About the Cover

Jennifer Gehret McCarthy, Ph.D. (BioChem 2012)

The marine environment, full of bioactive natural products, is largely untapped. Natural products, including those found in the marine environment, exhibit an impressive array of chemical diversity and often potent bioactivity, which can be harnessed for therapeutics. Many unusual enzymes reside in natural product assembly-line pathways, and create the diverse collection of chemical functional groups found in natural products. The study of enzymes in natural product biosynthetic pathways can reveal new modes of catalysis, unique chemical transformations, and novel biosynthetic tools. The antimitotic natural product curacin A is a perfect example of interesting chemistry found in the marine environment.

Curacin A (center), produced by the marine cyanobacterium *Moorea producens* (background), contains many interesting chemical groups including cyclopropane and thiazoline rings, an internal *cis* double bond and a terminal alkene. Equally interesting are the structural details of the biosynthetic pathway that produces curacin A (arrows), giving insight into how each unique chemical group is made. Shown are the published structures from the curacin A biosynthetic pathway (starting from the top left and moving counter clockwise): a dehydratase that produces a *trans* double bond\(^1\), a dehydratase that produces a *cis* double bond\(^1\), an acyl carrier protein involved in cyclopropane biosynthesis\(^2\), a loading enzyme with dual decarboxylase and acetyltransferase activities\(^3\), an Fe\(^{2+/3+}\)-ketoglutarate dependent halogenase involved in cyclopropane biosynthesis\(^4\), a decarboxylase that establishes regiochemistry for cyclopropane formation\(^5\), a dehydratase that produces a *trans* double bond\(^1\), and a β-sulfate specific thioesterase that produces a terminal alkene\(^6\).

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Administration</td>
<td>5</td>
</tr>
<tr>
<td>Program Overview</td>
<td>5</td>
</tr>
<tr>
<td>Curriculum for Research Track</td>
<td>6</td>
</tr>
<tr>
<td>Thesis Dissertation & Advisory Committee (Research Track)</td>
<td>7</td>
</tr>
<tr>
<td>Curriculum for Course Track</td>
<td>8</td>
</tr>
<tr>
<td>Literature Analysis and Review Article (Course Track)</td>
<td>9</td>
</tr>
<tr>
<td>Rackham & Biological Chemistry Academic Policies</td>
<td>10</td>
</tr>
<tr>
<td>Academic Performance</td>
<td>10</td>
</tr>
<tr>
<td>Work and Vacation Guidelines</td>
<td>10</td>
</tr>
<tr>
<td>Departmental Events</td>
<td>10</td>
</tr>
<tr>
<td>Web Resources</td>
<td>11</td>
</tr>
<tr>
<td>Graduate Student Compact</td>
<td>12</td>
</tr>
</tbody>
</table>
MASTERS PROGRAM ADMINISTRATION
Master’s Program Director Dr. Alex Ninfa (734) 763-8065; aninfa@umich.edu
Graduate Programs Manager Ms. Beth Goodwin (734) 764-8594; egoodwin@umich.edu

PROGRAM OVERVIEW
The Department of Biological Chemistry offers one-year Masters Programs designed to broadly train tomorrow’s leaders in biomedical sciences. Our trainees are well prepared for employment in industry, or matriculation into elite graduate or medical programs. Two tracks of study are offered, depending upon the goals and interests of the students.

Masters in Biochemistry-Research Track: This one-year program of didactic coursework in biochemistry includes an intensive research experience and a written thesis. This program is intended for individuals seeking to increase their skills and research experience for employment opportunities, or for application to highly competitive Ph.D. or medical professional degree programs.

The intensive research experience is a key feature of the research-track. Our faculty members conduct research at the cutting edge of modern biochemistry and molecular biology. Current areas of research include structural biology, protein biochemistry, enzyme reaction mechanisms, molecular genetics, signal transduction, neurobiology, cell and developmental biology, and bioinformatics. Students match with faculty research advisors by mutual consent, either before arrival on campus or immediately thereafter. The capstone of the research experience is the thesis dissertation.

