracy. Such predictions can be used to support clinician-patient shared decision making about lung cancer screening. The Knowledge Grid facilitates the adoption and use of predictive models.

1990s

Poster 2
Mobilizing Computable Biomedical Knowledge

A Growing Community to Transform Health

Matthew Fiorillo¹, Charles Friedman¹, Rachel Richesson², Peter Boisvert¹, Lisa Ferguson¹, Allen Flynn¹, Jody Platt¹, Josh Rubin¹

¹University of Michigan Medical School, Department of Learning Health Sciences; ²Duke University School of Nursing

Excerpt: A Manifesto for Mobilizing CBK

In order to improve health care, population health, and individual health, every decision affecting health should be informed by the best available knowledge in computable forms.

We will:

- Sustain the CBK ecosystem
- Establish participatory governance
- Enable the ecosystem with open standards
- Make the ecosystem diverse and inclusive
- Build and uphold trust in CBK
- Ensure the safe and effective use of CBK
- Explore the sciences of CBK collaboratively
- Generate value for CBK creators, users, and the general public
- Be agile to reflect rapid changes in knowledge
- Engender equity in health and in knowledge accessibility
- Ensure methods to support transparency for CBK
- Implement the highest standards of privacy and security
- Enable staged transitions of knowledge from human-readable to fully computable forms

Why Mobilize CBK? To effectively organize knowledge so that CBK is properly encoded, versioned and curated, shared rapidly and widely, and used repeatedly, by stakeholders including researchers, informaticians, librarians, health IT vendors, clinicians, patients, and health system administrators.

Community Building

- MCBK conference: Oct 18 & 19, 2017, Ann Arbor, MI
- MCBK meeting: July 10 & 11, 2018, National Library of Medicine, Bethesda, MD
- Upcoming webinars
- Future MCBK meeting: July 2019
- Ongoing activity of 4 workgroups

Technical Infrastructure Workgroup

Identify framework components necessary to move knowledge from generation into practice by facilitating dissemination, testing, versioning, use, evaluation, scalability, and interoperability of CBK

Next steps: Learn from other industries; Define metadata; Describe use cases to solidify CBK requirements; Establish governance structure; Identify candidate platforms and CBK representations

Knowable Resource for LHS

Sustainability for Mobilization and Inclusion Workgroup

Identify and engage diverse stakeholders of CBK to accelerate and sustain adoption; Leverage existing networks, communities, and resources; Identify communication needs; Mitigate bias and discrimination

Next steps: Identify and engage champions in stakeholder groups such as professional societies, patient advocacy groups, clinical guideline orgs, libraries, and industry vendors

Standards Workgroup

Establish requirements for data, knowledge representation, exchange, function, and metadata, for CBK developers and consumers

Next steps: Develop set of CBK artifact metadata exemplars, with rationale for each element; Identify metadata models to use

Select organizations developing platforms to mobilize CBK:

<table>
<thead>
<tr>
<th>Knowledge Grid</th>
<th>Apervita</th>
<th>IBM Watson Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kgrid.org)</td>
<td>(apervita.com)</td>
<td>(truvenhealth.com)</td>
</tr>
<tr>
<td>CDS Connect</td>
<td>Semedy</td>
<td>MAGIC – GRADE</td>
</tr>
<tr>
<td>(cds.ahrq.gov)</td>
<td>(semedy.com)</td>
<td>(magicproject.org)</td>
</tr>
</tbody>
</table>

For more information visit: dlhs-umi.ch/mcbk

Excerpt: A Manifesto for Mobilizing CBK

In order to improve health care, population health, and individual health, every decision affecting health should be informed by the best available knowledge in computable forms.

We will:

- Sustain the CBK ecosystem
- Establish participatory governance
- Enable the ecosystem with open standards
- Make the ecosystem diverse and inclusive
- Build and uphold trust in CBK
- Ensure the safe and effective use of CBK
- Explore the sciences of CBK collaboratively
- Generate value for CBK creators, users, and the general public
- Be agile to reflect rapid changes in knowledge
- Engender equity in health and in knowledge accessibility
- Ensure methods to support transparency for CBK
- Implement the highest standards of privacy and security
- Enable staged transitions of knowledge from human-readable to fully computable forms

Why Mobilize CBK? To effectively organize knowledge so that CBK is properly encoded, versioned and curated, shared rapidly and widely, and used repeatedly, by stakeholders including researchers, informaticians, librarians, health IT vendors, clinicians, patients, and health system administrators.

Community Building

- MCBK conference: Oct 18 & 19, 2017, Ann Arbor, MI
- MCBK meeting: July 10 & 11, 2018, National Library of Medicine, Bethesda, MD
- Upcoming webinars
- Future MCBK meeting: July 2019
- Ongoing activity of 4 workgroups

Technical Infrastructure Workgroup

Identify framework components necessary to move knowledge from generation into practice by facilitating dissemination, testing, versioning, use, evaluation, scalability, and interoperability of CBK

Next steps: Learn from other industries; Define metadata; Describe use cases to solidify CBK requirements; Establish governance structure; Identify candidate platforms and CBK representations

Sustainability for Mobilization and Inclusion Workgroup

Identify and engage diverse stakeholders of CBK to accelerate and sustain adoption; Leverage existing networks, communities, and resources; Identify communication needs; Mitigate bias and discrimination

