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ABSTRACT  |  Diabetic neuropathies are the most common chronic 
complications of diabetes, with an estimated lifetime prevalence exceeding 
50% in people with diabetes. Among various forms of neuropathy, diabetic 
peripheral neuropathy (DPN) is the most common and has the strongest 
evidence base regarding therapeutic approaches. This American Diabetes 
Association clinical compendium summarizes the latest information 
about screening for, diagnosing, and treating painful DPN in routine 
clinical practice. It opens with an overview of the epidemiology of DPN, 
followed by a description of the pathophysiology of the disease and its 
often severely painful symptoms. The authors recommend a stepwise 
approach to effectively diagnose DPN and offer a novel perspective 
on the impact of social determinants of health on the development and 
management of DPN. They summarizes the latest guidance on effective 
therapies, including pharmacological oral and topical agents, nutraceutical 
products, and nonpharmacological therapies, including physical activity and 
dietary interventions, passive modalities, and energy or nerve stimulation 
techniques. Throughout the publication, the authors identify knowledge 
gaps that need to be addressed and advocate a personalized care 
approach to reduce the burden of painful DPN and optimize quality of life 
for individuals affected by it.

Diabetic neuropathy is one of the most prevalent chronic complications in 
adults with type 1 or type 2 diabetes while also affecting individuals with predi-
abetes and young people with diabetes, with an estimated lifetime prevalence 
exceeding 50% (1–4). Although the term “diabetic neuropathy” encompasses a 
broad spectrum of different neuropathic conditions, diabetic peripheral neurop-
athy (DPN) is the most common and most studied among them and has the 
strongest available evidence regarding therapeutic approaches (1).

A detailed epidemiological overview is beyond the scope of this monograph. 
However, understanding some of the key phenotypes and their associated 
differences in the risk of developing DPN is crucially important for busy 
clinicians who treat people with diabetes.

There are some epidemiological differences between DPN in type 1 versus 
type 2 diabetes, despite there being no major structural differences in nerve 
pathology. As demonstrated by the DCCT (Diabetes Control and Compli-
cations Trial) (5), the prevalence of DPN is low in individuals with newly 
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diagnosed and early type 1 diabetes (<10 years’ duration). 
The prevalence then increases with disease duration to up 
to 34% after ~25 years, as documented in the DCCT’s 
observational follow-up EDIC (Epidemiology of Diabetes 
Interventions and Complications) study (2). Similar rates 
were reported earlier by the EURODIAB IDDM (Euro-
pean Insulin-Dependent Diabetes Mellitus Prospective 
Complications Study) (6) in randomly selected individuals 
with type 1 diabetes of similar duration from 16 European 
countries. Furthermore, data from contemporary cohorts 
reflective of current standards of care on both sides of the 
Atlantic have found similar results. For example, the T1D 
Exchange clinic network (7), consisting of >25,000 people 
with type 1 diabetes in >80 U.S.-based pediatric and 
adult endocrinology practices, and the large Scottish T1D 
Register (8), which includes all people with type 1 diabetes 
in Scotland, both of which phenotyped for DPN with 
the Michigan Neuropathy Screening Instrument (MNSI) 
questionnaire (9), found prevalence rates of 11–13% for 
symptoms of DPN, including pain, in their real-world 
cohorts. Interestingly, in addition to traditional risk factors 
such as glycemic control, age, and diabetes duration, 
cardiovascular risk factors (e.g., obesity, hyperlipidemia, 
hypertension, and smoking) and particularly socioeco-
nomic risk factors have emerged as very strong predictors 
of DPN in type 1 diabetes (2,7,8).

In contrast, more than half of all individuals with type 
2 diabetes develop signs and symptoms of DPN during 
their lifetime, as documented in several large observational 
or interventional cohorts (1,10–14). In fact, the prevalence 
of DPN is quite high, with rates of up to ~20–30% even 
in newly diagnosed and early type 2 diabetes, including in 
contemporary cohorts such as the >1,500 individuals with 
screen-detected type 2 diabetes in the Danish arm of the 
ADDITION (Anglo-Danish-Dutch Study of Intensive 
Treatment of Diabetes in Primary Care) trial (15) and 
>5,000 individuals with early type 2 diabetes (~4 years’ dura-
tion ) in the GRADE (Glycemia Reduction Approaches
in Diabetes–A Comparative Effectiveness) trial (3). Both
of these trials phenotyped participants for DPN using the
MNSI. In type 2 diabetes, in addition to traditional DPN
risk factors (e.g., glycemic control, age, and diabetes dura-
tion), racial/ethnic minority status also carries a higher DPN
risk, including among American Indians. 

Importantly, high prevalence rates of DPN similar to 
those observed in adults with early type 2 diabetes also have 
been observed in contemporary youth cohorts, particularly 
those with type 2 diabetes, as reported by the SEARCH 
(SEARCH for Diabetes in Youth) study (4), which included 
~2,000 young people with type 1 or type 2 diabetes. 

Among DPN symptoms, neuropathic pain, often 

severe, affects up to 30% of all individuals with DPN and 
is challenging to manage, resulting in increased risks of 
associated problems such as sleep disturbances, further 
reduced quality of life, polypharmacy, socioeconomic 
consequences (e.g., higher health care costs and reduced 
ability to work or perform daily activities), morbidity, and 
mortality (1,16–18). Given the epidemic explosion of 
diabetes in the United States (19) and worldwide (20), the 
high prevalence of this complication, and its clinical and 
socioeconomic consequences, effective therapeutic and 
preventive measures for DPN and DPN-related pain are 
of paramount importance. 

This monograph offers clinicians up-to-date, 
evidence-based information regarding the mechanisms 
involved in inducing nerve fiber damage and neuropathic 
pain and the spectrum of risk factors and DPN pheno-
types across the life span, as well as a novel discussion 
of the impact of social determinants of health (SDOH) 
on DPN development and management. It also provides 
busy clinicians with a customized, stepwise approach to 
effectively screen for and diagnose DPN in routine care. 
Additionally, it summarizes the latest guidance on effec-
tive pharmacological and nonpharmacological therapeutic 
strategies for painful DPN, including the respective roles 
of nutraceutical products, dietary modification, exercise, 
and new technologies. Finally, this publication outlines 
knowledge gaps that need to be targeted to identify modi-
fiable risk factors, develop more sensitive assessments, 
and produce effective therapies to either prevent the 
progression of or reverse neuropathic disease. It advocates 
a personalized care approach to ultimately reduce sequelae 
and the related health care burden and optimize quality of 
life for people with diabetes and DPN.

PATHOPHYSIOLOGY OF DPN
Diabetes preferentially affects the peripheral nervous 
system (PNS), a likely reflection of the unique anatomy of 
the PNS (21). PNS axons are frequently ≥3 feet long and 
>20,000 times the length of their supporting cell bodies. 
PNS sensory neurons and their receptors lie outside the
blood-brain barrier and are more vulnerable to injury
secondary to diabetes than motor neurons, which lie
within the barrier. Among the sensory neurons, there are
small unmyelinated neurons known as C-fibers but also
frequently called “small fibers.” These fibers carry noci-
ceptive information, particularly related to heat and pain, 
and constitute the majority of sensory axons in the PNS. 
The lack of myelin results in slow, continuous conduction
of small fibers secondary to a uniform distribution of ion
channels along the axon. In conjunction with small fibers
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are small, thinly myelinated Aδ fibers, which relay infor-
mation on touch, pressure, and cold, and fully myelinated 
fibers of different diameters, designated Aβ and Aα, 
which are responsible for vibratory and position sense. 
Collectively, these fiber types are known as large fibers. 
Myelin, provided by Schwann cells, ensheathes the axons 
of these fibers in a highly controlled manner, forming the 
nodes of Ranvier and paranodes, the sites of ion channels 
required for rapid nerve conduction and of tight junctions 
that protect large fibers from toxic substances (21). 

Anatomical studies from sural nerve biopsies of patients 
with diabetic neuropathy align with their presenting 
symptoms (22). Early degeneration and loss of C fibers are 
evident in patients experiencing new-onset pain, burning, 
or prickling, which are known as dysesthesias, in their feet, 
followed by initial demyelination/remyelination of large 
fibers. As the disease progresses, large fiber axonal loss even-
tually occurs, and patients experience numbness and loss 
of proprioception in the feet that travels upward over time. 
This distal-to-proximal axonal loss and its accompanying 
symptoms are the hallmark of diabetic neuropathy (23).

Between 1970 to 2010, studies aiming to understand 
the pathophysiology of diabetic neuropathy focused on 
glucose dysregulation (24). In the polyol pathway, aldose 
reductase converts excess glucose to sorbitol, resulting in 
a series of downstream reactions that decrease sodium–
potassium adenosine triphosphatase (ATP) activity, 
deplete nicotinamide adenine dinucleotide phosphate, and 
produce reactive oxygen species (ROS), impairing nerve 
function. Aldose reductase inhibitors were tested in 32 
diabetic neuropathy clinical trials but unfortunately failed 
to improve nerve function.

Excess glucose also enters the hexosamine pathway, 
producing inflammatory by-products and activating 
protein kinase C (PKC) secondary to the accumulation of 
diacylglycerol. PKC activation, in turn, enhances insulin 
resistance, disrupts growth factor biology, and leads to 
vasoconstriction of nerve blood vessels. Similar to the 
aldose reductase trials, clinical trials of PKC inhibitors 
failed in human diabetic neuropathy.

Advanced glycation end products (AGEs), which bind 
receptors for AGEs (RAGEs), are another by-product 
of excess glucose. Activation of AGEs and RAGEs leads 
to downstream inflammation, ROS accumulation, and 
decreased blood flow to peripheral nerves. Although preclin-
ical trials targeting activation of RAGEs were promising, 
available compounds were too toxic for human trials and 
remain in therapeutic development (25).

Many of the failed clinical trials occurred at the same 
time multiple, newer clinical trials were suggesting that 
glucose control alone was insufficient to prevent neuropathy 

in people with type 2 diabetes (26). There is now consensus 
that glycemic control alone cannot prevent the progression 
of DPN in patients with type 2 diabetes. The metabolic 
syndrome has emerged as a crucial risk factor for neuropathy 
based on data from multiple clinical studies in the United 
States (4,27–29), Denmark (15), Germany (30), the Neth-
erlands (31), India (32), and China (33,34). The metabolic 
syndrome encompasses hyperglycemia, obesity, and dyslip-
idemia, and the risk of developing neuropathy increases with 
the number of these components present in an individual 
(27,28). These clinical trials led to new thinking about the 
pathophysiology of diabetic neuropathy focused on the idea 
that disruption in whole-nerve bioenergetics (i.e., how the 
nerve accesses energy along its entire length) is the crucial 
factor leading to disease (35).

Mitochondria are the energy-producing organelles in 
cells and use both glucose and lipids to produce ATP. In 
the PNS, mitochondria are primarily made in the cell 
body and are trafficked down long axons to provide energy 
for nerve function (36). In small fibers, mitochondria 
are found along the length of the axons. In large fibers, 
they are also present along the length of the axons but 
are particularly present at the nodes of Ranvier and the 
paranodes, where they assist in salutatory nerve conduc-
tion. In both fiber types, mitochondria produce ATP from 
glucose and lipids (21). ATP then supplies the needed 
energy for nerve impulses to travel the length of the axons 
and reach distal nerve terminals.

Under normal conditions, glucose and lipids undergo 
a series of distinct, highly regulated chemical reactions, 
ending with the transfer of the electron donors nicotin-
amide adenine dinucleotide and flavin adenine dinucleo-
tide to the mitochondrial electron transport chain. These 
electron donors travel across the inner mitochondrial 
membrane and undergo oxidative phosphorylation, with 
generation of ATP for energy and small amounts of ROS 
as a by-product of the process. However, in the diabetic 
environment, excess glucose and lipids not only disrupt 
the normal pathways used for their own breakdown, but 
also produce excess electron donors that the mitochondria 
are unable to process. The result is bioenergetic failure 
(37) and the loss of normal mitochondrial membrane
function (mitochondrial depolarization), decreased ATP
production, impaired mitochondrial trafficking, and accu-
mulation of ROS, leading to inflammation, endoplasmic
reticulum stress, apoptosis of neurons, and axonal failure
(38) (Figure 1).

With fewer functional mitochondria in the cell body and
along the axons, energy-starved small and large nerve fibers 
lose their ability to function and undergo degeneration, 
with the axons farthest from the cell body (i.e., those in 
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the feet) being most vulnerable. This vulnerability occurs 
because fewer functional mitochondria successfully travel 
the long distance from the cell body along the entire length 
of the axons to their most distal terminals (Figure 2). Small 
fibers that convey pain and dysesthesias are particularly 
vulnerable to this energy loss. Schwann cells can provide 
energy-starved large, myelinated axons with some usable 
fuel, mitochondria, and protection from toxic substances 
(39), but small fibers lack this energy source and protection. 
This explains why small fibers are the earliest fibers to 
undergo injury secondary to diabetes and why pain and 
dysesthesias are frequently the first symptoms of DPN.

KEY POINTS
» Early injury and loss of small fibers, susceptible to

energy flux, occur in people with diabetes, resulting
in symptomatic pain and burning in their feet.

» As the disease progresses, larger nerve fibers also
become injured by the lack of energy sources,
and individuals experience numbness and loss of
position sense in their feet.

» These signs and symptoms progress from the
feet upward into the leg and reflect a distal-to-
proximal fiber loss that is the hallmark of diabetic
neuropathy.