Masters in Biochemistry-Coursework Track: This one-year program of didactic coursework in biochemistry and related fields is designed for students who plan to attend medical, dental, veterinary, law, or other professional programs. Students on this track take two semesters of rigorous, graduate-level, coursework. In addition, students will conduct a mentored literature review in a selected area of interest, working one-on-one with a research faculty, and culminating in a short review article. Students on this track are exposed to an impressive array of modern research through seminar programs, a critical analysis course, and interactions with our faculty, and are well prepared to succeed in professional programs.

CURRICULUM
Coursework in both tracks consists of required and elective components. To maintain academic standing, advance to the second semester of the program, and to be awarded the M.S. degree, a B- or better is required in all coursework.
Master's Graduate Curriculum - Research Track

A. Biological Chemistry Required Course (choose one of the following):
 BIOCHEM 660* Molecules of Life: Protein Structure, Function & Dynamics (2 Cr, F)
 *For students with advanced standing in biochemistry (e.g. biochemistry UG degree)
 BIOCHEM 501 Chemical Biology (3 Cr, F)

B. Biological Chemistry Advanced Electives (2 Credits minimum):
 Fall
 BIOCHEM 650 Eukaryotic Gene Transcription (2 Cr, F)
 BIOCHEM 690 Biochemical Regulatory Mechanisms (2 Cr, F)
 Winter
 BIOCHEM 640 Regulatory RNA and Control of Gene Expression (2 Cr, W)
 BIOCHEM 528 Biology and Chemistry of Enzymes (2 Cr, W)
 BIOCHEM 673 Enzyme Kinetics (3 Cr, eff W 2018)
 BIOCHEM 602 Protein Crystallography (3 Cr, W)

C. Additional required courses:
 BIOCHEM 597 Critical Analysis (2 Cr, W)
 BIOCHEM 712 Biological Chemistry Seminar Series (1 Cr F/ 1 Cr W)
 BIOCHEM 711 Graduate Seminar (1 Cr F/ 1 Cr W)
 BIOCHEM 600 Independent Research (6-8 Cr F/ 6-8 Cr W)
 PIBS 503 Research Responsibility & Ethics (1 Cr, F)

D. Electives** (3 Cr minimum):
 Fall
 BIOINF 527 Introduction to Bioinformatics and Computational Biology (4 Cr, F)
 BIOINF 528 Advanced Applications of Bioinformatics (3 Cr, F)
 BIOPHYS 520 Biophysical Chemistry I (Methods & Techniques) (3 Cr, F)
 BIOSTAT 501 Introduction to Biostatistics (4 Cr, F)
 BIOSTAT 521 Applied Biostatics (4 Cr, F) [calculus prerequisite]
 CDB 530 Cell Biology (3 Cr, F)
 CDB 581 Developmental Genetics (3 Cr, F)
 HUMGEN 541 Molecular Genetics (3 Cr, F)
 PHYSIOL 502 Human Physiology (4 Cr, F)
 Winter
 BIOINF 525 Foundations in Bioinformatics & Systems Biology (3 modules, 1 Cr each, W)
 In 2016: Foundations of Bioinformatics; Statistics in Bioinformatics; Systems Biology
 BIOPHYS 521 Biophysical Chemistry II (Theories) (3 Cr, W)
 CDB 582 Stem cells: Organogenesis to Regenerative Biology (3 Cr, W)
 CHEMBIO 502 Chemical Biology II (3 Cr, W)
 MICRBIOL 504 Cellular Biotechnology (3 Cr, W)
 PATH 581 Tissue, Cellular and Molecular Basis of Disease (3 Cr, W)

 **This is a partial list. Consult your research mentor and/or academic advisor if you would like to take an elective course not listed above.

