Jennifer Gehret McCarthy, Ph.D. (BioChem 2012)

The marine environment, full of bioactive natural products, is largely untapped. Natural products, including those found in the marine environment, exhibit an impressive array of chemical diversity and often potent bioactivity, which can be harnessed for therapeutics. Many unusual enzymes reside in natural product assembly-line pathways, and create the diverse collection of chemical functional groups found in natural products. The study of enzymes in natural product biosynthetic pathways can reveal new modes of catalysis, unique chemical transformations, and novel biosynthetic tools. The antimitotic natural product curacin A is a perfect example of interesting chemistry found in the marine environment.

Curacin A (center), produced by the marine cyanobacterium *Moorea producens* (background), contains many interesting chemical groups including cyclopropane and thiazoline rings, an internal cis double bond and a terminal alkene. Equally interesting are the structural details of the biosynthetic pathway that produces curacin A (arrows), giving insight into how each unique chemical group is made. Shown are the published structures from the curacin A biosynthetic pathway (starting from the top left and moving counter clockwise): a dehydratase that produces a trans double bond\(^1\), a dehydratase that produces a cis double bond\(^1\), an acyl carrier protein involved in cyclopropane biosynthesis\(^2\), a loading enzyme with dual decarboxylase and acetyltransferase activities\(^3\), an Fe\(^{2+}/\alpha\)-ketoglutarate dependent halogenase involved in cyclopropane biosynthesis\(^4\), a decarboxylase that establishes regiochemistry for cyclopropane formation\(^5\), a dehydratase that produces a trans double bond\(^1\), and a β-sulfate specific thioesterase that produces a terminal alkene\(^6\).

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Administration</td>
<td>4</td>
</tr>
<tr>
<td>Program Overview</td>
<td>4</td>
</tr>
<tr>
<td>Curriculum for Biochemistry Master’s</td>
<td>4</td>
</tr>
<tr>
<td>Thesis Dissertation</td>
<td>5</td>
</tr>
<tr>
<td>Thesis Advisory Committee</td>
<td>5</td>
</tr>
<tr>
<td>Rackham & Biological Chemistry Academic Policies</td>
<td>5</td>
</tr>
<tr>
<td>Academic Performance</td>
<td>6</td>
</tr>
<tr>
<td>Work and Vacation Guidelines</td>
<td>6</td>
</tr>
<tr>
<td>Departmental Events</td>
<td>7</td>
</tr>
<tr>
<td>Web Resources</td>
<td>7</td>
</tr>
<tr>
<td>Graduate Student Compact</td>
<td>9</td>
</tr>
</tbody>
</table>
Masters Program Administration

Graduate Program Director Dr. Anne Vojtek (734) 647-6794; avojtek@umich.edu
Graduate Program Manager Ms. Beth Goodwin (734) 764-8594; egoodwin@umich.edu

Program Overview

The Master’s in Biochemistry is an intensive one-year program of didactic coursework in biochemistry and an intensive research experience. This program is intended for individuals seeking to increase their skills and research experience for employment opportunities or for application to highly competitive Ph.D. or medical professional degree programs. Our faculty members conduct research at the cutting edge of modern biochemistry and molecular biology. Current areas of research include structural biology, protein biochemistry, enzyme reaction mechanisms, molecular genetics, signal transduction, neurobiology, cell and developmental biology, and bioinformatics.

Students match with faculty research advisors by mutual consent, either before arrival on campus or immediately thereafter. This program encompasses both didactic coursework and research training, culminating in a written thesis dissertation. The coursework for the M.S. degree is similar to the coursework for the Ph.D. program in the Biological Chemistry Department, allowing students who have successfully completed the M.S. degree to apply for direct admission to the departmental Ph.D. program.

Curriculum

Coursework consists of both required and elective components. To maintain academic standing, advance to the second semester of the program, and to be awarded the M.S. degree, a B- or better is required in all coursework. Students completing a Masters degree will complete a minimum of 29 credits of didactic coursework and laboratory (or in silico) research and conclude with the development and completion of a written thesis project.

Biological Chemistry MS Graduate Curriculum

A. Biological Chemistry Required Course (choose one of the following):
 BIOLCHEM 550 Macromolecular Structure and Function (3 Cr, F)
 BIOLCHEM 660* Molecules of Life: Protein Structure, Function & Dynamics (2 Cr, F)
 *For students with advanced standing in biochemistry (e.g. biochemistry undergraduate degree)
 BIOLCHEM 501 Chemical Biology (3 Cr, F)

B. Biological Chemistry Advanced Electives (2 Credits minimum):
 Fall
 BIOLCHEM 650 Eukaryotic Gene Transcription (2 Cr, F)
 BIOLCHEM 591 Special Topics in Signal Transduction (2 Cr, F)
 BIOLCHEM 530 Protein-protein and protein-ligand interactions by NMR (3 Cr, F)
 Winter
 BIOLCHEM 640 Regulatory RNA and Control of Gene Expression (2 Cr, W)
 BIOLCHEM 528 Biology and Chemistry of Enzymes (2 Cr, W)
 BIOLCHEM 673 Enzyme Kinetics (2 Cr, W)
 BIOLCHEM 602 Protein Crystallography (3 Cr, W)