SCREENING AND DIAGNOSING DPN 
As discussed in detail above, the hallmark clinical features 
of DPN are the result of progressive damage to and even-
tual loss of all populations of large and small myelinated 
and unmyelinated nerve fibers and related downstream 
effects. In diabetes, this process occurs in a specific 
symmetrical, distal-to-proximal pattern, starting at the tip 
of the toes and eventually progressing proximally. Thus, 
the entire constellation of symptoms and clinical signs 
associated with DPN follows the same pattern, creating 
the typical “stocking-and-glove” clinical presentation, 
which is an important diagnostic clue (Figure 3) (1). 

A Customized, Stepwise Approach for 
Primary Care 
Considering the high prevalence of DPN and the 
magnitude of its consequences, implementing effective 
screening strategies as part of routine clinical practice 
is key to ensuring its diagnosis at the earliest possible 
stage and the timely treatment of DPN pain, thereby 
preventing progression and the development of advanced 
complications, including limb amputations and death (1). 
All individuals should be assessed for DPN starting at 
diagnosis of type 2 diabetes and 5 years after the diagnosis 
of type 1 diabetes and at least annually thereafter.

Although the anatomy of the PNS, and hence the 
evaluation of the various nerve fiber populations, may be 
quite complex, there are several important tips that can 

FIGURE 1  Chain of events underlying the pathophysiology 
of diabetic neuropathy. Components of the metabolic 
syndrome contribute to diabetic neuropathy by causing 
energy overload from excess glucose and lipids, leading 
to mitochondrial bioenergetic failure, with mitochondrial 
depolarization, loss of adenosine triphosphatase as an 
energy source, and accumulation of reactive oxygen 
species. This process leads to impaired mitochondrial 
trafficking from the cell body down the length of the 
axons, endoplasmic reticulum stress, apoptosis of 
neurons, and axonal failure.

FIGURE 2  In metabolically healthy individuals (left), 
mitochondria produced in the neuron cell body traffic 
down the axons, providing energy for normal axonal 
function. In prediabetes and type 2 diabetes (right), 
the chain of injurious events leads to mitochondrial 
dysfunction, with adenosine triphosphatase loss and 
distal-to-proximal degeneration of energy-starved axons. 
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DIAGNOSIS AND TREATMENT OF PAINFUL DIABETIC PERIPHERAL NEUROPATHY 5

guide clinicians in implementing efficient and successful 
DPN screening and diagnosis procedures, as described in 
the American Diabetes Association’s position statement 
on diabetic neuropathy (1). Importantly, when screening 
for DPN, one should keep in mind that each of the 
specific types of nerve fibers has a specific function and 
role; thus, targeted evaluations can be performed easily in 
the clinic. A stepwise approach to screening and diagnosis 
is shown in Figure 4 and described below. 

1. Take a Targeted History
A targeted medical history may be obtained quickly during 
a routine clinic visit or may be ascertained from the elec-
tronic health record (EHR) by reviewing for the presence 
of several risk factors known to be strongly associated with 
DPN, including poor glycemic control, long duration of 
diabetes, older age (>70 years), tall stature, hypertension, 
obesity, and metabolic syndrome (1,28,40,41). In addition, 
a history of recent falls, particularly when no other 
risk factors for falls are apparent, may reflect gait and 
balance disorders that can be a direct consequence of the 
large-fiber dysfunction associated with DPN (42,43). 
Individuals with this type of nerve dysfunction are also at 
increased for other complications, including fractures and 
hospitalizations, and thus require more specific care.

2. Assess for DPN Symptoms
The symptoms associated with DPN are dependent 
on the type of fibers most affected initially (Table 1), 
although some individuals with DPN may be completely 
asymptomatic and thus may first present with advanced 
complications such as foot ulcers (1,44). 

Small-Fiber DPN
Neuropathic pain is the key feature associated with the 
damage to small nerve fibers that usually occurs in the 
earliest stages of DPN (1,45). Neuropathic pain is largely 
a clinical diagnosis. Characteristically, it is described 
as burning, lancinating, tingling, and/or a shooting, 
electric shock–like sensation, occurring in varying 
combinations and typically worse at night. The pain may 

FIGURE 3  Early symptoms of diabetic peripheral 
neuropathy usually occur in the toes and fingertips, 
expanding proximally over time in a stocking-and-glove 
pattern. Sensations to stimuli such as vibration, pinprick, 
temperature, and monofilament testing all tend to 
diminish in this same pattern over time. 

TABLE 1  Symptoms and Clinical Signs of Diabetic Peripheral Neuropathy

Symptoms Function Signs on examination (clinically diagnostic)*

Large, Myelinated 
Nerve Fibers

• Numbness

• Tingling

• Poor balance

• Pressure

• Balance

• Ankle reflexes:
• Reduced
• Absent

• Vibration perception:*
• Reduced
• Absent

• 10-g monofilament sensation:*
• Reduced
• Absent

• Proprioception:
• Impaired

Small Nerve Fibers

• Pain:
• Burning
• Electric shocks
• Stabbing

• Hyperalgesia

• Allodynia

• Nociception

• Protective sensation

• Thermal (cold/hot) discrimination:*
• Reduced
• Absent

• Pinprick sensation:*
• Reduced
• Absent

*Document impairment/loss in symmetrical, distal-to-proximal pattern.

TIME
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DIAGNOSIS AND TREATMENT OF PAINFUL DIABETIC PERIPHERAL NEUROPATHY6

be accompanied by dysesthesias such as an exaggerated 
response to painful stimuli (hyperalgesia) and/or pain 
evoked by contact with ordinarily unpainful stimuli such 
as socks, shoes, and bedclothes (allodynia) (1,46,47). 
Available evidence shows that up to 25–30% of people 
with diabetes will experience DPN pain, and because it 
heralds early disease, neuropathic pain may be present 
even in the absence of any neurological deficits (1,45,48). 
However, clinicians should also be aware that some 
individuals may not voluntarily report some symptoms, 
including pain, to their health care providers because 
of a variety of sociocultural factors (e.g., fear or being 
misunderstood or not taken seriously and misperception 
that treatments are unavailable or would not help) (45,49). 
Thus, DPN pain may be underreported.

Several other important tips may be helpful to clinicians 
when evaluating pain caused by DPN. Neuropathic pain 

may be the first symptom that prompts an individual to 
seek medical care, and it could be present in individuals 
with newly diagnosed diabetes or even prediabetes 
(1,46). Thus, the absence of a prior diagnosis of diabetes 
should not rule out the need for formal DPN screening, 
particularly in the presence of several of the risk factors 
mentioned above and with the typical clinical characteris-
tics (Table 1) (1,46).

Women, members of some racial/ethnic minority 
groups, and individuals with type 2 diabetes appear to be 
at greater risk for developing DPN pain (45). Additionally, 
the direct and indirect economic burden associated with 
neuropathic pain is substantial. This pain may directly 
or indirectly interfere with daily activities or lead to loss 
of balance, disability, psychosocial impairment, sleep 
disturbances, and reduced health-related quality of life 
(1,46). Thus, there should be a strong suspicion of DPN in 

FIGURE 4  A stepwise approach to screening and diagnosing diabetic peripheral neuropathy.

Are risk factors present? 
• Long diabetes duration

• Older age

• Metabolic syndrome

• Obesity

• Hyperlipidemia

• Tall stature

• Social determinants
of health

• Frequent falls

Assess for factors listed in Figure 3. 
Are findings normal?

Is neuropathic pain present? 
• Burning

• Lancinating

• Shooting (electric shock-like)

• Worse at night

• Hyperalgesia

Are signs of small-fiber 
DPN present? 
• Reduced/absent

pinprick sensation

• Reduced/absent cold
temperature sensation

Take a Targeted History

Develop a Differential Diagnosis

Assess for DPN Symptoms

Perform Confirmatory Testing as Needed

Test for Clinical Signs 
of DPN

Are symptoms of large-fiber 
DPN present? 
• Numbness

• Poor balance

• Weakness

Are signs of large-fiber 
DPN present?
• Reduced/absent

vibration sensation

• Reduced/absent light-
touch sensation

• Reduced ankle reflexes

Are symptoms and signs distributed in a symmetrical, 
length-dependent “stocking and glove” pattern?

Treat underlying condition;
refer for specialty care as needed

DPN is presentDPN is likely Refer to neurologist

1

4

2

5

3

YES

YES

YES

YES

YES

YES NO NO

102022 Feldman Laboratory Publications



DIAGNOSIS AND TREATMENT OF PAINFUL DIABETIC PERIPHERAL NEUROPATHY 7

individuals presenting with any of these complications.
Some individuals may present with sub-acute onset 

(over a period of days) and a clinical presentation domi-
nated by foot and lower-limb pain, suggesting a prom-
inent involvement of small fibers. The pain progresses 
over days to weeks to constant burning dysesthesias and 
allodynia involving the legs in a stocking distribution. 
Occasionally, the pain spreads to proximal sites, including 
the trunk, or it spreads more diffusely and is associated 
with several autonomic features (1). Despite the prom-
inent pain, sensory loss may be mild or absent, there is 
no weakness, and reflexes are generally preserved. The 
sub-acute forms of DPN may be seen with acute weight 
loss or may be induced by diabetes treatment, developing 
within 2–4 weeks (occasionally up to 6 weeks) after the 
achievement of rapid and sustained glycemic control with 
insulin, oral antidiabetic agents, or dietary measures. 

Large-Fiber DPN
Symptoms associated with the damage and loss of the 
large nerve fibers include numbness, tingling without pain, 
loss of protective sensation, and, in more advanced stages, 
poor balance (1,46), weakness, and unsteadiness that may 
lead to falls (1,23). Some individuals may also present 
with completely insensate, numb feet and may state in the 
clinic that their feet feel as if they are wrapped in wool or 
as if they are walking on thick socks (1,46). 

Asymptomatic DPN
Clinicians should be also aware that up to half of all 
people with DPN may be either asymptomatic or, as 
previously mentioned, reluctant to report some symp-
toms (1,45). In such cases, neurological deficits may be 
discovered by chance during a routine clinical examination 
(1,46). Other individuals who are initially aware of 
neuropathic symptoms may become asymptomatic later in 
the course of the disease, as they experience severe sensory 
loss in all types of nerve fibers and develop insensate 
feet (1,46). A serious consequence of insensate feet is an 
increased risk for painless injury, leading to an increased 
risk for foot ulceration and amputation (1,50). For 
example, objects lodged in the shoe, including a wrinkled 
stocking; unrecognized, increased pressure during walking 
and weight bearing; or contact with very sharp or hot 
objects without the appropriate protection may produce 
blisters that erode through the skin and lead to more 
severe complications. It is the loss of the so-called “gift of 
pain” that causes people with plantar neuropathic ulcers 
to unknowingly walk on their lesions, inducing chronicity 
that is frequently complicated by infection (1).

 In summary, periodic, flexible assessment for DPN 
risk factors and symptoms and their trajectories over 

time should be part of standard care for all people 
with diabetes. 

3. Test for Clinical Signs of DPN
Similar to the DPN symptoms discussed above, the clinical 
signs of DPN are also characteristic of the type of nerve 
fiber deficits present and their progression (Table 1) (1,46). 

Several well-established, effective clinical tests exist 
to assess small- and large-fiber function as part of 
routine clinical care and require only simple tools that 
can be carried easily in a lab coat pocket. Evaluation of 
DPN-associated small-fiber damage can be accomplished 
by testing a person’s pinprick sensation using a sharp 
object such as a safety pin (discarded after one use) 
and temperature threshold sensation, which is mostly 
performed with a cold metal object such as a tuning fork 
(1,23). Evaluation of DPN-associated large-fiber damage 
involves assessing vibration perception using a 128-Hz 
tuning fork, proprioception, light-touch pressure with a 
10-g monofilament on the dorsal aspect of the great toe, 
and bilateral ankle reflexes.

It is important to note that there are many mono-
filaments available, with varying diameters. Clinicians 
should use a standardized 10-g instrument that has been 
pretested to buckle at a 10-g force when applied to the 
site of interest and should apply the monofilament at 
the dorsal aspect of the great toe to ensure standardized 
assessment (1,46). Although the 10-g monofilament is 
arguably the most often used test to screen for DPN 
in routine care, its use alone is not recommended for 
effective screening or diagnosis, as the loss of light-touch 
sensation occurs in advanced stages of neuropathy, and 
relying solely on this test could miss opportunities to 
implement early preventive care measures in many 
people with DPN (1,46). Sensation testing with pin and 
vibration is more sensitive. Loss of ankle reflexes and 
weakness of small foot muscles and dorsiflexors occur 
earlier in the course of DPN (23). 

All of these sensory modalities should be tested initially 
by application of the sensory stimulus to a body site where 
normal responses are expected, such as the forehead. Then 
the stimulus is applied to the great toe and then moved 
proximally up the limb to the level where the sensation 
is felt to be normal. In addition, for many of these 
evaluations (e.g., vibration perception using a 128-Hz 
tuning fork or the 10-g monofilament) using a blinded, 
forced-choice testing procedure will reduce the potential 
for bias and increase the sensitivity of the evaluations. 
This procedure involves applying a stimulus (either true 
vibration or just a touch with the tuning fork) at one of 
two times while a patient’s eyes are closed and then asking 
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whether the patient felt the stimulus at time A or time 
B. Those with sensation loss may choose the incorrect
time or state that they did not feel the stimulus either
time. All of these assessments should follow the typical
DPN pattern, starting distally (the dorsal aspect of the
hallux) and moving proximally until a sensory threshold
is identified, with the same evaluations being performed
on both sides to confirm a symmetrical, distal-to-proximal
distribution (Figure 3) (1,46). 

A combination of at least two of these evaluations, 
with at least one targeting small fibers and one targeting 
large fibers, is recommended to screen for and diagnose 
DPN in routine clinical care (1,46). Several clinical scales 
combining symptoms and signs have been validated 
over time for the screening and diagnosis of DPN and 
can be used easily in routine care. These include the 
Toronto Clinical Neuropathy Score (51), the Utah Early 
Neuropathy Scale (52), the Neuropathy Disability Scale 
(53), or the previously mentioned MNSI (9). Similarly, 
there are several validated scales for neuropathic pain and 
its severity, including the McGill Pain Questionnaire and 
its more recent, shorter version known as the Douleur 
Neuropathique en 4 Questions (DN4) (54).