E. Research:
 Fall and Winter
 BIOCHEM 600 Independent Study (Master’s thesis research) (6-8 Cr F / 6-8 Cr W)
A typical credit load is 14-15 credits per term with a minimum of 29 credits, including 4 cognate credits, and development and completion of a written thesis.

Thesis and Thesis Advisory Committee – Research Track

Thesis research will be done in the Fall and Winter terms and culminate in the writing of a Master’s Thesis. The thesis is expected to be a synthesis of scholarly background and discussion of the research project, in addition to an original experimental or theoretical contribution to the field. By the end of October, students are expected to form their Thesis Advisory Committee, composed of the research advisor and two additional Biological Chemistry faculty members. By the end of November, students are expected to meet with their Advisory Committee. The student should provide an overview of the research project, summarize progress to date, provide an outline of planned experiments and a timeline for completion of the dissertation. It is expected that the research will be accomplished by the end of the academic year in most cases, with the written thesis submitted no later than the end of Spring/Summer term. The student’s Advisory Committee will evaluate the submitted thesis. The Master’s degree will not be awarded until all required revisions are completed and approved by the Chair of the committee.
Master's Graduate Curriculum - Course Track

A. Biological Chemistry Required Course (choose one of the following):
 BIOCHEM 660* Molecules of Life: Protein Structure, Function & Dynamics (2 Cr, F)
*For students with advanced standing in biochemistry (e.g. biochemistry UG degree)
 BIOCHEM 501 Chemical Biology (3 Cr, F)

B. Biological Chemistry Advanced Electives (6 Credits minimum):
 Fall
 BIOCHEM 650 Eukaryotic Gene Transcription (2 Cr, F)
 BIOCHEM 690 Biochemical Regulatory Mechanisms (2 Cr, F)
 Winter
 BIOCHEM 640 Regulatory RNA and Control of Gene Expression (2 Cr, W)
 BIOCHEM 528 Biology and Chemistry of Enzymes (2 Cr, W)
 BIOCHEM 673 Enzyme Kinetics (3 Cr, eff W 2018)
 BIOCHEM 602 Protein Crystallography (3 Cr, W)

C. Additional required courses:
 BIOCHEM 597 Critical Analysis (2 Cr, W)
 BIOCHEM 712 Biological Chemistry Seminar Series (1 Cr F/ 1 Cr W)
 BIOCHEM 711 Graduate Seminar (1 Cr, F/ 1 Cr, W)
 BIOCHEM 601 Tools for Scientific Research (3 Cr, F)
 BIOCHEM 603 Independent Literature Research (3 Cr, W)
 PIBS 503 Research Responsibility & Ethics (1 Cr, F)

D. Electives** (6 Cr minimum):
 Fall
 BIOINF 527 Introduction to Bioinformatics and Computational Biology (4 Cr, F)
 BIOINF 528 Advanced Applications of Bioinformatics (3 Cr, F)
 BIOPHYS 520 Biophysical Chemistry I (Methods & Techniques) (3 Cr, F)
 BIOSTAT 501 Introduction to Biostatistics (4 Cr, F)
 BIOSTAT 521 Applied Biostatistics (4 Cr, F) [calculus prerequisite]
 CDB 530 Cell Biology (3 Cr, F)
 CDB 581 Developmental Genetics (3 Cr, F)
 HUMGEN 541 Molecular Genetics (3 Cr, F)
 PHYSIOL 502 Human Physiology (4 Cr, F)
 Winter
 BIOINF 525 Foundations in Bioinformatics & Systems Biology (3 modules, 1 Cr each, W)
 In 2017: Bioinformatics on the Web; Introduction to Statistics; Bioinformatics & Systems Biology
 BIOPHYS 521 Biophysical Chemistry II (Theories) (3 Cr, W)
 CDB 582 Stem cells: Organogenesis to Regenerative Biology (3 Cr, W)
 CHEMBIO 502 Chemical Biology II (3 Cr, W)
 MICRBIOL 504 Cellular Biotechnology (3 Cr, W)
 PATH 581 Tissue, Cellular and Molecular Basis of Disease (3 Cr, W)

**This is a partial list. Consult your research mentor and academic advisor if you would like to take an elective course not listed above.