Next steps: Identify and engage champions in stakeholder groups such as professional societies, patient advocacy groups, clinical guideline orgs, libraries, and industry vendors

Standards Workgroup

Establish requirements for data, knowledge representation, exchange, function, and metadata, for CBK developers and consumers

Next steps: Develop set of CBK artifact metadata exemplars, with rationale for each element; Identify metadata models to use

Select organizations developing platforms to mobilize CBK:

<table>
<thead>
<tr>
<th>Knowledge Grid</th>
<th>Apervita</th>
<th>IBM Watson Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kgrid.org)</td>
<td>(apervita.com)</td>
<td>(truvenhealth.com)</td>
</tr>
<tr>
<td>CDS Connect</td>
<td>Semedy</td>
<td>MAGIC – GRADE</td>
</tr>
<tr>
<td>(cds.ahrq.gov)</td>
<td>(semedy.com)</td>
<td>(magicproject.org)</td>
</tr>
</tbody>
</table>

For more information visit: dlhs-umi.ch/mcbk
Merging 3 Communities in an LHS for Diagnostic Excellence
Leveraging Disciplinary Differences
Katherine Satterfield, MPH; Joshua C. Rubin, JD, MBA, MPH, MPP; & Charles P. Friedman, PhD—University of Michigan Medical School
ksatterf@umich.edu

The Grand Challenge of Diagnostic Improvement
• Errors in medical diagnosis vary widely, frequently lack data that might define their causes, and are often obscured by the culture of medical practice
• 3 foundational concepts of the LHS can be applied to achieving timely, efficient, and accurate diagnoses:
 I. Learning from every health event;
 II. Engendering a system solution to a system problem;
 III. Significantly shortening the latency between knowledge generation and its application to practice.
• Doing so requires stakeholders from 3 academic communities
 → Improve diagnosis (IDx)
 → Machine learning & artificial intelligence (ML/AI)
 → LHS

A Novel Demonstration
• LHS efforts have typically sought better health outcomes through improving treatments, under the assumption a correct diagnosis has been made
• Many participating community members were known to each other, but had never collaborated directly with a shared goal to reduce diagnostic error

Community-Building Methods
• Following key-informant interviews with experts from all 3 communities, we shared a white paper envisioning the collaboration, then hosted 34 participants in a working meeting:
 → 17 from IDx, 7 from ML/AI, and 11 from LHS
• Participants joined interdisciplinary small-groups focused on conditions disproportionately affected by diagnostic error
 → sepsis, stroke, lung cancer, and melanoma
• Small-groups designed a “prototypical” learning cycle for their assigned condition and discussed potential infrastructure

Results from this Initial Convening
• Reiterated that current barriers to defining, measuring, and monitoring diagnostic error impede progress
• Demonstrated that the communities could find consensus using LHS concept as overarching framework
• Learned that each community brings unique, deep expertise to the aim AND
• Inferred that directly leveraging different approaches and methodologies might strengthen collaborative processes

A Modified, Collaborative Framework
• Affirms and integrates different facets of Dx problems of interest:
 → Health Improvement—surveillance and implementation of changes in clinical processes and resulting outcomes
 → Predictive Modeling—generation, revision, and deployment of predictive models
• Unified K2P emphasizes that outcomes are the interaction of interventions from complementary learning processes
• All stakeholders equally invested and involved in all phases

Simplified Example Learning Cycle—End Delays Diagnosing Lung Cancer*

Note: all learning cycles must first begin with an initial P2D phase for improved data collection

Next Steps
• Validate example learning cycles and conceptual framework with broader group of participants
• These learning cycles require robust data, which require supporting infrastructure: we’ll host a second, smaller convening to design and propose these components

*Thank You to Kathryn McDonald, PhD MBA and Hardeep Singh, MD MPH for continued input building the lung cancer example
Identification of High Risk Characteristics Through Implementation of the Comprehensive Diabetic Retinopathy Program

Modifications to Clinic Workflow and Data Infrastructure to Support a LHS

Anjali Shah MD1, Nish Patel BA2, Lilia Verchinina MA PhD3, Patrick Hughes BS MBBS4, Michele Wichorek PhD3, Thomas W. Gardner MD MS1, Dorene Markel MS MSHA1,5, Jennifer Wyckoff MD4

1Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI USA, 2University of Michigan Medical School, Ann Arbor, MI, USA, 3The Brehm Center, University of Michigan, Ann Arbor, MI USA, 4Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA, 5Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI USA, 6Metabolism, Endocrine, and Diabetes, Michigan Medicine, Ann Arbor, MI, USA

Contact: arshah@umich.edu

Background

• Diabetic retinopathy (DR) is the most common complication of diabetes mellitus1 and is the leading cause of blindness in working-age adults in the world.2
• Longer duration of diabetes mellitus, poorer glycemic control as measured by hemoglobin A1c (A1c), and higher blood pressures are associated with increased incidence and prevalence of DR.2,3
• Aggressive control of both blood glucose and blood pressure significantly reduces the risk for development and progression of DR.4,5
• Despite the clear importance of parameters such as A1c, blood pressure, and duration of diabetes in the prevention and treatment of DR, many ophthalmologists are often unaware of patients’ overall diabetes management status.