As DPN progresses, its symptoms and clinical deficits 
become more severe as a reflection of damage and loss of 
all nerve fibers, with sensory deficits also involving more 

proximal segments and including distal weakness with foot 
drop and variable degrees of autonomic dysfunction (1,55). 

Although the norm in clinical care historically was 
to refer people with suspected DPN to a neurologist 
and to order electrophysiological testing to confirm the 
diagnosis, more recent evidence has shown that these 
measures are not necessary except in specific cases in 
which clinical features are atypical, onset is abrupt, and 
a different etiology is suspected, as described below 
(1,22,45). Indeed, specialized electrophysiological testing 
is usually not cost-effective, and its high associated costs 
and typically long waiting times would place unnecessary 
additional burden on both people with DPN and the 
health care system. 

4. Develop a Differential Diagnosis
The presence of DPN is determined largely through 
clinical diagnosis based on the development of the 
symptoms and signs mentioned above (Table 1) in an 
individual with diabetes or prediabetes in whom other 
causes of neuropathy have been excluded (1,45). Therefore, 
a comprehensive differential (Figure 5) is needed initially 
in all individuals before a firm diagnosis of DPN is 
established, particularly given that there are many other 
forms of peripheral neuropathy that may either mimic or 
coexist with DPN and may be treatable. 

FIGURE 5  Considerations for developing a differential diagnosis for diabetic peripheral neuropathy.

Metabolic Disease
• Thyroid
• Renal

Inflammatory Disease
• Chronic inflammatory

demyelinating
polyradiculoneuropathy

Drugs
• Alcohol
• Amiodarone
• Chemotherapy

Systemic Disease
• Vasculitis
• Paraproteinemia
• Amyloidosis

Nutrition
• Vitamin B12 deficiency
• Pyridoxine
• Thiamine
• Tocopherol

Heavy Metals
• Arsenic
• Mercury

Infectious Disease
• HIV
• Hepatitis B
• Lyme disease

Industrial Agents
• Acrylamide
• Organophosphorous

agents

Heredity/Genetics

122022 Feldman Laboratory Publications



DIAGNOSIS AND TREATMENT OF PAINFUL DIABETIC PERIPHERAL NEUROPATHY 9

A careful medical history may unveil some of these 
conditions, including alcohol abuse or other toxic 
exposures, neoplasia with a history of chemotherapy, 
or amyloidosis (1,22,45). In addition, clinicians should 
order a comprehensive metabolic panel and screen 
for hypothyroidism by testing for thyroid-stimulating 
hormone. Consider as well the possible role of 
end-stage renal disease with uremia, particularly in 
individuals with type 1 diabetes, or perform serum 
immunoelectrophoresis with immunofixation to eval-
uate for a monoclonal gammopathy (1,22,45). Vitamin 
B12 deficiency is one of the most prevalent DPN 
mimics found in people with type 2 diabetes and can 
be completely reversed with treatment (1,22,45). Up to 
30% of people with type 2 diabetes who are treated with 
metformin may develop B12 deficiency. Thus, laboratory 
screening for vitamin B12 levels (methylmalonic acid 
with or without homocysteine) is recommended at least 
annually in these individuals. Chronic inflammatory 
demyelinating polyradiculoneuropathy may also mimic 
or coexist with DPN, and a high level of suspicion 
should be raised by a sudden onset and rapid progres-
sion of symptoms and signs. Finally, more genetic forms 
of polyneuropathy are being discovered, and novel 
treatments have become available for disorders such as 
familial transthyretin amyloidosis. Thus, genetic testing 
could be also considered, although the role of routine 
genetic testing remains unclear.

5. Perform Confirmatory Tests as Needed
Confirmatory tests in ambiguous cases may include 
determining changes in nerve conduction studies to 
assess predominantly large-fiber dysfunction. These tests 
are performed with surface stimulating and recording 
techniques evaluating motor and sensory nerve fibers 
in the upper and lower limbs and usually demonstrate a 
decrease in sural nerve amplitude, followed by reductions 
in sensory and motor nerve conduction velocity (22). The 
gold standard for small-fiber neuropathy is assessment 
of intra-epidermal nerve fiber density measurements 
by skin punch biopsy. This test can be performed in the 
clinic if needed, but it is an invasive approach that is 
rarely necessary for routine diagnosis of DPN and is used 
primarily for research purposes (22). Other modalities 
may include quantitative sensory thermal thresholds for 
reduced cooling detection thresholds or elevated heat 
thresholds, laser Doppler flare imaging studies, or corneal 
confocal microscopy, although the latter, again, is largely 
reserved for research studies. 

In summary, a thorough history and examination and 
routine screening laboratory testing are recommended 

to ensure that other etiologies, many of which may be 
treatable, are not contributing to the clinical presentation 
of DPN (1,22,45). Additionally, in atypical cases involving 
asymmetrical distribution of symptoms and clinical 
signs, a motor predominance, or an acute onset and rapid 
progression of signs such as severe weakness, a timely 
referral to a neurologist should be made, and cerebrospinal 
fluid examination by lumbar puncture for protein levels, 
genetic testing, and MRI imaging of nerve roots and 
peripheral nerves may be required. 

KEY POINTS
» DPN assessment should be performed annually

starting at diagnosis for type 2 diabetes and 5
years after the diagnosis for type 1 diabetes. People
with prediabetes and young people with symptoms
or signs of DPN should also be screened.

» Assessment should include a detailed history
and at least two sensation and reflex tests.
Electrophysiological testing is rarely needed for
people with typical signs and symptoms.

» A complex differential is recommended, and
ambiguous or atypical cases should be referred to
a neurologist and/or have additional testing.

SOCIAL DETERMINANTS OF 
HEALTH AND THEIR IMPACT 
ON DPN 
Diabetes continues to grow at an alarming pace, 
leading to excess morbidity and mortality in the 
United States and worldwide (19,56). Currently, 34.2 
million Americans (10.5% of the U.S. population) have 
diabetes, with a disproportionate burden on racial and 
ethnic minorities and low-income populations (19,57). 
Despite an expanding arsenal of therapeutic options, 
only 26% of Americans are meeting combined targets 
for A1C, lipids, and blood pressure (58). Not unex-
pectedly then, DPN remains prevalent, affecting up 
to 50% of patients with diabetes (1). Recognizing that 
social factors are the root cause for health disparities, 
particularly for type 2 diabetes, the American Diabetes 
Association (ADA) in 2021 published a scientific 
review on SDOH and diabetes (59). This review 
highlighted the key social domains affecting diabetes 
incidence, prevalence, and outcomes (59). We seek here 
to complement this report with a focus on the impact 
of SDOH specifically on DPN. 
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Theoretical Frameworks: SDOH, Health 
Disparities, and Diabetes Risk
Health determinants historically have been classified into 
biological, clinical, and nonclinical factors (60). As health 
disparities worsen in the United States (61), research 
is unveiling the importance of nonclinical factors such 
as social, behavioral, and economic influences on both 
population and individual health. These factors, collec-
tively known as SDOH, are defined by the World Health 
Organization (WHO) as “the conditions in which people 
are born, grow, live, work, and age; these circumstances are 
shaped by the distribution of money, power, and resources 
at global, national, and local levels” (62). Recognizing 
that up to 50–60% of health outcomes are attributed to 
SDOH (63), multiple frameworks have been developed to 
both categorize and describe the influence of SDOH on 
individual and population health outcomes (59). The most 
comprehensive framework was developed by the WHO 
in 2010 and highlights the causal effects of upstream 
structural determinants (e.g., socioeconomic context, 
political context, and socioeconomic position) on inter-
mediary determinants (e.g., biological, behavioral, and 
psychosocial factors, as well as the health system), leading 
to health inequities (64). More recently, the Centers for 
Disease Control and Prevention’s Healthy People 2020 
(and now Healthy People 2030) framework grouped 
SDOH into five general domains, including the neigh-
borhood and built environment, social and community 
context, economic stability, education access and quality, 
and health care access and quality (65), as shown in Figure 
6. The common theme among all frameworks is that the
inequitable distribution of SDOH is the fundamental
basis for all health disparities (59). 

Diabetes, particularly type 2 diabetes, is especially 
influenced by SDOH. For example, people with a lower 
socioeconomic position, defined as a combination of 
education level, occupation, and income, have a 31–41% 
increased risk of developing diabetes compared to those 
with a higher socioeconomic position (66). Additionally, 
factors such as socioeconomic status (SES), food security, 
stable housing, health care access, and social support 
influence diabetes outcomes such as microvascular 
complications, cardiovascular disease, and mortality (59). 

Impact of Key SDOH on DPN
Adverse distribution of SDOH has both direct and 
indirect impacts on proximal diabetes outcomes such 
as glycemic control (67), which in turn contribute 
to the pathogenesis of diabetes complications, as 
demonstrated in Figure 7. These indirect pathways, or 
mediators, include adverse care processes (e.g., preventive 
screenings for complications), poor access to health care 
(e.g., patient-centered care), or inadequate self-care 
behaviors (e.g., medication-taking) (67). Examples of 
negative diabetes outcomes resulting from the specific 
domains of SDOH are discussed below, with a particular 
focus on DPN.

Economic Stability
SES is a complex construct that commonly includes 
measures of income and occupation, both of which are 
closely intertwined with education (59). As described 
above, people with lower SES, as determined by poverty 
and low education status, are more likely to have type 2 
diabetes. Furthermore, those with lower SES who have 
diabetes are more likely to have inadequate glycemic 
control (68). Unsurprisingly, then, individuals with type 1 
diabetes living in more socially deprived areas in Scotland 
were found to be 2.17 times more likely to have DPN (8). 

Education
Researchers conducting an analysis of the T1D Exchange 
clinic registry cohort in the United States found that 
lower individual educational attainment predicted DPN 
in type 1 diabetes, even when adjusted for glycemic 
exposure and vascular risk factors (7). Additionally, low 
educational status has been shown to be associated with 
the development of any microvascular complication in 
type 2 diabetes (69). 

Health Care Access and Quality
In the United States, access to quality health care is 
highly dependent on having health insurance. This 
was particularly true in the era before passage of the 
Affordable Care Act; prior studies using data from 2011 

FIGURE 6  Healthy People 2030 framework for social 
determinants of health (65).

Education 
Access and 

Quality

Social and 
Community 

Context

Health Care 
Access and 

Quality

Neighborhood 
and Built 

Environment

Economic 
Stability

142022 Feldman Laboratory Publications



DIAGNOSIS AND TREATMENT OF PAINFUL DIABETIC PERIPHERAL NEUROPATHY 11

and 2012 demonstrated a lack of routine diabetes care 
measures such as assessment of glycemic control and 
preventive diabetes screenings, even when controlled for 
individual income (70). It was not surprising, then, that 
T1D Exchange researchers were able to demonstrate in 
their clinic registry cohort that DPN in type 1 diabetes 
was associated with having public or no insurance versus 
private insurance (7). 

Physical and Built Environment
Stable housing, food security, and safe environments 
in which to engage in physical activity are crucial for 
individuals with diabetes to facilitate consistent medica-
tion use (e.g., the proper storage of insulin or noninsulin 
injectables) and self-care behaviors to achieve proximal 
glycemic outcomes (59). However, there is a lack of 
research evaluating the effects of the physical and built 
environment specifically on DPN.

Social Environment
Factors such as social context and social support have 
been shown to be important in improving glycemic 
control, self-care behaviors, and quality of life (59).There 
are also known cultural preferences in terms of support 
systems and interventions to improve support that include 
multifaceted approaches such as peer support, community 
health worker support, and support from the health care 
team, depending on the target population (59). However, 
there is a paucity of studies evaluating the impact of the 
social environment on DPN specifically.

Special Considerations

Racism as a Potential Root Cause for Health 
Disparities in Diabetes
Members of racial and ethnic minority groups historically 
have borne a disproportionate burden of diabetes and its 
associated complications (19,60). Biological factors such 
as alterations in glucose metabolism, insulin resistance, 
and obesity have been found to account for some of this 
increased risk (71). However, studies assessing race and 
ethnicity have found inconsistent findings, with many 
of the increased risks attributable to SDOH (72). With 
regard to DPN specifically, there have been no consistent 
findings of racial or ethnic differences in DPN prevalence 
rates (71,73). 

With an increased understanding of the importance of 
SDOH in diabetes prevalence, incidence, and outcomes, 
the upstream social and political contexts that contribute 
to and perpetuate health disparities have been receiving 
increased attention. Specifically, the concept of racism, 
rather than race, as the root cause of the structural and 
social factors leading to socioeconomic deprivation, resi-
dential segregation, and discrimination has been proposed 
and warrants further evaluation (74). 

Importance of Psychological Determinants of 
Health in Painful DPN
There is increasing evidence that psychological determi-
nants such as emotional distress (75) and depression (76) 
significantly affect sleep and quality of life in painful DPN 
(77). It is recognized that there is a complex interplay 

FIGURE 7  Framework for social determinants of health and their impact on diabetic peripheral neuropathy (adapted from 
refs. 65 and 67).
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between SDOH, psychological determinants, and 
glycemic control (67). Further investigation to is needed 
to learn how these complex relationships extend to DPN, 
and particularly painful DPN.