C. Additional required courses:
 BIOLCHEM 597 Critical Analysis (2 Cr, W)
 BIOLCHEM 712 Biological Chemistry Seminar Series (2 Cr, F/W)
 BIOLCHEM 711 Graduate Seminar (2 Cr, F/W)
 BIOLCHEM 600 Research (F/W)
 PIBS 503 Research Responsibility & Ethics (1 Cr, F)

-4-
D. Electives** (3 Cr minimum):

Fall
- BIOINF 527 Introduction to Bioinformatics and Computational Biology (4 Cr, F)
- BIOINF 528 Advanced Applications of Bioinformatics (3 Cr, F)
- BIOPHYS 520 Techniques in Biophysical Chemistry (3 Cr, F)
- BISTAT 501 Introduction to Biostatistics (4 Cr, F)
- BISTAT 521 Applied Biostatics (4 Cr, F) [calculus prerequisite]
- CDB 530 Cell Biology (3 Cr, F)
- CDB 581 Developmental Genetics (3 Cr, F)
- HUMGEN 541 Molecular Genetics (3 Cr, F)
- PHYSIOL 502 Human Physiology (4 Cr, F)

Winter
- BIOINF 525 Foundations in Bioinformatics and Systems Biology (3 modules, 1 Cr each, W)

 In 2016: Foundations of Bioinformatics; Statistics in Bioinformatics; Systems Biology
- BIOPHYS 521 Theory and Methods of Biophysical Chemistry (3 Cr, W)
- CDB 582 Stem cells: Organogenesis to Regenerative Biology (3 Cr, W)
- CHEMBIO 502 Chemical Biology II (3 Cr, W)
- MICRBIOL 504 Cellular Biotechnology (3 Cr, W)
- PATH 581 Tissue, Cellular and Molecular Basis of Disease (4 Cr, W)

This is a partial list. Consult your research mentor and academic advisor if you would like to take an elective course not listed above.

E. Research:
- Fall and Winter
 - BIOLCHEM 600 Independent Study (Master’s thesis research)

Minimum of 29 credits, including 4 cognate credits, and development and completion of a written thesis.

THESIS DISSERTATION AND THESIS ADVISORY COMMITTEE

Thesis research will be done in the Fall and Winter terms and culminate in the writing of a Master’s Thesis. The thesis is expected to be a synthesis of scholarly background and discussion of the research project, in addition to an original experimental or theoretical contribution to the field. By the end of October, students are expected to form their Thesis Advisory Committee, composed of the research advisor and two additional Biological Chemistry faculty members. By the end of November, students are expected to meet with their Advisory Committee. The student should provide an overview of the research project, summarize progress to date, provide an outline of planned experiments and a timeline for completion of the dissertation. It is expected that the research will be accomplished by the end of the academic year in most cases, with the written thesis submitted no later than the end of Spring/Summer term. The student’s Advisory Committee will evaluate the submitted thesis. The Master’s degree will not be awarded until all required revisions are completed and approved by the Chair of the committee.

RACKHAM AND BIOLOGICAL CHEMISTRY ACADEMIC POLICIES

Students in the program are expected to familiarize themselves with Rackham’s Academic Policies including the Academic and Professional Integrity Policy (see http://www.rackham.umich.edu/policies/gsh/) and the “Compact of UM-Biochemistry Graduate Student Commitments” (see page 9).
ACADEMIC PERFORMANCE
The Rackham Graduate School requires students to maintain a grade point average of B (3.0 on a 4.0 scale) and the Department of Biological Chemistry requires all students to receive grades no lower than a B- in required courses. A student whose cumulative GPA falls below a B, who is not making satisfactory progress toward the degree, or who is failing to demonstrate an ability to succeed in his or her plan of studies, may be denied permission to register, required to withdraw, or dismissed from the program. The Biological Chemistry Graduate Program Committee will review the student’s progress and make the determination as to whether the student can continue in the program. Students must be in good academic standing to submit a written thesis for evaluation.

BIOLOGICAL CHEMISTRY SEMINAR SERIES
The Department of Biological Chemistry sponsors a weekly seminar program during the Fall and Winter terms that attracts outside speakers of international reputation. The seminars are held each Tuesday at Noon and all biochemistry students are required to attend. Students are invited to share lunch and conversation with the speaker following the seminar. In addition to the weekly seminar program, the Department sponsors an annual Distinguished Alumni Lecture and four endowed lectureships: the Irwin Goldstein Lectureship in Glycobiology, the G. Robert Greenberg Lectureship in Biological Chemistry, the William E.M. Lands Lectureship in the Biochemical Basis for the Physiology of Essential Nutrients, and the Martha L. Ludwig Lectureship in Structural Biology.

FALL POSTER SESSION
Masters students will have the opportunity to present their research at poster sessions held at the conclusion of the Fall term.