Purpose

• We implemented a Comprehensive Diabetic Retinopathy Program to collect and store structured data in the EHR on patients with diabetes presenting to the Kellogg Eye Center retina clinic. The program created infrastructure to support an efficient LHS by making the longitudinal data more easily accessible on an ongoing basis and thereby allow for more frequent future data analyses.
• We propose that obtaining comprehensive data on patients with diabetes will allow ophthalmologists to better risk stratify and tailor patient care.

Methods

• Changes to the clinic workflow included beginning to collect blood pressure and POC HbA1c and utilizing a newly created EHR form that captured structured data assessing high risk. The newly acquired data being stored in the EHR was combined with pre-existing data in the EHR as well as responses from survey questions.
• Demographics, body-mass index (BMI), blood pressure (BP), A1c, smoking history, diabetes type, DR diagnosis, diabetes duration, number of retina clinic visits, and kidney disease history based on both self-report and microalbuminuria (≥30 μg albumin/mg creatinine) were collected on all patients with diabetes presenting to the Kellogg Eye Center retina clinic for both new patient visits and return visits from 7/1/16 to 6/30/17.
• A subgroup of patients with 2 or more of the following factors, determined “high risk” for complications by endocrinologists, was targeted for additional data collection and analysis: A1c > 9% in the last 6 months, BP > 140/90 in the last 6 months, history of kidney disease, and utilizing a newly created EHR form that captured structured data assessing high risk.
• We conducted a survey to patients in this subgroup to assess knowledge of diabetes management goals.

Results

Table 1. Survey Results

<table>
<thead>
<tr>
<th>Survey Questions and Responses</th>
<th>n (%)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%A1c goal</td>
<td></td>
<td></td>
</tr>
<tr>
<td><7.0% (correct)</td>
<td>306</td>
<td>87.56</td>
</tr>
<tr>
<td>≥7.0%</td>
<td>32</td>
<td>8.62</td>
</tr>
<tr>
<td>≥8.0%</td>
<td>14</td>
<td>3.72</td>
</tr>
<tr>
<td>No recommendation.</td>
<td>17</td>
<td>4.60</td>
</tr>
<tr>
<td>No/unanswerable</td>
<td>16</td>
<td>4.30</td>
</tr>
<tr>
<td>Blood Pressure goal</td>
<td></td>
<td></td>
</tr>
<tr>
<td><140/90 (correct)</td>
<td>172</td>
<td>45.95</td>
</tr>
<tr>
<td>≥140/90</td>
<td>22</td>
<td>5.78</td>
</tr>
<tr>
<td>≥160/100</td>
<td>8</td>
<td>1.95</td>
</tr>
<tr>
<td>No recommendation.</td>
<td>2</td>
<td>0.48</td>
</tr>
<tr>
<td>No/unanswerable</td>
<td>2</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table 2. Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Entire cohort</th>
<th>Subsample: risk score ≥ 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=2378</td>
<td>N=420</td>
</tr>
<tr>
<td>Patient age Mean (SD)</td>
<td>61.1 ± 14.3</td>
<td>61.5 ± 14.02</td>
</tr>
<tr>
<td>Race (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>10%</td>
<td>12%</td>
</tr>
<tr>
<td>Black, African American</td>
<td>35%</td>
<td>31%</td>
</tr>
<tr>
<td>White or Caucasian</td>
<td>72%</td>
<td>49%</td>
</tr>
<tr>
<td>Unknown/other/mixed</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Sex (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>57.5%</td>
<td>40.8%</td>
</tr>
<tr>
<td>Male</td>
<td>42.5%</td>
<td>48.8%</td>
</tr>
<tr>
<td>Ever smoked (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>54%</td>
<td>57%</td>
</tr>
<tr>
<td>No/unknown</td>
<td>46%</td>
<td>43%</td>
</tr>
<tr>
<td>Diabetic retinopathy (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>16%</td>
<td>57.5%</td>
</tr>
<tr>
<td>No</td>
<td>84%</td>
<td>42.5%</td>
</tr>
<tr>
<td>Diabetes type (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>35%</td>
<td>12.8%</td>
</tr>
<tr>
<td>Type 2</td>
<td>55%</td>
<td>58.5%</td>
</tr>
<tr>
<td>Type 1 or Type 2</td>
<td>7%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Not recorded</td>
<td>17%</td>
<td>28.5%</td>
</tr>
<tr>
<td>Max microalbumin (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><30</td>
<td>7%</td>
<td>7.4%</td>
</tr>
<tr>
<td>≥30</td>
<td>93%</td>
<td>92.6%</td>
</tr>
<tr>
<td>History of kidney disease (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>438</td>
<td>351</td>
</tr>
<tr>
<td>No/unknown</td>
<td>1750</td>
<td>572</td>
</tr>
<tr>
<td>Duration of diabetes (10 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1108</td>
<td>71%</td>
</tr>
<tr>
<td>No/unknown</td>
<td>1200</td>
<td>29%</td>
</tr>
<tr>
<td>No patient’s BMI Mean (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><160/100</td>
<td>33.6%</td>
<td>33.6%</td>
</tr>
<tr>
<td>≥160/100</td>
<td>66.4%</td>
<td>66.4%</td>
</tr>
<tr>
<td>No patient’s A1c Mean (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><7.0%</td>
<td>72%</td>
<td>72%</td>
</tr>
<tr>
<td>≥7.0%</td>
<td>28%</td>
<td>28%</td>
</tr>
</tbody>
</table>

Conclusions

• Implementation of this program supports an efficient LHS through the creation of a longitudinal dataset on patients with diabetes presenting to a retina clinic.
• Despite low mean A1c and number of visits, the large range of A1c values (4.3%-15.2%) and number of visits over 1 year (1-19) suggest that significant health resources are being devoted to a small number of patients.
• 87.56% of subgroup patients know their A1c goals, suggesting that knowledge of care goals is not a primary cause for poor control of their diabetes.
• Further data collection and analysis will lead to better understanding of which patients with diabetes are most at risk for vision loss, and how to best address their needs.