The Way Forward
The writing group for the ADA’s SDOH scientific review 
emphasized the need to evaluate the impacts of SDOH 
pathways on different populations with diabetes (59). Data 
specific to the effects of SDOH on DPN are limited but 
crucial to provide a comprehensive understanding of the 
contributors to this debilitating and common compli-
cation of diabetes. Because there are no clearly effective, 
disease-modifying agents for DPN (1), targeting proximal 
diabetes outcomes such as glycemic control, blood pressure 
control, and adequate treatment of lipid pathways remains 
the mainstay of therapy for prevention of DPN. Additional 
research on the impacts of SDOH on DPN risk and 
outcomes can provide clarification on potential high-yield 
intervention targets. Historically, our treatment strategies 
for DPN have focused on improving symptoms such as 
pain in individuals but are limited in terms of their effec-
tiveness, with only 50% of people with DPN responding to 
such interventions (1). Ultimately, interventions that target 
more upstream social, political, and psychological causes of 
DPN may be more effective for a larger population.

In summary, DPN remains a common complication of 
both type 1 and type 2 diabetes, and early investigation 
in observational studies of large cohorts suggest that 
socioeconomic factors and health care accessibility are risk 
factors for DPN. A more comprehensive assessment of 
the impacts of social and psychological determinants of 
health on DPN is needed to better our understanding of 
potential therapeutic targets. It is likely that interventions 
that address more upstream causes of health disparities at 
structural and societal levels will be more effective for a 
larger population of patients at risk for DPN.

KEY POINTS
» Discrepancies in SDOH are the basis for health

disparities, particularly in diabetes, leading to an
increased disease prevalence and incidence.

» Inequitable distribution of SDOH has both direct
and indirect effects on diabetes outcomes, including
glycemic control and cardiovascular outcomes.

» Social deprivation, lower educational status, and
limited health care access are risk factors for DPN.
Future exploration of other SDOH domains on DPN
risk and progression should be pursued.

TREATING PAINFUL DPN
As mentioned previously, ~30% of all individuals with 
DPN will experience painful symptoms that will require 
pharmacological and other treatments (78). Although 
painful DPN may occur in all age-groups, it is more 
common in older patients. Additionally, there are specific 
differences in pain phenotypes. For instance, in younger 
individuals with poorly controlled type 1 diabetes, pain 
may be present with no or very few other clinical signs 
(78,79), whereas older individuals are also likely to have 
large-fiber dysfunction, resulting in unsteadiness and 
gait disturbances, which can adversely affect activities of 
daily living (80). In a large, community-based study in 
the United Kingdom, painful DPN was more common 
in individuals with type 2 diabetes, and there was a weak 
association with older age (79). Given that the mean age 
of the 15,000 patients in this study was 61 years, this 
finding suggests that the management of painful DPN in 
the elderly requires special attention.

Pain Assessment
Successfully treating painful DPN requires the means 
to evaluate the effectiveness of each patient’s therapeutic 
regimen. A large number of scales to assess pain severity 
have been proposed (81,82), including a visual analog 
scale (VAS) or a series of simple, orienting questions 
such as are found in the DN4 (54), and these approaches 
may be useful in clinical practice. More detailed assess-
ment of neuropathic symptoms can be accomplished 
with tools such as the Neuropathy Total Symptom 
Score–6 or the modified Toronto Clinical Neuropathy 
Score) instruments (82–84).

Role of Glycemic Control
As described earlier, chronic hyperglycemia is a major 
contributory factor in the etiopathogenesis of the diabetic 
neuropathies; however, the importance of glycemic 
control in the management of painful symptoms is less 
clear. Early studies suggested that stable glycemic control 
with few excursions into hyperglycemia or hypoglycemia 
was associated with reduced pain scores as assessed on a 
VAS (78). Later, with the advent of continuous glucose 
monitoring, a small study confirmed that people with 
painful DPN have greater fluctuations in glucose and 
poorer overall glycemic control than matched subjects 
with painless neuropathy (85). Although there has not 
been, nor will there ever be, a randomized trial to test the 
hypothesis, an early step in the management of painful 
DPN should be to achieve optimal and stable glycemic 
control (86). Thus, the stability of glycemic control may 

162022 Feldman Laboratory Publications



DIAGNOSIS AND TREATMENT OF PAINFUL DIABETIC PERIPHERAL NEUROPATHY 13

Pharmacological 
therapies:
• Anticonvulsants

• Pregabalin*
• Gabapentin

• SNSRI
• Duloxetine*

• Tricyclic
antidepressants

Topical treatment:
• Capsaicin 8% patch*

Combination therapy:
• Multiple-drug combination therapy

using the agents listed in this figure

• Pharmacological + nutraceuticals +
nonpharmacological approaches

Nonpharmacological therapies:
• Health behavior interventions

• Exercise
• Reduced sedentary behavior
• Dietary modification

• Energy or nerve stimulation
• High-frequency (10-kHz)

spinal cord stimulation*

PERSON WITH
PAINFUL DPN

Exclude other causes
of neuropathy
Aim for good

and stable
glycemic control

be more important than the actual level of control, as 
indicated by A1C, in the management of painful DPN.

Acute Painful Diabetic Neuropathy
Acute painful diabetic neuropathy is a rare but 
well-recognized and distinct variety of the sensory 
neuropathies. It is characterized by very severe neuro-
pathic symptoms, as described earlier, that typically 
occur after a sudden change in glycemic control and 
has been described as occurring after normalization of 
blood glucose levels after simultaneous pancreas and 
kidney transplantation. It can also follow an episode of 
ketoacidosis, and in young people, particularly females, 
it may be associated with eating disorders (87). The 
prognosis of this acute form of painful neuropathy is 
good, typically with resolution of symptoms within 
12 months. However, pharmacological treatment of 
the severe symptoms, as described below, is invariably 
required. This variety of neuropathy was originally 
called “insulin neuritis,” but a more recent review 
by Gibbons and Freeman (88) suggested the term 
“treatment-induced neuropathy of diabetes,” as insulin 
is not the only cause.

Chronic Painful Diabetic Neuropathy
This chronic painful neuropathy is common among 
people of all ages with either type 1 or type 2 diabetes. 
Many of these individuals will require treatment, and the 
commonly used therapeutic approaches are described 
below. It is important to remember that the natural 
history of this condition is usually characterized by the 
resolution of severe symptoms over a period of years 
(78), although data from reliable, long-term studies 
are lacking. Thus, regular review and adjustment of the 
therapeutic approach in each patient is essential.

Therapeutic Approaches
Because there are no pathogenetically oriented phar-
macological treatments approved by the U.S. Food and 
Drug Administration (FDA), the treatment approaches 
described below target the symptoms but do not alter the 
natural history of neuropathy, which is one of progressive 
loss of nerve fibers in a distal-to-proximal manner. 
The following sections briefly describe the commonly 
used pharmacological agents, topical treatments, and 
physical therapies, as summarized in Figure 8. Limited 
space prevents us from including discussion of the many 

FIGURE 8  Recommended therapeutic approaches to painful diabetic peripheral neuropathy. Pharmacological therapy 
selection should be individualized based on factors such as comorbidities, cost, potential drug-drug interactions, and 
potential for adverse effects. Opioids are not recommended because of their high risk of addiction, abuse, and adverse 
effects. Topical capsaicin and a variety of nonpharmacological approaches are also available, and combination therapy 
may be needed. Not depicted are the neutraceuticals α-lipoic acid and benfotiamine, which are used in some countries 
but not approved in the United States. Individuals with severe pain that is refractory to other therapies should be referred 
to a specialist pain clinic. *U.S. Food and Drug Administration–approved for the treatment of painful diabetic peripheral 
neuropathy. SNSRI, selective norepinephrine and serotonin reuptake inhibitor.

OPIODS
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other agents that have been proposed for the treatment 
of painful DPN. For a detailed discussion of this topic, 
readers are referred to recent systematic reviews and 
meta-analyses, position statements, and review articles 
(1,45,81,82,89).

FDA-Approved Pharmacological Treatments
There are three FDA-approved therapies for painful 
DPN: pregabalin, duloxetine, and tapentadol (1). 
However, the last is an opioid, and a systematic review 
after its approval questioned its effectiveness (90). This 
issue will be addressed in a separate section below. 

Pregabalin
Pregabalin is a calcium channel α2-δ subunit ligand, the 
efficacy of which has been confirmed in a large number 
of studies (1,45,81,82,89,91). It has been extensively 
studied in painful DPN (1,82,91), and evidence suggests 
a dose-dependent response, with weaker effect at lower 
doses (92). It can be given twice, or, on occasion, three 
times daily, and most patients require 300–600 mg/day 
for symptomatic relief. However, because it is excreted 
virtually unchanged in the urine, great caution must be 
taken in individuals with renal impairment, especially 
those with an estimated glomerular filtration rate (eGFR) 
<45 mL/min/1.73 m2. Adverse effects, which commonly 
include somnolence, dizziness, and peripheral edema, are 
more likely with higher dosages and also in the elderly.

As recommended by Freynhagen et al. (91), a low-and-
slow dosing approach can limit these adverse effects. These 
authors also recommend starting with asymmetric dosing, 
with a larger dose being given in the evening. Up-titration 
should be based on pain relief. Thus, in a middle-aged 
patient with normal renal function, it is common to start 
with 75 mg twice daily and gradually increase the dose 
every 3–7 days to a maximum of 600 mg/day. Greater 
caution is required in elderly patients, who are more likely 
to have renal dysfunction and in whom side effects are 
more common; in these individuals, starting at 25 mg 
daily may be required.

Because pregabalin additionally has anxiolytic activity, 
it may be particularly helpful in individuals with marked 
anxiety, which is not uncommon among people experi-
encing neuropathic pain. 

Duloxetine
Duloxetine is a selective norepinephrine and serotonin 
reuptake inhibitor and can be given once daily at a dose 
of either 60 or 120 mg. Its efficacy has been proven in a 
number of randomized controlled trials (RCTs), and it has 
been shown in head-to-head trials to have similar efficacy 
to other agents, including pregabalin and gabapentin (45). 

Its adverse effects are well recognized and include nausea, 
somnolence, and dizziness, among others (1,45,82).

Because duloxetine and pregabalin have different 
modes of action, the combination of these agents has 
been used with good effect in clinical practice. However, 
the largest comparative trial (93) did not show a 
significant difference between high-dose monotherapy 
with either agent and a standard-dose combination of 
both. However, there was a trend consistently favoring 
combination therapy over monotherapy.

Because duloxetine is also an antidepressant, it may be 
particularly helpful in people with painful DPN who also 
have depressive symptomatology.

Other Pharmacological Therapies

Amitriptyline
Amitriptyline and other tricyclic antidepressant agents 
have been used for many years in the management of 
neuropathic pain (1,45,81,82,89). However, adverse 
effects are common, especially in the elderly, and include 
anticholinergic effects such as dry mouth, urinary reten-
tion, and drowsiness. There are also warnings to use these 
agents with caution in the presence of ischemic heart 
disease or glaucoma.

Up to one in three patients cannot tolerate even the 
lowest dose of amitriptyline because of these predictable 
side effects. It can be given once daily, usually in the 
early evening, and the usual starting dose is 25 mg, 
increasing as necessary to a maximum of 150 mg. 
However, much lower doses must be used in older 
patients, and because of potential cardiovascular adverse 
effects, great caution should be taken in those with 
known ischemic heart disease.

Gabapentin
Gabapentin, similar to pregabalin, was first used as an 
anti-epileptic drug but has been shown to have efficacy 
in the management of painful DPN. However, it has a 
shorter half-life and therefore must be dosed three times 
daily. As with pregabalin, up-titration is recommended, 
but trials have shown that most patients require 1,800 
mg daily in divided doses for pain relief, and, occasionally, 
patients need the maximum daily dose of 3,600 mg. 
Lower doses are recommended for individuals with a 
reduced eGFR (45).

The adverse effects of gabapentin are similar to those 
of pregabalin and include dizziness, somnolence, and, on 
occasion, gait disturbances. A recent systematic review 
comparing the efficacy and safety of gabapentin and 
duloxetine in painful DPN found no significant differ-
ences between the two drugs (94).
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Opioids
Although several opioids have been shown to have 
some efficacy in the management of neuropathic pain in 
general, their associated high risks of addiction, abuse, 
sedation, and other complications such as somnolence, 
headache, and impaired gastrointestinal motility 
even in the short term are major barriers to their use. 
Additionally, it has been revealed recently that even 
the weak synthetic opioid agonists tramadol and the 
extended-release tapentadol pose the same risks with 
only modest evidence of efficacy in relieving severe 
neuropathic pain. Thus, given the evidence on risks versus 
potential benefits, none of these agents should be used 
in the treatment of painful DPN, and they should be 
avoided especially in the elderly. 

Interestingly, a recently published randomized, 
double-blind, crossover clinical trial (95) paradoxically 
suggested that the opioid receptor antagonist naltrexone 
2–4 mg daily might be effective in the treatment of 
painful DPN. Naltrexone showed comparable efficacy 
but greater safety and tolerability than amitriptyline in 
this trial. However, these preliminary results, although 
interesting, will need to be confirmed in larger trials. 

Topical Therapies
A number of topical therapies have been proposed for 
the treatment of painful DPN over the years but are 
not widely used because the area of neuropathic pain 
can be quite extensive, involving not only both feet, 
but also the lower limbs, generally below knee level. 
The most studied of these products has been capsaicin, 
but its use has been restricted because of the need for 
frequent application and also the burning pain patients 
often experience when a capsaicin-containing patch is 
applied topically. 

More recently, an 8% long-acting capsaicin patch has 
been developed and is now approved by the FDA for 
painful DPN based on data from two multicenter trials 
demonstrating effective pain reduction. Initial results are 
promising (96,97), and it is associated with fewer central 
adverse effects than the oral medications. However, its 
use may cause significant pain at the application site, it 
should be avoided in patients with active skin lesions, 
and its application requires suitable infrastructure to be 
available and must be performed in a physician’s office.