Literature Analysis & Review Article - Course Track

Course track MS students will take an advanced literature analysis course (Biolchem 603), in which each student will focus on an important area of current research, review the research literature in that area in depth, and analyze this research thoroughly. Each student will produce a concise and impactful review of the subject, complete with thoughtful suggestions for future directions, suitable for publication. In the course of preparing the review, the student will become expert in the literature of the chosen area.

The preparation of these reviews will be supervised by Dr. Ninfa. Each student will meet formally with Dr. Ninfa for one hour each week, or more as he deems necessary, so that he may guide the work, and additional contact by email will frequently occur for communication of draft versions, background papers, and notes. During the preparation of manuscripts, both Dr. Ninfa and the student may need to consult with additional faculty members to obtain expert opinions.

A typical credit load is 14-15 credits per term with a minimum of 29 credits, including 4 cognate credits.
RACKHAM AND BIOLOGICAL CHEMISTRY ACADEMIC POLICIES
Students in the program are expected to familiarize themselves with Rackham’s Academic Policies including the Academic and Professional Integrity Policy (see http://www.rackham.umich.edu/policies/gsh/) and the “Compact of UM-Biochemistry Graduate Student Commitments” (see page 9).

ACADEMIC PERFORMANCE
The Rackham Graduate School requires students to maintain a grade point average of B (3.0 on a 4.0 scale) and the Department of Biological Chemistry requires all students to receive grades no lower than a B- in required courses. A student whose cumulative GPA falls below a B, who is not making satisfactory progress toward the degree, or who is failing to demonstrate an ability to succeed in his or her plan of studies, may be denied permission to register, required to withdraw, or dismissed from the program. The Biological Chemistry Graduate Program Committee will review the student’s progress and make the determination as to whether the student can continue in the program. Students must be in good academic standing to submit a written thesis for evaluation.

BIOLOGICAL CHEMISTRY SEMINAR SERIES
The Department of Biological Chemistry sponsors a weekly seminar program during the Fall and Winter terms that attracts outside speakers of international reputation. The seminars are held each Tuesday at Noon and all biochemistry students are required to attend. Students are invited to share lunch and conversation with the speaker following the seminar. In addition to the weekly seminar program, the Department sponsors an annual Distinguished Alumni Lecture and four endowed lectureships: the Irwin Goldstein Lectureship in Glycobiology, the G. Robert Greenberg Lectureship in Biological Chemistry, the William E.M. Lands Lectureship in the Biochemical Basis for the Physiology of Essential Nutrients, and the Martha L. Ludwig Lectureship in Structural Biology.

FALL POSTER SESSION
Masters students will have the opportunity to present their research at a poster session held at the conclusion of the Fall term.

STUDENT CHALK TALKS
Students in the Department of Biological Chemistry meet approximately twice each month for lunch, conversation, and an informal research talk. This gathering provides an opportunity for students to keep in touch with their colleagues and to share scientific expertise and advise. The chalk talk schedule can be found on our website.

WORK HOURS AND VACATION GUIDELINES
Students should consult with their mentors regarding specific laboratory policies on research hours, vacations, and planned absences. Request for time off from research must be done in advance and in consultation with the student’s mentor.

DEPARTMENT SOCIAL EVENTS
Annual Departmental Retreat
The student-organized Biological Chemistry retreat, held at the beginning of the Fall semester at Kellogg Biological Station on Gull Lake in Western Michigan, provides students, postdoctoral fellows and faculty an opportunity to present and discuss research in a relaxed and informal setting.