References

Learning Health System
A system in which “science, informatics, incentives, and culture are aligned for continuous improvement and innovation, with best practices seamlessly embedded in the delivery process and new knowledge captured as an integral by-product of the delivery experience.”
(Institute of Medicine, 2015)

PCORnet: the National Patient-Centered Clinical Research Network
• A "network of networks" that brings together patients, clinicians, researchers, and healthcare systems to share information and participate in research.
• A platform for making patient-centered research more efficient.
• Independent, nonprofit authorized by Congress in 2010.
(pcori.org, last updated March 2018)

People-Centered Research Foundation
• Builds on the success of PCORnet
• Receives support from government, foundations, and industry
• Integrates people into all phases of research and the learning health system
(pcrfoundation.org) (retrieved 9/15/2018)
1. Background
Two community-driven projects are currently underway in southeast Michigan to develop and test the effectiveness of enhanced linkages between medical, behavioral/mental health, and social service providers to better identify and manage unmet social needs and improve clinical outcomes. Both efforts include developing new intra- and inter-organizational workflows and information technology (IT) capabilities to support care coordination or social services navigation. We describe the results of an ancillary study that qualitatively explores the processes for developing and implementing novel integrated care models in these two communities.

2. Methods
(1) Participant observation
• Planning and implementation committees, site visits, IT design, quality improvement processes

(2) In-depth semi-structured interviews with project leaders, providers, and managerial staff
• Existing linkages, practices for information exchange, current IT capabilities, and perceived opportunities and barriers for improving care integration.

Inductive methods were used for data analysis.

3. Preliminary Findings
(1) Workflows, norms, and IT design are slowly negotiated by the community and may require facilitation.

(2) Cross-agency IT systems are necessary for integrating care, but also cause disruptions to local workflows.

(3) Trust between stakeholders is paramount to the success of SDOH screening and effective care integration.

(4) Care managers primarily want to know who else is involved in the care of the patient/client. They rarely need detailed clinical information.

4. Common Elements of Community-Driven Integrated Care Models
“Boundary objects” collaboratively designed in both communities to guide work

5. Community Approaches
Livingston / Washtenaw State Innovation Model
Focus: Patients with frequent ER utilization. Care coordination involves a team-based approach among community providers that is managed by an administrative hub and facilitated by an IT platform called MiCareConnect ©PCE Systems. Twelve provider agencies (“hublets”) are participating in this intervention.

Jackson State Innovation Model
Focus: Improving coordination of care for persons with medical, social and behavioral health needs by linking SDOH screening and assessment to a scalable community-wide navigation, referral, and communication IT infrastructure (RiverStar Software and Epic). All community service providers are participating.

6. Conclusion
Developing and implementing community-driven integrated care models is a slow and iterative process but necessary for effective action. Our preliminary findings highlight implications for inter-organizational partnerships and suggest long-term challenges such as the sharing and governance of patient data.

Support for this poster is provided by: UL1TR002240 and CMS-1G1-14-001
Poster not available for publication.
MiCHAMP Overarching Goal

To create a new health research "ecosystem" for deep collaborative work in data science with multidisciplinary method, clinical & informatics experts.

MIDAS Health Sciences Challenge Grant (March 2017)

Aim 1 - Improve accuracy & timeliness of diagnosing Acute Respiratory Distress Syndrome (ARDS) onset.

Aim 2 - Advance abilities to predict progression of chronic HCV Infection.

Underlying Infrastructure (i.e., Aim 3) - Create a research platform that addresses key informatics challenges (e.g., meta-data, data provenance, reproducibility, scalability).

Methodological Thrust

Exploit temporal patterns in longitudinal data for novel discovery & prediction

Research Ecosystem

- Schools/Colleges - 5
- Research Faculty - 42
- Trainees - 20
- Staff - 7

Biweekly Seminar Series

- Internal & External Speakers: Andrew Gelman & John Ioannidis
- Proposals Under Development
- Work-In-Progress

Partnerships

- IHPI
- MIDAS
- MCIRCC
- VA CCMR

Collaboration With Learning Health Systems

Apply prediction models to Michigan Medicaid population with HCV infection at greatest risk for progression to advanced liver disease to guide treatment in the Knowledge-to-Treatment Optimization Program (K-TOP). M-TOP will be conducted in partnership with K-GRID, an initiative of DLHS.