Physical Therapies
Data from RCTs support the use of spinal cord stimula-
tion (SCS) in the management of severe painful DPN. 
This and other energy or nerve stimulation treatments are 
discussed in detail in the section on nonpharmacological 
approaches to DPN and pain management.

Management of Painful DPN in the Elderly
As alluded to above, particular care is required in the 
management of painful DPN in elderly patients. Poly-
pharmacy is common in the elderly, and this is especially 
true in those with diabetes, who may be on multiple 
therapies, including several oral antidiabetic agents, a 
statin, aspirin, and multiple treatments for other common 
comorbidities such as hypertension and cardiovascular 
disease. Indeed, an article published in 2016 by Jansen 
et al. (98) addressed the problem of inappropriate poly-
pharmacy in older patients and proposed “deprescribing,” 
a process of planned and supervised tapering of inappro-
priate medications.

As noted above, painful DPN is common in elderly 
patients with diabetes, and, in addition to painful 
symptoms, these patients may also have significant loss of 
large-fiber nerve function, which leads to unsteadiness and 
motor dysfunction, leading in turn to alterations in gait 
(78). These patients are therefore more prone to adverse 
effects of some of the drugs discussed above, particularly 
the tricyclic antidepressants, but also anticonvulsants and 
duloxetine at higher doses.

Moreover, older patients are also more likely to have 
other complications, including diabetic nephropathy, 
kidney disease, and cardiovascular complications. 
Therefore, marked caution must be taken when dosing 
drugs such as pregabalin and gabapentin, which should 
be started at lower doses than usual and with very careful 
up-titration. It is also well recognized that eGFR falls 
with age (99); thus, although a patient who is 80 years 
of age and has an eGFR of 50 mL/min/1.73 m2 may be 
considered as having “normal” renal function, extra care 
must still be taken when setting dosages for the drugs 
discussed above. Older patients with severe painful DPN 
not responsive to these drugs might benefit from referral 
to a pain clinic for possible SCS therapy (100).

Combination Treatment 
Given the complexity of DPN-associated pain and the 
high risks for side effects of available pharmacological 
agents, particularly when higher effective doses are needed 
and in a patient population with multiple other comor-
bidities, consideration of combination therapy may be 
advisable. Combining two or three of the pharmacological 
agents discussed above that have a strong track record 
of benefit may enable better pain resolution at lower 
doses and with better tolerance, as shown in Figure 8 (1). 
Similarly, combining pharmacological with nonpharma-
cological treatment options may be more effective in a 
broader number of individuals (Figure 8). 
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Duration of Treatment
As noted previously, the natural history of painful DPN 
is not well studied, but it is clinically recognized that 
painful symptoms rarely persist for more than a few 
years. Thus, periodic review of pharmacological therapy 
is needed, and these agents must not be regarded as 
lifetime medications. It is recommended that, after 6 
months of symptom relief, a slow and gradual reduction 
of drug treatment should be attempted. If symptoms 
reappear during this gradual reduction, a lower dose 
may be required for the next few months, when further 
review and attempted reduction should take place.

Future of Painful DPN Treatment
As summarized in recent reviews (45,81,89), a number 
of new agents are currently under investigation for the 
management of painful DPN. Moreover, phenotyping 
of patients with painful DPN may well lead to the 
development of more and better treatments for this 
condition. Many of the current pharmacological 
therapies are unsatisfactory, not only because of their 
adverse effects profile, but also because of their general 
poor efficacy and high numbers needed to treat to 
improve outcomes (81). Thus, more precise phenotyping 
of individuals with painful DPN might help to identify 
subgroups of patients who are more likely to respond to 
a given therapy.

KEY POINTS
» Effective pharmacological therapies for painful

DPN include anti-epileptic agents (pregabalin and
gapapentin) and anti-depressants (duloxetine and
tricyclics), although often effective pain reduction
requires higher doses that may be less tolerated or
have a higher incidence of adverse effects.

» For those with severe painful symptoms not
responding to a single agent, combination
therapy with two to three agents may be effective
at much lower doses, as well as combinations
of pharmacological and nonpharmacological
approaches. Such patients might also benefit from
referral to a pain clinic if several attempts to control
pain have failed.

» Given the high risk for complications and the
modest evidence for benefit, the use of opioids is
not recommended.

» Painful DPN is not uncommon in older people with
diabetes, in whom caution must be taken with any
prescribed medications. Starting at the lowest doses
with slow up-titration is recommended in such cases.

ROLE OF NUTRACEUTICALS IN 
DPN AND PAIN MANAGEMENT
As discussed earlier, DPN remains the most relevant and 
prevalent clinical manifestation of diabetic neuropathy 
and predicts the development of neuropathic foot ulcers, 
all-cause mortality, and cardiovascular morbidity and 
mortality (1,101). Despite its major clinical impact, the 
condition still remains underdiagnosed and undertreated 
(102). Given that the efficacy of causal treatments of 
DPN and neuropathic pain is limited, there is an unmet 
need for adjunct treatments.

The term “nutraceutical” was coined in 1989 (103) as 
a portmanteau of “nutrition” and “pharmaceutical,” but, 
to date, there are no internationally accepted definitions 
of the term or of related terms such as “functional food,” 
“health food,” or “herbal therapy” (104). It has been 
proposed that, unlike dietary supplements, nutraceuticals 
should not only supplement the diet, but also aid in the 
prevention and/or treatment of disease and/or disorder 
(105). However, nutraceuticals are not defined by U.S. 
law and usually would be categorized as dietary supple-
ments and regulated by the FDA under the provisions 
of the Dietary Supplement Health and Education Act. 
According to that law, “Dietary supplements include a 
large, heterogeneous group of products intended to supple-
ment the diet that are not better described as drugs, foods, 
or food additives. Supplements may contain, in whole or 
as a concentrate, metabolite, constituent, or extract, any 
combination of 1 or more vitamins, minerals, amino acids, 
herbs or other botanicals, and other substances used to 
increase total dietary intake, including enzymes, organ 
tissues, and oils. They must be intended for ingestion; sold 
in the form of capsules, tablets, soft gels, gel caps, powders, 
or liquids; and not be marketed as food items” (105).

Several nutraceuticals represent biofactors required by 
the body for its normal physiological functioning and may 
exert health-beneficial or disease-preventive biological 
activities. Essential biofactors are those that the organism 
cannot produce or cannot produce in sufficient quantity, 
thus requiring supplementation from external sources. 
Examples include vitamins (A, B1, B6, B9, B12, C, D, 
E, and K), minerals (selenium, magnesium, and zinc), 
fatty acids (α-lipoic acid [ALA], polyunsaturated fatty 
acids [PUFAs]), and amino acids (acetyl-L-carnitine) 
(106). Dietary supplementation with certain biofactors 
could be useful as a complement to established therapies 
for preventing and treating DPN because diabetes is 
associated with systemic deficits in several biofactors, but 
favorable effects have also been reported in the absence of 
such deficiencies (107).
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Therapeutic Role of Nutraceuticals
In general, the management of DPN includes three 
cornerstones: 1) causal treatment, including lifestyle 
modification, intensive diabetes therapy aimed at 
near-normoglycemia, and multifactorial cardiovas-
cular risk intervention, 2) pathogenetically oriented 
pharmacotherapy using specific nutraceuticals, and 3) 
symptomatic treatment of neuropathic pain (102). The 
available evidence for the second pillar is outlined here. 
For this discussion, only RCTs of single compounds 
(monotherapy) were considered because use of 
combination nutraceuticals does not allow for separate 
assessment of their constituent parts, and uncontrolled 
studies are difficult to interpret given the lower quality 
of the evidence they yield.

The rationale for using nutraceuticals in DPN is 
primarily to favorably influence the underlying neuro-
pathic process and its clinical consequences rather than 
only relieving symptomatic pain, which is usually the 
goal of analgesic therapy. The RCT results described 
below are also summarized in Table 2.

α-Lipoic Acid
Because oxidative stress plays a major role in the patho-
genesis of diabetic neuropathy, the rationale for treatment 
using antioxidants such as ALA to diminish enhanced 
oxidative stress and thereby favorably influence DPN 
is obvious (108). Among the nutraceuticals reviewed 
herein, ALA has the best evidence in DPN. In summary, 
intravenous infusions of ALA (600 mg/day) amelio-
rated neuropathic symptoms and deficits (i.e., signs or 
impairments) after 3 weeks (108). Moreover, treatment 
for 5 weeks and 6 months using oral ALA 600 mg daily 
and twice daily, respectively, reduced the main symptoms 
of DPN, including pain, paresthesias, and numbness, 
to a clinically meaningful degree (108,109). Several 
meta-analyses confirmed the efficacy of ALA in symp-
tomatic DPN (108). In the NATHAN (Neurological 
Assessment of Thioctic Acid in Diabetic Neuropathy) 1 
trial, which included 460 patients with diabetes and mild 
to moderate, largely asymptomatic DPN, after 4 years of 
ALA treatment using 600 mg daily, neuropathic deficits 
(i.e., signs) were improved, suggesting a potential to favor-
ably influence the underlying neuropathy, and the drug 
was well tolerated throughout the trial (108). Clinical and 
post-marketing surveillance studies have revealed a highly 
favorable safety profile (108).

ALA is approved and recommended by guidelines (101) 
as pharmacological therapy for the treatment of DPN in 
several countries, but not in the United States or Canada. 
The primary indication for ALA is symptomatic DPN, 

including not only neuropathic pain but also nonpainful 
symptoms such as paresthesias and numbness, particularly 
if these interfere with a patient’s quality of life. On the 
other hand, based on the results of the NATHAN 1 trial 
(108), ALA (600 mg daily) can also be considered for 
long-term use ≥4 years in asymptomatic DPN to improve 
neuropathic signs (i.e., the underlying neuropathy) (108).

The usual dose is 600 mg daily, but higher doses (600 
mg twice or three times daily) may occasionally be useful 
if symptom relief is only partial (≤30% reduction). The 
duration of RCTs using ALA in symptomatic DPN 
has been limited to ≤6 months, similar to those using 
analgesic drugs in painful DPN, which lasted ≤3 months. 
Nonetheless, these pharmacological therapies are being 
used for considerably longer periods in clinical practice if 
residual neuropathic symptoms or pain persist.

Theoretically, there is a rationale for using ALA and 
other nutraceuticals in combination with analgesic 
drugs to enhance efficacy and synergistically target 
the underlying neuropathy, but there are no RCTs to 
support this strategy.

Benfotiamine
Thiamine (vitamin B1) is a water-soluble vitamin that 
constitutes an essential cofactor of several enzymes 
involved in carbohydrate metabolism. Benfotiamine, a 
lipid-soluble allithiamine homolog, is a synthetic S-acyl 
derivative (prodrug) of thiamine and has been shown 
to inhibit the formation of AGEs (106). The BENDIP 
(Benfotiamine in Diabetic Polyneuropathy) study showed 
that neuropathic symptoms, with Neuropathy Symptom 
Score as the primary endpoint, were improved after 6 
weeks of treatment using a benfotiamine dose of 300 mg 
twice daily but not 300 mg daily (102), while the smaller 
and shorter BEDIP (Benfotiamine in the Treatment of 
Diabetic Polyneuropathy: a Three-Week Randomized, 
Controlled Pilot Study) study found improvement in a 
score combining neuropathic symptoms and signs after 3 
weeks of treatment with benfotiamine 400 mg daily (102). 
The incidence of adverse events did not differ between 
active and placebo treatment.

Benfotiamine is approved and recommended by guide-
lines (101) as pharmacotherapy for treatment of DPN in 
several countries, but not in the United States or Canada. 
Similar to ALA, the primary indication for benfotiamine 
is symptomatic DPN, including not only neuropathic pain 
but also nonpainful symptoms. However, the number of 
available RCTs is lower and their durations have been 
shorter than for ALA.