Monthly Happy Hour
Once a month members of the department are invited to gather together at a local establishment in Ann Arbor to enjoy conversation and appetizers.
WEB RESOURCES

LABORATORY SAFETY AND TRAINING
OSEH – Occupational Safety and Environmental Health
http://www.oseh.umich.edu/

WELCOME MATERIALS FOR NEW GRADUATE STUDENTS
http://www.rackham.umich.edu/current-students/life-at-michigan/after-you-arrive-on-campus/welcome-materials

RESOURCES FOR GRADUATE STUDENTS
http://www.rackham.umich.edu/current-students

WRITING SUPPORT
http://www.lsa.umich.edu/sweetland/

RACKHAM ACADEMIC POLICIES
http://www.rackham.umich.edu/policies/gsh/

INTEGRITY IN SCHOLARSHIP
http://www.rackham.umich.edu/current-students/policies/academic-policies/section11

PROFESSIONAL DEVELOPMENT
http://www.rackham.umich.edu/current-students/graduate-student-success/pd
http://alumni.umich.edu/students/career-resources

HOW TO GET THE MENTORING YOU WANT

PARENTAL ACCOMMODATION POLICY
http://www.rackham.umich.edu/current-students/policies/parental-accommodation-policy

HEALTH AND WELLNESS RESOURCES
http://www.rackham.umich.edu/current-students/life-at-michigan/health-wellness

FINANCIAL ASSISTANCE

Emergency Funds
http://www.rackham.umich.edu/prospective-students/funding/student-application/graduate-student-emergency-funds

Fellowships, grants and scholarships
http://www.rackham.umich.edu/prospective-students/funding

Rackham Student Research Grant
http://www.rackham.umich.edu/prospective-students/funding/student-application/graduate-student-research-grant

Rackham Conference Travel Grant
http://www.rackham.umich.edu/prospective-students/funding/student-application/rackham-conference-travel-grant
Mentoring Plan
UM-Biochemistry Graduate Student Commitments

• I acknowledge that I have the primary responsibility for the successful completion of my degree. I will be committed to my graduate education and will demonstrate this by my efforts in the classroom and the research laboratory. I will maintain a high level of professionalism, self-motivation, engagement, scientific curiosity, and ethical standards.

• I will meet regulatory with my thesis advisor and provide him/her with updates on the progress and results of my activities and experiments.

• I will work with my thesis advisor to develop a thesis project. This will include establishing a timeline for each phase of my work. I will strive to meet the established deadlines.

• I will work with my thesis advisor to select a thesis committee and commit to meeting with this committee, according to my graduate program guidelines. I will be responsive to the advice of and constructive criticisms from my committee.

• I will be knowledgeable of the policies and requirements of my graduate program, Rackham Graduate School and the University of Michigan. I will commit to meeting these requirements, including teaching responsibilities.

• I will attend and participate in laboratory meetings, seminars and journal clubs that are part of my educational program

• I will comply with all UMMS and Rackham Graduate School policies, including academic program milestones. I will comply with both the letter and the spirit of all institutional safe laboratory practices and animal use and human-research policies at my institution.

• I will participate in the UM Responsible Conduct of Research Training Program (PIBS 503) and practice those guidelines in conducting my thesis research.

• I will be a good laboratory citizen. I will agree to take part in shared laboratory responsibilities and will use laboratory resources carefully and frugally. I will maintain a safe and a clean laboratory space. I will be respectful of, tolerant of, and work collegially with all laboratory personnel.

• I will maintain a detailed, organized, and accurate laboratory notebook. I am aware that my original notebooks and all tangible research data are property of my institution but that I am able to take a copy of my notebooks with me after I complete my thesis.

• I will discuss policies on work hours, sick leave and vacation with my thesis advisor. I will consult with my advisor and notify fellow lab members in advance of any planned absences.

• I will discuss policies on authorship with my research advisor. I will work with my advisor to submit all relevant research results that are ready for publication in a timely manner prior to my graduation.

• I acknowledge that it is primarily my responsibility to develop my career following the completion of my degree. I will seek guidance from my research advisor, dissertation committee, other mentors and any other resources available for advice on career plans.

Adapted from the Association of American Medical Colleges and UM-PIBS.