Key Deliverables

- Research Clinically-Relevant Problems
- Develop Research Ecosystem for Machine Learning/Artificial Intelligence in Health
- Work with Trainees toward Career Development
- Aggressive & Early Extramural Funding Schedule
- Develop External Partnerships
Extending the Reach of Learning Systems
Using a MOOC-Based MicroMasters to Support Educational Innovation and Improvement with a Global Reach

Catherine S Hearn, MA
Kathryn Gabriele, MPA
Donald J. Peurach, PhD
Rebecca M Quintana, PhD

MicroMasters Overview

- **Blended MA**
 - MicroMasters: 12 Credits
 - Residential Study: 18 Credits
 - MA Educational Studies: 30 Credits

Structure & Schedule

- **Lesson Structure**
 - **Presentation**
 - Video lectures & study guides to scaffold learning
 - **Enrichment**
 - Signposting to resources for self-guided learning
 - **Team Practice**
 - Practice-based case studies & peer feedback
 - **Learning Check**
 - Survey assessing learning outcomes & learner feedback

- **Schedule**
 - **Weeks 1-7**
 - January 18th - February 17th
 - MicroMasters Course 1: Leading Ambitious Teaching and Learning
 - **Spring Break**
 - **Weeks 8-15**
 - March 5th - April 16th
 - MicroMasters Course 2: Designing and Leading Learning Systems
 - MicroMasters Course 3: Improvement Science in Education

Research

- **Learner Diversity**
 - What is the effect of diverse composition on the quality of team activity?

- **Social Learning**
 - Does the design of these courses support social learning?

- **Cohort Model**
 - What are the effects of perceived instructor presence in online courses?

- **Ecology of Resources**
 - Do learners with different professional backgrounds access resources differently?

Curated Cohort Design

- 22 Graduate & Advanced Undergraduate Students
- January - April 2018

Enrichment Opportunities

- Beyond the opportunities available to self-paced MicroMasters learners...
- Weekly Email & Video Message
- Whole-Group Peer Feedback
- Research Opportunities
- Online Office Hours
- Invitation to M Events
- Guest Webinars
- Blogging Opportunities

Future Iterations

- Week zero for cohorts
- Slipped down lesson structure
- Library of practitioner interviews
- Audit and cohort tracks only
- Learner-generated case studies
- Improved technology for social learning

~40 Off-Campus Learners Across 5 Continents

~40 Off-Campus Learners Across 5 Continents
Our mission at the University of Michigan Center for Healthcare Engineering and Patient Safety (CHEPS) is to improve the safety and quality of healthcare delivery through a multi-disciplinary, systems engineering-based approach through collaboration, implementation, innovation, education, and dissemination.

Implementation
Our research is grounded in real problems that affect real patients. We conduct hands-on projects both inside and outside of the University, locally, nationally, and globally. Because of this geographic diversity, research at the Center has an immediate and measurable impact.

Education
A key part of our mission is to train future generations, helping engineering students to understand the challenges and opportunities found in healthcare delivery as well as educating healthcare providers about the benefits that engineering tools can yield on real-world problems.

Innovation
Hands-on projects form the foundation for longer-term, cutting-edge research projects that advance the state-of-the-art in both medicine and engineering.

Dissemination
We serve as a source of information for the broader community about new advances in healthcare engineering and patient safety through our web site, white papers, seminar series, symposia, and outreach activities.

Collaboration
The University of Michigan has nationally-recognized strengths in engineering, medicine, nursing, public health, business, and more. We work to identify, foster, and promote collaborative projects across these units.

Collaboration with LHS
The CHEPS SCOPES team collaborated with the Gastroenterology Learning Community within the Department of Learning Health Sciences (LHS) to work on quality/process improvement initiatives in the Michigan Medicine Medical Procedure Unit. In collaboration with the Health Systems Data Warehouse, they were able to translate a simple tool created in CHEPS to the first GI data warehouse in Michigan Medicine, providing a better understanding of the workings of the GI Department. CHEPS continues to work with LHS on analyzing the data gathered.
Targeting failed appointments in an LHS cycle in order to improve access, education, revenues and resource utilization

Exploratory data analysis

BACKGROUND

The University of Michigan School of Dentistry (UMSOD) is a major care provider with over 200,000 patient encounters per year. Unfortunately, over 20% of appointments are cancelled. 7% by the patient within 24 hours of the appointment. Cancelled and failed appointments disrupt care delivery and have broad impacts including:

1. Lost opportunities for the patient to receive care;
2. Lost opportunities for students to gain clinical experience;
3. Unnecessary delays for other patients seeking care;
4. Lost revenue for the school; and
5. Wasted resources

UMSOD seeks to reduce the rate of failures to attend appointments. We have undertaken exploratory data analysis of our electronic health records together with public census data to better understand where and why patients fail to attend, so we can consider interventions that may result in improved patient attendance.

ASSEMBLE

We extracted three years of appointments from our Electronic Health Record, including patient demographic information, clinic and provider, appointment confirmation tools and responses, reported patient health status, and attitudes toward dental treatment. We merged this with US Census bureau data at the ZIP code level and with travel time via car and transit between a geo-masked patient address and the UMSOD.

We normalized continuous features and built a correlation matrix between them and cancellation status. Blue is a positive correlation, red is negative.

ANALYZE/INTERPRET

First findings were unremarkable:
1. Patients who cancel appointments cancel appointments
2. Patients without private insurance cancel appointments
3. Patients with longer medical histories don’t cancel as frequently

Some findings were interesting surprises:

An overwhelming majority of appointments are booked for exactly n weeks from “today.” These appointments are kept at significantly higher rates than the rest.