Based on the results of the BENDIP study (102), 
the appropriate dose of benfotiamine over the first 6 
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TABLE 2  Randomized Controlled Trials Using Nutraceuticals as Monotherapy for the Treatment of Diabetic Peripheral 
Neuropathy

Nutraceutical Study
T1D, n/
T2D, n Dose* Duration Effects Adverse Events

α-Lipoic acid 
(ALA)

ALADIN (108)† 0/328 100/600/1,200/
placebo

3 weeks IV Symptoms +
Signs +
QoL +

None

ALADIN II (108)† 65‡ 600/1,200/
placebo

2 years PO NCS + None

ALADIN III (108)† 0/508 600 IV/1,800 PO/
placebo

3 weeks IV/ 
6 months PO

Symptoms (+)/−
Signs +/(+)

None

ORPIL (108)† 0/24 1,800/placebo 3 weeks PO Symptoms +
QoL (+)
Signs +

None

SYDNEY (108)† 30/90 600/placebo 3 weeks IV Symptoms +
NSC +
Signs +

None

SYDNEY 2 (108)† 30/151 600/1,200/1,800/
placebo

5 weeks PO Symptoms +
NSC +
Signs +

Dose-dependent 
GI symptoms

NATHAN 1 (108)† 110/344 600/placebo 4 years PO Signs +
NCS −

SAEs slightly 
increased§

El-Nahas et al. (109) 0/200 1,200/placebo 6 months PO Symptoms +
VPT +

Mild nausea

Benfotiamine BENDIP (102)† 16/117 300/600/placebo 6 weeks Symptoms + (PP)
Signs −

None

BEDIP (102)† 8/32 400/placebo 3 weeks Symptoms/signs +
Pain +

None

Vitamin B12 Didangelos et al. (112) 0/90 1/placebo 1 year Symptoms +
Signs −
Pain +
VPT +
NCS +

None

Vitamin D Karonova et al. (114) 0/67 40,000 IU/ 
5,000 IU per 

week

24 weeks Pain +
Symptoms +

Signs +

None

Vitamin E VENUS (116) 300‡ 400/placebo 1 year Symptoms −
Lancinating pain (+)

None

Acetyl-L-
carnitine

Sima et al. (118) 1,257‡ 3,000/placebo 1 year Pain +
VPT +
NCS −

None

γ-Linolenic 
acid (GLA)

Keen et al. (119) 57/51 480/placebo 1 year NCS +
Signs +

None

Won et al. (120) 0/100 320 GLA/ 
600 ALA

12 weeks Symptoms, pain 
noninferior||

None

Magnesium de Leeuw et al. (122) 110/0 300/ 
no supplement

5 years DPN stage +¶
NCS +

GI symptoms

*Doses are mg/day except for Vitamin D, which is IU/week. †Summarized in review article. ‡Diabetes type not available. §Incidence:
38% (ALA) versus 28% (placebo), including cardiovascular and cerebrovascular disorders, infections, inflicted injuries, and fractures;
deaths: 1.3% (ALA) versus 2.7% (placebo). ||For GLA versus ALA. ¶Versus no supplement. + Indicates improvement compared to placebo.
(+) Indicates trend toward improvement compared to placebo. − Indicates no difference compared to placebo. ALADIN, Alpha-Lipoic
Acid in Diabetic Neuropathy; BEDIP, Benfotiamine in the Treatment of Diabetic Polyneuropathy: a Three-Week Randomized, Controlled
Pilot Study; BENDIP, Benfotiamine in Diabetic Polyneuropathy; DPN, diabetic peripheral neuropathy; GI, gastrointestinal; IV, intravenous;
NATHAN, Neurolog ical Assessment of Thioctic Acid in Diabetic Neurop athy; NSC, nerve conduction studies; ORPIL, Oral Pilot; PO, oral
administration; PP, per protocol analysis; QoL, quality of life; SAEs, severe adverse events; SYDNEY, Symptomatic Diabetic Neuropathy;
T1D, type 1 diabetes; T2D, type 2 diabetes; VENUS, Vitamin E in Neuroprotection Study; VPT, vibration perception threshold.

222022 Feldman Laboratory Publications



DIAGNOSIS AND TREATMENT OF PAINFUL DIABETIC PERIPHERAL NEUROPATHY 19

weeks is 300 mg twice daily. Whether this dose should 
be maintained during long-term treatment is currently 
being examined by the BOND study (110) assessing the 
effects of 1-year treatment with benfotiamine 300 mg 
twice daily on morphometric, neurophysiological, and 
clinical measures in individuals with type 2 diabetes and 
symptomatic DPN.

Vitamin B12
Vitamin B12 deficiency can have hematological or 
neurological consequences, including polyneuropathies 
(1). Because of the increased risk of a vitamin B12 
deficiency associated with metformin treatment, the 
ADA recommends periodic measurement of vitamin 
B12 levels for metformin-treated patients (111). A 
recent 12-month RCT assessed the effects of oral 
vitamin B12 supplementation with 1,000 µg per day 
in metformin-treated people with type 2 diabetes and 
DPN who had low vitamin B12 levels (<400 pmol/L). 
Oral vitamin B12 treatment improved neurophysio-
logical measures, pain score, sudomotor function, and 
quality of life, but not MNSI score (112). Vitamin B12 
deficiency should be supplemented with oral vitamin 
B12 1,000 µg daily. The duration of supplementation 
depends on the cause and may be lifelong (e.g., in 
pernicious anemia or after bariatric surgery). Treatment 
of DPN with vitamin B12 in the absence of vitamin 
B12 deficiency is not indicated.

Vitamin D
Obesity, prediabetes, and type 2 diabetes constitute 
important risk factors for vitamin D deficiency. There is 
also accumulating evidence suggesting a link between 
low systemic vitamin D levels and DPN (113). In a 
randomized, open-label study in participants with type 2 
diabetes and DPN, the majority of whom were vitamin 
D deficient, improvements in neuropathic symptoms and 
deficits were observed after 24 weeks of high-dose vitamin 
D treatment (40,000 IU/week) compared to a control 
group supplemented with vitamin D 5,000 IU/week 
(114). Thus, further studies are needed to define the exact 
role of vitamin D supplementation specifically in vitamin 
D–deficient people with DPN.

In general, vitamin D deficiency <50 nmol/L 
(20 ng/mL) is associated with fractures and bone loss. 
Severe vitamin D deficiency <30 nmol/L (12 ng/mL) 
dramatically increases the risk of excess mortality, 
infections, and many other diseases and should be 
avoided whenever possible (115). However, there is no 
international consensus on the optimal level for vitamin 
D supplementation, and recommendations range from 
400 to 2,000 IU daily (115).

Vitamin E
Vitamin E is the most abundant liposoluble antioxidant, 
comprising eight fat-soluble compounds (four tocoph-
erols and four tocotrienols) protecting cell membranes 
from oxidative stress. In a large clinical trial, vitamin 
E (200 mg of mixed tocotrienols twice daily) did not 
improve neuropathic symptoms over 1 year in people 
with DPN. However, in post hoc subgroup analyses, 
tocotrienols reduced lancinating pain among people 
with A1C levels >8% and normohomocysteinemia after 
1 year (116). Based on these data, vitamin E cannot be 
recommended for DPN treatment.

Acetyl-L-carnitine
In humans, the metabolic pool of carnitine comprises 
nonesterified levo-carnitine (L-carnitine) and 
acyl carnitine esters, among which the amino acid 
acetyl-L-carnitine represents the greatest component. A 
Cochrane review analyzed four studies in participants 
with DPN (117). Although some favorable effects on 
pain and vibration perception threshold were reported 
(118), the evidence was rated as being of low certainty 
as to whether acetyl-L-carnitine causes a reduction in 
pain after 6 to 12 months of treatment in people with 
DPN (117).

Polyunsaturated Fatty Acids 
An early RCT reported favorable effects of treatment with 
the PUFA γ-linolenic acid (GLA) for 1 year on multiple 
neurophysiological and clinical parameters in individuals 
with DPN (119). In a recent 12-week, multicenter, nonin-
feriority RCT trial comparing the efficacy of GLA (320 
mg/day) and ALA (600 mg/day) in participants with type 
2 diabetes and painful DPN, both neuropathic symptoms 
and pain improved after 12 weeks, and GLA was nonin-
ferior to ALA in reducing pain intensity (120). Further 
studies are required before PUFAs can be recommended 
for DPN treatment.

Magnesium
Magnesium is the second most abundant intracellular 
divalent cation and is involved in several hundred meta-
bolic reactions, in which it mainly serves as a cofactor and 
plays an important role in carbohydrate metabolism and 
cellular bioenergetics. Magnesium deficiency (serum levels 
<0.75 mmol/L) can lead to an enhanced neuromuscular 
excitability, including symptoms such as nervousness or 
cramps of both smooth and skeletal muscle (121).

Reduced magnesium intake and systemic magne-
sium levels are associated with both prediabetes and 
diabetes (121). However, there no evidence from 
placebo-controlled RCTs assessing the efficacy of 
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magnesium supplementation in DPN. In an open, 
low-quality RCT, individuals with type 1 diabetes, with 
or without DPN, were supplemented with magnesium 
(Group A), while another group did not receive magne-
sium (Group B). Magnesium in red blood cells increased 
to normal levels in Group A but remained low in Group 
B. After 5 years, DPN stages improved more often in
Group A than in Group B (39 vs. 8%, respectively) and
worsened more often in Group B than in Group A (12 vs. 
61%, respectively) (122).

Magnesium supplementation has been recommended 
for people with diabetes and hypomagnesemia if other 
dietary approaches fail to balance magnesium status 
(121). Oral magnesium supplementation is safe in 
adults when used in dosages below the upper intake 
level of 350 mg daily, but because of its renal secretion, 
magnesium should be used with caution in individuals 
with kidney disease (123).

In summary, given that the efficacy of both causal 
therapies for DPN and symptomatic treatments for 
neuropathic pain is limited, there is an unmet need 
for adjunctive therapies. Experimental studies have 
indicated that diabetic neuropathy can be prevented 
or ameliorated by various nutraceuticals in animal 
models by interfering with the pathophysiology of the 
underlying condition. Some of these findings could 
be translated successfully into the clinical arena and 
confirmed in clinical trials of DPN.

The efficacy and safety of several nutraceuti-
cals, including ALA, benfotiamine, vitamin B12, 
acetyl-L-carnitine, vitamin D, vitamin E, and the PUFA 
GLA have been studied in RCTs, some better designed 
than others. For clinical use, ALA and benfotiamine 
are licensed as drugs and approved for the treatment 
of DPN in several countries worldwide; however, they 
have not been approved for this use in the United States 
or Canada. ALA has the best evidence as therapy for 
symptom relief, highlighted by several meta-analyses. 
People with proven deficiencies in vitamins B and D and 
magnesium should receive supplementation to prevent 
worsening of DPN and other disorders.

The advantage of nutraceuticals is their excellent 
safety profile, but longer, well-designed, well-conducted 
confirmatory RCTs should be performed to establish 
the value of their use in DPN over the long term. 
Overall, nutraceuticals have the potential to favorably 
modify the natural history of DPN, and there is hope 
that, ultimately, they will contribute to expanding our 
therapeutic armamentarium against this common, 
debilitating, and potentially even life-threatening 
complication of diabetes.

KEY POINTS
» Because the efficacy of both causal therapies for

DPN and symptomatic treatments for neuropathic
pain is limited, there is an unmet need for a holistic
approach considering pathogenetically oriented
adjunctive therapies.

» Based on evidence for efficacy in reduction of
symptoms and excellent safety from RCTs, ALA
and benfotiamine (currently approved in some
countries, although not FDA-approved in the
United States) may be added for the management
of persistent neuropathic symptoms, including pain
in DPN.

» Confirmatory RCTs should clarify the value of using
nutraceuticals in DPN over the long term.

NONPHARMACOLOGICAL 
APPROACHES TO DPN AND PAIN 
MANAGEMENT
The DCCT (124) showed in 1993 that tight glucose 
control reduces the risk of developing DPN in type 1 
diabetes by >60%. The same has not proved true in type 2 
diabetes, and, 30 years after the DCCT, no medication has 
been convincingly shown to retard the incidence of DPN 
or slow its progression (1). In this setting, nonpharma-
cological approaches that might alter the natural history 
of DPN or ameliorate neuropathic pain have received 
increasingly sophisticated evaluation. Treatments reviewed 
here fall broadly into three categories: health behavior 
interventions (HBIs), including exercise, dietary coun-
seling, and their combination (Table 3); passive modalities, 
including massage and biofeedback; and nonpharmaco-
logical energy or nerve stimulation treatments. 

Health Behavior Interventions
The DPP (Diabetes Prevention Program) and 
similar large, prospective RCTs demonstrated that a 
curriculum-based behavioral treatment combining dietary 
and exercise counseling delays the onset of type 2 diabetes 
(125,126). Physical activity has been shown to delay the 
onset and progression of DPN in individuals with type 2 
diabetes or prediabetic metabolic syndrome, even in the 
absence of significant weight loss or improved glucose 
control (127). It is no surprise, then, that the most recent 
ADA position statement on the treatment of DPN (1) 
recommends lifestyle modifications that include super-
vised aerobic and/or resistance training, alone or in combi-
nation with dietary modifications based on those used in 
the DPP trial or based on a predominantly plant-based 

242022 Feldman Laboratory Publications



DIAGNOSIS AND TREATMENT OF PAINFUL DIABETIC PERIPHERAL NEUROPATHY 21

diet, for the treatment of DPN. The components of these 
programs are considered below.

Physical Activity and Exercise
Physical activity is defined as any movement that increases 
energy use. Exercise, a more structured form of physical 
activity, should be regarded as medical therapy and 
concurrently inhibits multiple established pathways in the 
pathogenesis of DPN.

Animal models of neuropathy in diabetes and predi-
abetic metabolic syndrome demonstrate that sustained 
exercise reduces hyperglycemia and consequent excess 
oxidative and nitrosative stress; improves mitochondrial 
bioenergetics in both the nerve cell body and the distal 
axon; enhances microvascular vasoreactivity and reduces 
nerve ischemia; increases axonal transport; opposes the 
inflammatory effects of obesity, lipotoxicity, and hyperlip-
idemia; and enhances nerve regeneration after metabolic 
injury. Broadly, outcomes in human DPN exercise trials 
can be placed in three categories: neuropathy progression 
(e.g., exam, nerve conduction studies, and cutaneous nerve 
fiber density); mobility, balance, and gait; and neuropathic 
pain and quality of life. 

Neuropathy Progression Outcomes
High-quality evidence is lacking on the specific effects of 
exercise on objective measures of neuropathy progression 
in individuals with DPN. Exercise is perhaps the only 
intervention shown to improve the regenerative capacity 
of small-diameter cutaneous sensory axons in people 
with metabolic syndrome and those with diabetes. 
Using change in intraepidermal nerve fiber density from 
a 3-mm skin biopsy, either alone or obtained before 
and 1–3 months after experimental capsaicin axotomy, 
sustained mentored exercise has been shown to increase 
nerve fiber density and regenerative capacity in people 
with metabolic syndrome or early type 2 diabetes (128). 
Participants who show improvement in the greatest 
number of metabolic syndrome features demonstrate the 
greatest improvement in reinnervation rate.