STUDENT CHALK TALKS
Students in the Department of Biological Chemistry meet approximately twice each month for lunch, conversation, and an informal research talk. This gathering provides an opportunity for students to keep in touch with their colleagues and to share scientific expertise and advise. The chalk talk schedule can be found on our website.

WORK HOURS AND VACATION GUIDELINES
Students should consult with their mentors regarding specific laboratory policies on research hours, vacations, and planned absences. Request for time off from research must be done in advance and in consultation with the student’s mentor.
DEPARTMENT SOCIAL EVENTS

Annual Departmental Retreat
The student-organized Biological Chemistry retreat, held at the beginning of the Fall semester at Kellogg Biological Station on Gull Lake in Western Michigan, provides students, postdoctoral fellows and faculty an opportunity to present and discuss research in a relaxed and informal setting.

Monthly Happy Hour
Once a month members of the department are invited to gather together at a local establishment in Ann Arbor to enjoy conversation and appetizers.

WEB RESOURCES

LABORATORY SAFETY AND TRAINING
OSEH – Occupational Safety and Environmental Health
http://www.oseh.umich.edu/

WELCOME MATERIALS FOR NEW GRADUATE STUDENTS
http://www.rackham.umich.edu/current-students/life-at-michigan/after-you-arrive-on-campus/welcome-materials

RESOURCES FOR GRADUATE STUDENTS
http://www.rackham.umich.edu/current-students

WRITING SUPPORT
http://www.lsa.umich.edu/sweetland/

RACKHAM ACADEMIC POLICIES
http://www.rackham.umich.edu/policies/gsh/

INTEGRITY IN SCHOLARSHIP
http://www.rackham.umich.edu/current-students/policies/academic-policies/section11

PROFESSIONAL DEVELOPMENT
http://www.rackham.umich.edu/current-students/graduate-student-success/pd
http://alumni.umich.edu/students/career-resources

HOW TO GET THE MENTORING YOU WANT

PARENTAL ACCOMMODATION POLICY
http://www.rackham.umich.edu/current-students/policies/parental-accommodation-policy

HEALTH AND WELLNESS RESOURCES
http://www.rackham.umich.edu/current-students/life-at-michigan/health-wellness
FINANCIAL ASSISTANCE

Emergency Funds
http://www.rackham.umich.edu/prospective-students/funding/student-application/graduate-student-emergency-funds

Fellowships, grants and scholarships
http://www.rackham.umich.edu/prospective-students/funding

Rackham Student Research Grant
http://www.rackham.umich.edu/prospective-students/funding/student-application/graduate-student-research-grant

Rackham Conference Travel Grant
http://www.rackham.umich.edu/prospective-students/funding/student-application/rackham-conference-travel-grant
Mentoring Plan
UM-Biochemistry Graduate Student Commitments

• I acknowledge that I have the primary responsibility for the successful completion of my degree. I will be committed to my graduate education and will demonstrate this by my efforts in the classroom and the research laboratory. I will maintain a high level of professionalism, self-motivation, engagement, scientific curiosity, and ethical standards.

• I will meet regulatory with my thesis advisor and provide him/her with updates on the progress and results of my activities and experiments.

• I will work with my thesis advisor to develop a thesis project. This will include establishing a timeline for each phase of my work. I will strive to meet the established deadlines.

• I will work with my thesis advisor to select a thesis committee and commit to meeting with this committee, according to my graduate program guidelines. I will be responsive to the advice of and constructive criticisms from my committee.

• I will be knowledgeable of the policies and requirements of my graduate program, Rackham Graduate School and the University of Michigan. I will commit to meeting these requirements, including teaching responsibilities.

• I will attend and participate in laboratory meetings, seminars and journal clubs that are part of my educational program

• I will comply with all UMMS and Rackham Graduate School policies, including academic program milestones. I will comply with both the letter and the spirit of all institutional safe laboratory practices and animal use and human-research policies at my institution.

• I will participate in the UM Responsible Conduct of Research Training Program (PIBS 503) and practice those guidelines in conducting my thesis research.

• I will be a good laboratory citizen. I will agree to take part in shared laboratory responsibilities and will use laboratory resources carefully and frugally. I will maintain a safe and a clean laboratory space. I will be respectful of, tolerant of, and work collegially with all laboratory personnel.

• I will maintain a detailed, organized, and accurate laboratory notebook. I am aware that my original notebooks and all tangible research data are property of my institution but that I am able to take a copy of my notebooks with me after I complete my thesis.

• I will discuss policies on work hours, sick leave and vacation with my thesis advisor. I will consult with my advisor and notify fellow lab members in advance of any planned absences.

• I will discuss policies on authorship with my research advisor. I will work with my advisor to submit all relevant research results that are ready for publication in a timely manner prior to my graduation.

• I acknowledge that it is primarily my responsibility to develop my career following the completion of my degree. I will seek guidance from my research advisor, dissertation committee, other mentors and any other resources available for advice on career plans.

Adapted from the Association of American Medical Colleges and UM-PIBS.