FEEDBACK

We found superior attendance rates when confirmed via email/text and are moving toward this method of confirmation (which was only utilized by 3 of 9 clinics)

Some of our patients face major transportation barriers if they are unable to drive to an appointment

Next Steps – CHANGE

1. Increase clinic adoption of text messaging reminders
2. Look at ways to customize patient reminders to meet the needs of different populations
3. Assess whether encouraging clinic staff to book on even week intervals makes a difference to attendance rates
4. Assess the impact of transportation challenges and possibilities for addressing them
5. Better distinguish between attributes of patients who are associated with cancellations and the attributes of the appointments themselves (clinic, procedure, etc.)
6. Apply clustering algorithms to the data set to better target interventions to groups of patients
7. Establish a regular cycle of data refreshes and reporting to support follow-up on each of these interventions
Mission

To be the internationally recognized leader in pharmacy systems research

Collaboration

- We bring together a range of expertise along the pharmacy informatics continuum, including data-driven analytics, software and technology development, data infrastructure, pharmacy practice, and implementation science.

Implementation

- PING will establish shared research programs that advance the state-of-the-art in pharmacy systems to enhance the quality, safety, and experience of medication use.

Innovation

- PING pioneers novel pharmacy systems research and bridges the gap between science and practice.

Education

- We will train the next generation of pharmacy researchers and pharmacists to leverage data and technology to improve the quality, safety, and experience of medication use.
- We will bring in experts to share their experiences and enhance the research of our members.

Dissemination

- We will disseminate findings through published research, implementation, open-source tools, and entrepreneurial activities.

Reinforcement Learning Agent to Improve Medication Adherence

Background: Medication adherence continues to be problematic. Innovative solutions tailored to patient reasons for non-adherence need to be developed.

Objective: To determine the effectiveness of tailored messaging using a reinforcement learning (RL) algorithm on medication adherence.

Method: Pre-post randomized controlled trial of 47 patients. RL agent adapted messaging by tailoring along several reasons for non-adherence. Adherence measured using proportion of days covered (PDC).

Pattern Exploration of Patient Experience in Community Pharmacies for CQI

Background: Patient experience in healthcare is an important domain for quality improvement. Online review websites provide host of experience data.

Objective: To describe the domains of patient experience in positive and negative reviews.

Method: 4,463 Yelp reviews of 964 community pharmacies from 50 US States. A structural topic model identified themes in free-text reviews and were mapped onto corresponding star rating.
• In the United States, heart failure (HF) is the most common hospital discharge diagnosis among older adults.
• About 40 percent of patients are readmitted within 1 year following their first admission for HF and hospitalization accounts for approximately 70 percent of the costs of HF management.
• Previous research shows that patient education, case management and telephonic support are effective in reducing HF hospitalizations, but these strategies can be costly.
• As a result, the management of HF patients is evolving from the traditional model of face-to-face follow-up visits toward a proactive real-time technological model of assisting patients with monitoring and self-management while in a health system.
• This award to supplement existing funding by addressing the following:
 1. Integrating motivational messages for heart failure patients that will evoke a behavior health change into a mobile application based on the Michigan Tailoring System,
 2. Integrating remote monitoring sensors data into the mobile application to enhance the use of the data within an algorithm.
 4. Develop knowledge objects to hold, manage, and facilitate deployment of the clinical worsening of heart failure predictive algorithm using the Knowledge Grid platform under development in the Department of Learning Health Sciences.

Linking the Knowledge Grid, Michigan Tailoring System and Fitbit data within a patient centered mobile application for heart failure

Dorsch MP, Arzac J, Hummel SL, Koelling TM
mdorsch@med.umich.edu

In the United States, heart failure (HF) is the most common hospital discharge diagnosis among older adults.

About 40 percent of patients are readmitted within 1 year following their first admission for HF and hospitalization accounts for approximately 70 percent of the costs of HF management.

Previous research shows that patient education, case management and telephonic support are effective in reducing HF hospitalizations, but these strategies can be costly.

As a result, the management of HF patients is evolving from the traditional model of face-to-face follow-up visits toward a proactive real-time technological model of assisting patients with monitoring and self-management while in a health system.

This award to supplement existing funding by addressing the following:

1. Integrating motivational messages for heart failure patients that will evoke a behavior health change into a mobile application based on the Michigan Tailoring System,
2. Integrating remote monitoring sensors data into the mobile application to enhance the use of the data within an algorithm.
4. Develop knowledge objects to hold, manage, and facilitate deployment of the clinical worsening of heart failure predictive algorithm using the Knowledge Grid platform under development in the Department of Learning Health Sciences.
The Michigan Surgical Quality Collaborative Learning Health System: Changing Practice and Reducing Surgical Site Infection for Elective Colon Surgery

Joceline V. Vu, MD; Elizabeth Seese, MS; Stacey D. Collins, MA; Samantha Hendren, MD, MPH; Michael J. Englesbe, MD; Darrell A. Campbell, MD; Greta L. Krapohl, PhD, RN

1 Michigan Medicine, University of Michigan, Department of Surgery; 2 Michigan Surgical Quality Collaborative

Introduction

Surgical site infection (SSI) is the second most common type of hospital-acquired infection and is associated with significant mortality and health care use.

The emphasis on SSI after colectomy has increased with the institution of financial penalty for this outcome in 2017, as part of the Centers for Medicare and Medicaid Services Hospital-Acquired Condition Reduction Program.