Mobility, Balance, and Gait Outcomes
Exercise convincingly improves measures of mobility, 
balance, and gait and reduces fall risk in DPN (129). 
These improvements have been demonstrated with 
different modes of exercise training, including aerobic, 
resistance, balance, Tai Chi, and whole body vibration, as 

TABLE 3  Lifestyle Interventions for Diabetic Peripheral Neuropathy

Intervention Type Absolute Intensity Intensity Frequency/Duration Modes

Aerobic exercise Moderate (3.0–5.9 
METs)/vigorous (≥6.0 
METs) physical activity*

On a relative intensity 
scale of 0–10:

• Moderate: 5 or 6

• Vigorous: 7 or 8

• 3–7 days/week

• 150 min/week with no
more than 2 consecutive
days off

Brisk walking, running, 
cycling, swimming, or 
dancing

High-intensity interval 
training (maximum 
effort over short time)

Maximum effort Unknown Running or cycling

Light-intensity physical 
activity (1.6–2.9 METs)*

<5 on a relative 
intensity scale of 0–10

• Daily, multiple times
throughout the day

• Avoid being sedentary
for >1 hour at a time
except when sleeping

Slow walking, cooking, or 
light household chores

Resistance or 
strengthening 
exercise

Vigorous 6–8 repetitions of a 
weight that can be 
lifted ≤6–8 times

• 2–3 sessions on
nonconsecutive days/
week

• 3–6 exercises of major
muscle groups per
session

Weight machines, whole 
body vibration, free weights, 
elastic bands, or body 
weight

Moderate 15 repetitions of a 
weight that can be 
lifted ≤15 times

Balance exercise • 2–3 days/week Tai Chi, single leg balance, 
or obstacle course

Anti-sedentary 
behavior

Wearable devices, coaching, 
or goal-setting

Diet modification Calorie restriction, processed 
carbohydrate restriction, and 
emphasis on polyunsaturated 
fats and antioxidant foods

*MET, or metabolic equivalent, refers to the energy expenditure required to carry out a specific activity, with 1 MET equal to the rate of
energy expenditure while sitting at rest.
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well as combinations of these modalities (130). Gener-
ally, training improves function specific to the training 
discipline (e.g., therapy focused on balance improves 
measures of balance). However, aerobic training has 
also been shown to improve mobility, balance, and gait 
outcomes in DPN. In a controlled trial of multimodal 
aerobic training, moderate-intensity (50% heart rate 
reserve) or vigorous (75% heart rate reserve) exercise 
yielded equivalent benefits, suggesting that both training 
intensities promoted these improvements (131). Current 
exercise intensity and frequency recommendations for 
people with DPN mirror the U.S. Department of Health 
and Human Services’ physical activity guidelines for 
Americans (132), although lower-intensity activity has 
also shown benefit and may be especially attractive for 
individuals unaccustomed to regular exercise.

Neuropathic Pain and Quality-of-Life Outcomes
Reduction of neuropathic pain is perhaps the most 
important outcome of interest to individuals with DPN. 
Randomized trials of scheduled aerobic exercise using 
modes such as cycling, treadmill, and progressive walking 
programs have reported significant improvement in 
pain scale scores, pain interference measures, and/or 
quality-of-life metrics over intervention periods ranging 
from 12 weeks to 4 years (133,134). 

Less-intensive exercise modes may also show 
benefit in neuropathic pain. Passive whole body 
vibration is a new exercise mode in which participants 
stand on a vibrating platform and resist its effect to 
maintain an upright posture. It has been shown in 
small, sham-controlled, randomized trials to signifi-
cantly improve neuropathic symptoms, pain, and 
health-related quality of life (135). Similarly, a Tai Chi 
regimen significantly improved DPN total symptom 
score, pain, and quality of life over the 12-week inter-
vention, albeit with a 34% attrition rate (136). 

Exercise Prescription and Safety
The potential benefits of exercise among people with 
DPN are increasingly clear. Clinically, a formal exercise 
prescription can stress the therapeutic value of exercise, 
encourage increased activity, and regulate progression to 
allow tissue adaptation without causing injury. Exercise 
prescriptions for individuals with DPN should include 
information on exercise type, mode, goal intensity, 
frequency, and duration (Table 3). Participation in 
weight-bearing exercise in individuals without severe foot 
deformity or peripheral vascular disease has been found 
to be safe. Individuals with DPN should seek medical 
clearance for cardiovascular risk before starting a formal 
exercise program.

Complications of exercise, including joint and muscle 
pain, hypoglycemia, orthostasis associated with autonomic 
dysfunction, and skin irritation, occur in more than 
one-third of mentored exercise participants with DPN 
and should be expected (137). Ongoing monitoring of 
neuropathic symptoms, glucose, heart rate, and blood 
pressure, as well as musculoskeletal and integumentary 
status, is recommended. Supervision by a physical thera-
pist or exercise specialist is ideal to regulate progression 
and surveil for injury risks. 

Reducing Sedentary Behaviors
Simply reducing sedentary behaviors (those that do not 
increase energy expenditure beyond the resting level) is 
another strategy that might improve DPN outcomes. The 
average awake sedentary time of adults >50 years of age 
is 8.3 hours (>500 minutes) daily. Restricted contraction 
of postural support muscles alters lipid metabolism and 
increases free fatty acid and adipokine release. Prolonged 
sitting also worsens insulin resistance.

Well-designed studies investigating the impact of 
reduced sedentary time on DPN outcomes are lacking, but 
epidemiological evidence linking inactivity to cardiovas-
cular risk and poor health outcomes, independent of time 
spent in aerobic exercise, makes anti-sedentary behavioral 
modification an alluring future research direction (138). 
Wearable devices such as fitness trackers and smartphone 
applications, as well as research-grade accelerometers, 
make accurate measurement of sedentary behavior possible 
to provide feedback and facilitate goal-setting.

Dietary Counseling and Modifications
Dietary counseling as an isolated intervention for DPN 
has received only sparse investigation, but eating pattern 
modifications may prove effective as part of a more compre-
hensive lifestyle treatment regimen. Components of a 
healthy eating pattern ameliorate insulin resistance, improve 
glucose control, and promote anti-inflammatory effects in 
individuals with type 2 diabetes (139). Key components of a 
healthy eating pattern in the setting of DPN include calorie 
restriction, processed carbohydrate restriction, and emphasis 
on polyunsaturated fats and antioxidant foods.

Obesity, and especially abdominal adiposity, generate 
a potent pro-inflammatory state. Pro-inflammatory 
cytokines and free fatty acids released from enlarged 
adipocytes are neurotoxic to axons. Calorie restriction was 
more important than exercise for weight loss in the DPP 
and similar curriculum-driven HBI trials (125,126). Lipid 
metabolites and chronic cellular hyperglycemia activate 
pro-inflammatory cellular injury response pathways and 
contribute to oxidative stress, which inhibits mitochon-
drial function in distal axons.
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Concentrated carbohydrates should be avoided, while 
emphasizing dietary sources of antioxidants such as 
green, leafy vegetables, berries, citrus fruits, and salmon. 
These dietary precepts are embodied in the low-fat and 
low-sugar eating pattern outlined in the DPP curriculum 
(125) and in predominantly plant-based diets such as
the Mediterranean eating pattern (45% carbohydrate, 
35–40% fat, and <10% of saturated fat) (139). 

Passive Modalities
Thai massage (140) and other passive physical treatments 
and alternative medicine modalities have been reported 
in prospective studies to provide pain reduction or 
symptom improvement in DPN, but without the size and/
or rigor of trial design or trial confirmation necessary to 
adequately evaluate their efficacy. These modalities include 
neuro-biofeedback (141), foot bath techniques (142), and 
static magnetic fields (143). None have been shown to alter 
the natural history of DPN progression.

Energy or Nerve Stimulation Treatments
In addition to HBIs and passive modalities, other 
nonpharmacological approaches to painful DPN that have 
received prospective evaluation include decompressive 
surgery and various forms of electrical modulation of nerve 
or other tissues, including transcutaneous electrical nerve 
stimulation (TENS), frequency-modulated electromagnetic 
stimulation, transcranial magnetic stimulation (TMS), 
and the previously mentioned SCS. These modalities have 
been extensively reviewed in practice guidelines, structured 
reviews (144), and detailed reports from the Agency for 
Healthcare Research and Quality (136). None of these 
treatments has been clearly shown to prevent or delay onset 
of DPN symptoms or to alter the natural history of DPN.

Electromagnetic Stimulation Modalities
In DPN, spontaneous ephaptic transmission from 
metabolically injured peripheral sensory afferent fibers 
generates sensation of neuropathic pain that often 
develops a chronic quality through central spinal 
sensitization. Various modes of intermittent electrical 
stimulation have been trialed to interrupt pain sensation. 
TENS and similar cutaneous nerve stimulation modes 
offer a competing sensory experience, whereas TMS and 
SCS modalities interrupt central processing of peripheral 
afferents. Although trial evidence for all of these modes 
is considered weak, centrally acting modes (i.e., TMS 
and SCS) appear more efficacious than peripherally 
acting modes. Several trials of electromagnetic stimu-
lation have included change in exam or other measures 
of neuropathy severity as secondary or exploratory 

endpoints, but none has convincingly demonstrated 
neuropathy improvement with these therapies.

Spinal Cord Stimulation
SCS, in which stimulating electrodes are surgically implanted 
in the epidural space, is extensively used for pain reduction 
in failed back surgery syndrome and has been compared in 
clinical trials against best medical care (but not sham proce-
dures) for treatment of painful DPN (145). These trials found 
large effect sizes favoring pain reduction with SCS over a 
6-month follow-up period. Modest pain reduction appears 
durable. In longitudinal follow-up from a multicenter RCT 
of SCS, about one-third of recipients reported at least a 50% 
reduction in pain compared to baseline at 60 months (146). 

Small, single-arm trials and RCTs of high-frequency 
(e.g., 10 kHz) SCS have reported 60–80% reduction in pain 
compared to best medical management, but also subjective 
improvements in sensory function. The strongest evidence 
for 10-kHz SCS comes from a recent multicenter RCT that 
randomized 216 patients with painful DPN who had not 
experienced improvement with at least one gabapentinoid 
and had a VAS score >50 mm to medical management alone 
or with 10-kHz SCS (100,147). Of the 104 participants 
assigned to SCS, 98 responded to temporary stimulation; 
90 were implanted; 5 experienced implantation-related 
adverse events, with 2 requiring explants; and 74 reported 
a 50% reduction in baseline VAS pain at 6 months and 72 
participants at 12 months, compared to 5 of 95 participants 
randomized to medical management alone. Control 
participants were allowed to cross over to 10-kHz SCS 
after 6 months of follow-up and showed similar significant 
improvement in pain measures as participants randomized 
to SCS at baseline. Quality-of-life measures improved 
significantly after 10-kHz SCS. Reported improvements in 
foot sensation on standardized exam for SCS participants 
suggest improved neurological function, but also raise 
concern about possible examiner and participant bias in a 
study that was not blinded or sham-controlled.

Risks for perioperative and long-term complications limit 
the appeal of SCS. Surgical and long-term complications 
of SCS specific to DPN have not been reported except 
in the context of clinical trials. However, a meta-analysis 
of 32 peer-reviewed longitudinal studies examining SCS 
for other indications found a complication rate of 21%, 
with chronic lead migration or infection requiring surgical 
revision or removal in 10% of recipients (148). 

Transcranial Magnetic Stimulation
TMS using deep cortical stimulation has been reported in a 
5-day, sham-controlled, crossover trial to provide significant 
short-term reduction in perceived neuropathic pain in people 
with DPN, with a return to baseline pain over 3 weeks (149). 
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Transcutaneous Electrical Nerve Stimulation
TENS in various forms, including via dermal pads, as 
an adjunct to amitriptyline, with electrode stockings, 
via percutaneous needles, and as frequency-modulated 
or pulsed stimulation (150) have been compared to 
sham treatment in short-duration randomized or 
crossover trials of up to 225 participants. A report 
by the Agency for Healthcare Research and Quality 
(136) and other structured reviews of these therapies
concluded that TENS treatment was not clearly
superior to sham for either pain or quality of life, with
more rigorous and longer-duration trials yielding less
apparent benefit (150). 

Systematic Surgical Decompression
Systematic surgical decompression, in which individuals 
undergo surgery at multiple nerve sites in the leg that 
are considered common sites for compressive injury 
(e.g., the tibial nerve at tarsal tunnel and peroneal nerve 
at fibular head), has been reported prospectively in a 
small uncontrolled series (11 individuals with DPN) 
and a single-limb trial using the opposite leg as a 
control (42 individuals) (151). These studies reported 
improvement in neuropathic pain measures, with large 
effect sizes in the surgical subject or limb. However, 
poor design, treatment bias, lack of sham controls, 
lack of follow-up data on perioperative or long-term 
complications of surgery, and lack of confirmation from 
other trials substantially limit the ability to interpret 
these results. 

Acupuncture
A 10-week RCT in 45 individuals with DPN and 
neuropathic pain compared acupuncture at traditional 
meridian-based sites to sham needling, using a VAS 
for neuropathic pain and the 36-Item Short-Form 
Health Survey as a measure of quality of life. It found 
only nonsignificant trends toward improvement in both 
measures over the treatment period (152). 

Photon Stimulation
Photon stimulation describes a group of therapies 
in which pulsed infrared light or near-infrared 
laser energy is applied transcutaneously to 
neuropathy-affected skin with the goal of increasing 
blood flow and cellular and mitochondrial metabolism. 
Small, short-duration, sham-controlled, single-blind 
RCTs of the use of these technologies in DPN have 
shown a nonsignificant trend toward improved pain 
and quality-of-life measures (153). 

In summary, clinical trial evidence for the efficacy of 
nonpharmacological therapies in DPN remains rudimen-
tary. No energy or physical treatment modality has demon-
strated the ability to sustainably alter the natural history of 
DPN. SCS and high-frequency SCS provide long-lasting 
reduction in neuropathic pain in people with DPN pain 
refractory to medical therapy and may be recommended 
in these situations. This potential benefit must be balanced 
against serious wound, infection, and equipment compli-
cations that affect 8–22% of people with SCS implants. 
Among modalities considered to be primary pain therapy, 
TMS consistently provides pain reduction, but there is no 
evidence that this improvement can be sustained. Other 
energy or physical treatment modalities have low-quality 
trial evidence and/or have not shown consistent neuro-
pathic pain improvement and are not recommended. 