Starting in 2012, MSQC hospitals promoted a “bundle” of the following three actionable process measures:

- Decontamination: intraoperative prophylactic intravenous antibiotics
- Oral antibiotics with mechanical bowel preparation
- Postoperative day-1 glucose <140 mg/dL

Methods

Stating: The Michigan Surgical Collaborative Patient Safety Organization

Study design: Prospective cohort study of elective colectomy patients from 2012 – 2015.

Intervention: The MSQC actively promoted the SSI bundle with an data auditing system to provide feedback on implementation and SSI rates, conference presentations at face-to-face meetings, site visits, analytic reports and support for local SSI quality improvement projects.

Outcomes Measured

- Bundle Element Use
- SSI Rates
- Readmissions/Health Utilization

Results

5742 patients were included. When stratified into groups by compliance score (0 – 6), the low compliance group (0 – 1) had higher proportion of older patients, black patients, and patients with comorbid conditions (obesity, diabetes, ASA class 3 – 4). We used a hierarchical logistic regression model to examine the association of bundle score and SSI, adjusting for patient and hospital factors.

- 18.6% → 32.2% of patients
 (p=0.001)
- 42.5% → 62% (p=0.001)
 No significant change (49% → 58%)

Conclusions

Our findings show a significant increase in bundle measure use after implementation of a quality improvement initiative by MSQC hospitals.

Lower SSI rates, as well as lower rates of other mortality and postoperative healthcare utilization, were associated with higher bundle use compliance.

Although the adoption of published evidence in clinical practice can be slow, the Learning Health Systems approach is providing continuous and systemwide data, audit, and feedback for the potential to accelerate practice change.
What is Precision Health at U-M?
A population-based strategy that uses advanced tools and technology to discover how genetic, lifestyle, and environmental factors influence a population’s health.

Mission

<table>
<thead>
<tr>
<th>Research</th>
<th>Education</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create, test, and publish new knowledge that advances precision health science. Fund projects through our Investigators and Scholars Award programs.</td>
<td>Establish Precision Health certificate program. Train and enable researchers/clinicians to incorporate new techniques and evidence into daily work.</td>
<td>Develop tools to enable the integration of research at the point of care, and evaluate the impact on the health of Michigan residents.</td>
</tr>
</tbody>
</table>

Objectives

- Develop a diverse patient cohort, integrating novel datastreams and sources
- Establish a secure analytics platform with leading-edge software stack and computing hardware
- Enable secure access to real-world clinical and health data while adhering to expectations of consented participants
- Build a collaborative research community bridging the breadth of expertise at U-M
- Sponsor a competitive grants program to provide funding to advance PH research
- Devise processes that integrate discoveries into patient care
- Tackle important health issues through use cases ranging from opioid misuse to mental health, metabolic disease, and cancer

The Precision Health approach looks at many factors, and how they impact each other.

Services

<table>
<thead>
<tr>
<th>Research Data and Access for Faculty</th>
<th>Data Analytics/IT Support</th>
<th>Education and Training Programs</th>
<th>Research Output Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Data Warehouse and DataDirect</td>
<td>Secure data enclaves</td>
<td>Seminar series</td>
<td>Processes/policies to take discovery to implementation at Michigan Medicine</td>
</tr>
<tr>
<td>Michigan Genomics Initiative</td>
<td>HIPAA/PHI/CUI compliant platforms</td>
<td>Symposia</td>
<td>Use of curated decision support visualizations at point of care</td>
</tr>
<tr>
<td>Central Biorepository</td>
<td>Cloud computing</td>
<td>Certificate program</td>
<td></td>
</tr>
<tr>
<td>Faculty-generated data sources</td>
<td>Scientific facilitators</td>
<td>Patient education</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Health professional training</td>
<td></td>
</tr>
</tbody>
</table>
State Innovation Model:
Towards a Learning Health System to Reduce Emergency Department Visits in Livingston and Washtenaw County
On behalf of the State Innovation Model Workgroup in the Center for Healthcare Research and Transformation

Problem

High utilizers of the Emergency Department (ED) often have complex needs that require coordination of care between multiple organizations.

Approach

We describe a Learning Health Systems (LHS) approach to reducing ED visits, in which an intervention is delivered to a cohort of high utilizers identified using population-level data and predictive modeling.

What is the State Innovation Model?

Michigan received a State Innovation Model (SIM) grant from the Center for Medicare and Medicaid Innovation (CMMI) to test delivery and payment system changes.

5 Community Health Innovation Regions (CHIRs)

Each CHIR has a “regional backbone.” Ours is the Center for Healthcare Research & Transformation (CHRT).

How often do individuals use the emergency department?

<table>
<thead>
<tr>
<th>ED visits in 6 months</th>
<th>N</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>270,748</td>
<td>89.20%</td>
</tr>
<tr>
<td>1</td>
<td>24,799</td>
<td>8.17%</td>
</tr>
<tr>
<td>2</td>
<td>5,174</td>
<td>1.70%</td>
</tr>
<tr>
<td>3</td>
<td>1,591</td>
<td>0.52%</td>
</tr>
<tr>
<td>4+</td>
<td>836</td>
<td>0.27%</td>
</tr>
<tr>
<td>Total</td>
<td>303,514</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

A predictive model is used to identify the highest risk individuals. The process is repeated every two months.

The learning cycle

Reduce ED visits for high ED utilizers

Internal (SPH) + external (MDHHS) evaluation
Satisfaction, process measures, effect on ED visits

Randomized intervention
Randomized to control group after 6 months

How are we aiming to reduce ED visits?

Assign patients to a “hublet,” which serves as the primary point of contact for care coordination.

Use a web-based portal to track referrals and share case notes and care plans among hublets.

Improve communication between the health system and the community.

Have we reduced ED visits?

Once we enroll a sample size to achieve sufficient power, an analysis of the efficacy will be forthcoming.
The Learning Health System (LHS) Collaboratory
Advancing interdisciplinary research and development of learning health systems
Charles Friedman, Douglas Van Houweling, Lisa Ferguson, Cindy Diakow
University of Michigan Medical School, Department of Learning Health Sciences

LHS Collaboratory: A University of Michigan Community Focused on Improving Individual and Population Health

In a Learning Health System (LHS), organizations or networks continuously self-study and adapt using data and analytics to generate knowledge, engage stakeholders, and implement behavior change to transform practice. The LHS concept, first expressed by the Institute of Medicine in 2007, is now being rapidly adopted across the country and around the world.

An efficient learning process, supported by infrastructure, is one that actually enables continuous improvement to be embedded into routine practice.

The Learning Loop is the framework for doing this in a Learning Health System.

- Data to Knowledge (D2K): Many improvement efforts focus on gathering data and gleaning knowledge from the data (D2K). Often the cycle stops there; however, the Loop continues, harnessing the real power of data.

- Knowledge to Performance (K2P): Effective learning health systems apply the knowledge to implement change and transform health care through individual training, team training, implementation of new processes, integration of new technologies, and changes to the process and environment of care.

- Performance to Data (P2D): The lessons of improved performance are used to inform and refine the next cycle of gathering data.

The learning cycle repeats continuously.

Are you interested in exploring how your research work is relevant to Learning Health Systems?
Join the LHS Collaboratory Community!
Learn More: dlhs-umi.ch/lhs-collaboratory
Using Participatory Design to Co-create a Community Health Information Hub in Jackson, MI
Michael Klinkman 1,8, Mark Ackerman 2,3, Ken Toll 4, Joshua Williams 5, Bob Fike 6, Amy Sintes 6, Marty Woodruff 7, Aaron Wootton 8, Richard Thoune 9, Keven Mosely-Koehler 6, Laurie Gustafson 5, Amy Schultz8,10
1–UM Department of Family Medicine; 2–UM School of Information; 3–UM Department of Learning Health Sciences; 4–Jackson United Way; 5–Jackson Collaborative Network; 6–RiverStar Software; 7–Michigan Health Information Network; 8–Henry Ford Allegiance Health; 9–Jackson County Health Department; 10–Jackson Health Improvement Organization

Context. In most communities, information related to individuals’ health is distributed across multiple unconnected care silos created to support medical, behavioral, and community service providers. While progress has been made toward EHR interoperability for the medical enterprise, community-side information remains highly fragmented and sequestered.

The result is that community care providers often work with incomplete information, cannot connect to the broader system of care, and unintentionally create complex pathways of care that fail to effectively address health disparities. This ‘community data gap’ also limits our ability to carry out meaningful learning health cycles in community settings.

Objective. To co-design a community health information hub that connects community service agencies (CSAs), behavioral health providers, and medical practices actively engaged in the care of an individual client/patient.

Actions. Under the guidance of the Jackson Collaborative Network community stakeholder coalition, over 40 CSAs and stakeholders entered into a participatory design process to co-create a local Community Information Exchange as part of the Michigan State Innovation Model demonstration in Jackson. Three organizations, United Way of Jackson County, Central Michigan 2-1-1, and LifeWays Community Mental Health, provided leadership in their role as local conveners.

Early stakeholder interviews identified information exchange as a core problem:
- Over 200 community service agencies (CSAs) provided overlapping and duplicative services
- The community 2-1-1 service was underutilized
- Most agencies worked from their own incomplete ‘catalogs’ of local CSAs
- Coordination between medical, behavioral, and social service providers was informal and infrequent.

Results. Over an 18-month period, a series of design tasks was completed by commissioned ad hoc working groups composed of CSA representatives and dedicated support staff.

1. Deciding upon overall approach to integration, scope of work for IT infrastructure build, and identifying a vendor partner for design and build

2. Co-developing a community care model to establish common steps in the care process.

3. Co-creating a single shared SDoH screening tool and common approach to client assessment.

4. Co-designing (with IT vendor) the set of key functional requirements for the community hub.

5. Launching the Jackson Care Hub – testing functionality, prototyping, and implementing.

The Jackson Care Hub provides a shared community platform to supplement but not replace the IT applications used by individual CSAs. It has 2 components.

Community Navigation - enables any user to carry out screening (SDoH and behavioral), match needs to available local service resources using an enhanced 2-1-1 database, send referral ‘tasks’ to CSAs and track their status, identify and directly message other members of the client’s active care team to coordinate care, and monitor outcomes.

Information Exchange – enables data exchange between Hub and IT platforms used by community providers: for example, exporting results of SDoH screening completed in the community EHR (Epic) to the Hub, moving referral ‘tasks’ between Epic and Hub as status changes to enhance tracking and follow up.

The Hub went ‘live’ on June 18, 2018 with 14 participating CSAs. Additional CSAs are being added as rapidly as training can be completed. Hundreds of SDoH screens have been completed at CSAs and in participating medical practices, with hundreds of social service referral tasks created and actively tracked by CSA staff, 2-1-1 navigators, and SIM project staff.