HBIs that include a combination of regular aerobic, 
strengthening, and balance exercise; reduction of seden-
tary behavior; and dietary modification aimed at reducing 
calorie intake and increasing plant-based foods and 
polyunsaturated fats are recommended for every person 
with DPN. Intervention should be tailored to each 
patient’s preferences and degree of physical conditioning 
to optimize adherence. Provision of exercise prescriptions 
and supervision by an exercise specialist to assess patients’ 
baseline fitness and risk factors, regulate progression, 
and provide active encouragement can improve exercise 
behaviors and reduce the risk for exercise-associated 
injury, especially in people naive to exercise or with 
physical disabilities that increase their risk for falls.

KEY POINTS
» Regular aerobic, strengthening, and balance

exercise, alone or in combination; reduction of
sedentary behavior; and dietary modification
aimed at reducing calorie intake and increasing
plant-based foods and polyunsaturated fats
have all demonstrated positive outcomes for
individuals with DPN.

» Exercise participation, guided by exercise
prescription and supervision by an exercise
specialist, is safe and can improve exercise
behaviors and reduce the risk for exercise-
associated injury.

» SCS and high-frequency SCS provide long-lasting
reduction in neuropathic pain in people with DPN
pain refractory to medical therapy but must be
balanced against serious potential complications
in this population.
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SUMMARY AND CONCLUSION
Our main objective in writing this monograph was to 
provide up-to-date information regarding painful DPN, 
including novel mechanisms and risk factors contributing 
to the contemporary prevalence trends for this serious 
and common complication of diabetes. Additionally, we 
sought to offer clear guidance to the greater diabetes care 
community on the best approaches for screening and 
diagnosis of DPN in individuals with type 1 diabetes, type 
2 diabetes, or prediabetes, as well as on a broad spectrum 
of management strategies, with the ultimate goal of 
ensuring access to optimal, evidence-based DPN manage-
ment for all people with this condition. 

The symptoms associated with DPN are dependent on 
the type of fibers most affected initially, although some 
individuals with DPN may be completely asymptomatic 
and thus may first present with advanced complications 
such as foot ulcers. The small fibers that convey pain 
and dysesthesias are particularly vulnerable to the 
energy-starved environment of diabetes, which explains 
why small fibers are the earliest fibers to undergo injury 
secondary to diabetes. Thus, burning pain and dysesthesias 
are frequently the first symptoms of DPN. Both type 1 
and type 2 diabetes increase the risk of developing painful 
DPN. Women, members of some racial/ethnic minority 
groups, and individuals with type 2 diabetes appear to be 
at greater risk for developing DPN pain.

Periodic, flexible assessment for DPN risk factors and 
symptoms and their trajectories over time should be part 
of standard care for all people with diabetes. Although 
earlier diagnosis of DPN could enable targeted treatment 
to prevent progression of the disease and other adverse 
outcomes, it remains underdiagnosed in many individuals 
with diabetes today. Thus, DPN assessment, including a 
detailed history and at least two sensation and reflex tests, 
should be performed annually starting at diagnosis of type 
2 diabetes and 5 years after diagnosis of type 1 diabetes, 
including in young people. Electrophysiological testing is 
rarely needed for people with typical signs and symptoms 
of DPN. A complex differential is recommended, as 
nondiabetic neuropathies may coexist in individuals with 
diabetes and may be treatable. Additionally, more recent 
evidence from large cohorts has revealed that socioeco-
nomic factors and health care accessibility are risk factors 
for DPN. Therefore, clinicians are encouraged to incor-
porate comprehensive assessment of the impacts of social 
and psychological determinants of health on DPN and to 
address these impacts as part of overall DPN management. 

Because there are no FDA-approved, pathogenet-
ically oriented pharmacological treatments to reverse 

DPN, current treatment approaches target prevention 
of DPN and relief of its symptoms. Prevention and 
management decisions should be individualized and 
might include intensively controlling blood glucose, as 
well as targeting other risk factors such as dyslipidemia, 
obesity, hypertension, and smoking, with both lifestyle 
and pharmacological interventions.

We have provided here a targeted DPN management 
strategy that includes the currently available oral (e.g., 
anticonvulsants and tricyclic antidepressants) and topical 
pharmacological agents with evidence of clinically 
meaningful pain reduction, as well as HBIs specifically 
for painful DPN (Figure 8). Dosing regimens should 
take into account individuals’ age and comorbidities, 
and efforts should be made to use the lowest effective 
dose for a given agent alone or in combination to 
mitigate side effects, while avoiding opioid therapies 
entirely. Importantly, none of these agents should be 
regarded as lifetime medications, and periodic review of 
pharmacological therapy is recommended, with gradual 
reduction of drug treatment in response to symptom 
abatement over time. Particular care is required in the 
management of painful DPN in elderly patients, in 
whom polypharmacy is common and the risk of adverse 
effects is amplified.

Given their excellent safety profile, many nutraceuticals 
have been developed, some with proven benefit for relief 
of DPN pain symptoms, although the potential of these 
products to favorably modify the natural history of DPN 
remains to be proven in well-designed, well-conducted 
confirmatory RCTs. Several nonpharmacological 
approaches also might alter the natural history of DPN 
or ameliorate neuropathic pain. These include HBIs such 
as exercise, dietary modification, or their combination; 
passive modalities such as massage and biofeedback; and 
nonpharmacological energy or nerve stimulation treat-
ments. These, too, deserve more study.

In conclusion, we encourage all clinicians who treat 
people with diabetes to strive for early recognition of 
DPN using the algorithms and tools we have described 
here and to bring to bear the requisite thoughtful clinical 
evaluation and implementation of a multilevel manage-
ment strategy to ensure that all individuals with painful 
DPN benefit from optimal personalized care.
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Nox, Nox, Are You There? The Role of NADPH
Oxidases in the Peripheral Nervous System
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Abstract

Significance: Reactive oxygen species (ROS) contribute to multiple aspects of peripheral nervous system
(PNS) biology ranging from physiological processes (e.g., axonal outgrowth and regeneration) to pathophys-
iology (e.g., nerve degeneration). Although ROS are derived from multiple sources, NADPH oxidase (Nox)
family members are dedicated to ROS generation. Noxs are expressed in the PNS, and their overexpression is
associated with detrimental effects on nerve function and contributes, at least in part, to peripheral neuropathies.
Recent Advances: Of the seven members, studies mostly focused on Nox1, Nox2, and Nox4, which are
expressed in the PNS in a cell-specific manner. We have also recently identified human Nox5 in sural nerve
biopsies. When maintained at homeostatic levels, Noxs regulate several aspects of peripheral nerve health, most
notably neurite outgrowth and axonal regeneration following nerve lesion. While Nox2 and Nox4 dysregulation
is a major source of oxidative stress in PNS disorders, including neuropathic pain and diabetic peripheral
neuropathy, recent evidence also implicates Nox1 and Nox5.
Critical Issues: Although there is compelling evidence for a direct role of Noxs on nerve function, little is
known about their subcellular localization, intercellular regulation, and interaction. These, together with redox
signaling, are considered crucial components of nerve redox status. In addition, the lack of isoform-specific
inhibitors limits conclusions about the physiological role of Noxs in the PNS and their therapeutic potential in
peripheral neuropathies.
Future Directions: Future research using isoform-specific genetic and pharmacological approaches are
therefore needed to better understand the significance of Nox enzymes in PNS (patho) physiology. Antioxid.
Redox Signal. 37, 613–630.

Keywords: NADPH oxidases (Nox), neuron, neuropathy, peripheral nervous system (PNS), reactive oxygen
species, Schwann cells

Introduction

The peripheral nervous system (PNS) refers to the
portion of the nervous system that lies outside the central

nervous system (CNS) and serves as a connecting point be-
tween the CNS and peripheral tissues. It consists of a com-
plex network of cranial and spinal nerves, composed of
neurons, their axons, and supporting Schwann cells. Afferent

sensory neurons and their associated axons transmit infor-
mation from sensory receptors in the PNS back to the CNS,
whereas motor efferent neurons and their axonal extensions
transmit information from the CNS to the muscles and glands
(38). This back-and-forth communication between the PNS
and the CNS is pivotal for the physiological regulation of the
internal system as well as the interactions with the external
environment.
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The need to rapidly carry nerve impulses over long dis-
tances of up to 2 m or more in length poses a unique challenge
to the PNS and makes it highly susceptible to metabolic,
mechanical, toxic, and immune insults (141). When injured,
the PNS exhibits abnormalities in nerve structure and function
that disrupt the ability of the CNS to communicate via the PNS
with effector organs and muscles.

Peripheral neuropathies are a heterogeneous group of dis-
orders that occur secondary to peripheral nerve damage, lead-
ing to reduced quality of life (43). They affect more than 8% of
the general population, and this number rises to 15% in patients
40 years or older (46). Peripheral neuropathies are often asso-
ciated with axon degeneration, impaired regeneration, as well
as disruptions in calcium (Ca2+) signaling, electrophysiological
function, mitochondrial function, and substrate utilization (38,
135, 141). Redox signaling modulates many of these processes,
and accumulating clinical and preclinical evidence has shown
increased nerve reactive oxygen species (ROS) following pe-
ripheral nerve dysfunction. However, untargeted antioxidant
therapies to treat PNS disorders have only exhibited limited
therapeutic potential in the clinical setting (83, 110).

In addition to the incorrect selection of antioxidant dosages
and treatment durations, these failures are mainly attributed
to the lack of antioxidant specificity against the ROS sour-
ce(s) altered in a disease- and tissue-specific manner. Un-
targeted antioxidant treatment can result in off-target effects
or lead to global suppression of ROS-producing enzymes,
including those required for normal physiology (133).

Therefore, it is critical to abandon the previous conventional
approach that ‘‘blindly’’ targets all antioxidant activity. The
new and needed way forward is to identify specific ROS
sources that are altered during disease course, so that targeted
antioxidant therapies can be developed to treat PNS diseases.

The major sources of ROS in peripheral nerves include
mitochondria, xanthine oxidase, and NADPH oxidases (Noxs)
(Fig. 1) (38, 124, 143). Among these sources, the Nox family
of enzymes consists of seven members (Nox1–5 and dual
oxidases [Duox] 1 and 2) specialized for ROS production
(103). Although the role of Noxs in the PNS is not completely
understood, evidence implicates Nox family members in cel-
lular functions ranging from the immune response and neu-
ronal development to pathophysiological involvement and
neurodegeneration (35, 73, 96, 143). In this review, we first
provide a general overview of ROS and antioxidant generation
in the PNS. We then focus on Nox expression in the PNS, their
physiological roles, how Nox-derived ROS contribute to PNS
disorders, and the novel concepts of Nox signaling, which may
be relevant to nerve redox homeostasis and PNS function.

ROS and Antioxidants: General Overview

ROS are a family of oxygen containing molecules result-
ing from cellular metabolism, which can avidly react with
biomolecules, including nitric oxide, proteins, lipids, carbo-
hydrates, and DNA (119). Because of their ability to modify
biomolecules, ROS generation was initially considered

FIG. 1. ROS sources and metabolism in the PNS. The mitochondrial ETC is considered a major source of ROS in the
PNS and can inadvertently lead to O2

-� generation under physiological conditions (38). Other sources that generate ROS
as a by-product of metabolism include XO located in the cytoplasm (116, 127), CYP and COX (128) that reside in the
ER, as well as LOX (147) found in the nuclear and cytosolic regions and membranes (not shown in the figure for
simplicity) (124). Noxs are a specialized source of ROS (120). They localize to the plasma membrane and intracellular
compartments, including the mitochondria (shown in the figure with a question mark that highlights a possible local-
ization to the inner mitochondrial space), the ER, and the nuclear envelope (not shown in the figure for simplicity).
Under physiological conditions, O2

-� generated by these ROS-producing enzymes is rapidly converted to the more
stable and easily diffusible H2O2 by SOD. H2O2 is then detoxified by CAT to form H2O (124). CAT, catalase; COX,
cyclooxygenases; CYP, cytochrome P450 monooxygenases; ER, endoplasmic reticulum; ETC, electron transport chain;
H2O, water; H2O2, hydrogen peroxide; LOX, lipoxygenases; Nox, NADPH oxidase; O2

-�, superoxide anion; PNS,
peripheral nervous system; ROS, reactive oxygen species; SOD, superoxide dismutase; XO, xanthine oxidase. Created
with BioRender.com.
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cytotoxic and believed to occur only under pathological
conditions. However, it is now well established that ho-
meostatic ROS levels are crucial for cellular physiology and
regulate processes such as growth, apoptosis, signal trans-
duction, cellular respiration, and host defense.

In the nervous system, ROS production is involved in blood
pressure regulation, cognitive function, tissue repair, and immune
response (103). However, when overproduced, these highly re-
active molecules become deleterious and can promote cell
damage in disease states. The increased understanding of both the
beneficial and harmful effects of ROS is critical to the design of
rationale, mechanism-based therapies for PNS disorders.

ROS are classified into two groups: radical and nonradical
species. Radical ROS include superoxide anion (O2

-�), hy-
droxyl radical (�OH), and nitrogen-based species such as the
nitric oxide radical (NO�), whereas nonradical ROS include
hydrogen peroxide (H2O2), singlet oxygen (1O2), and per-
oxynitrite (ONOO-) (119). Many ROS types are involved in
redox signaling, defined as the reversible redox modifications
exerted by ROS to a specific biomolecule (14). As an ex-
ample, O2

-� exerts its effects at the site of generation and is
rapidly converted to the more stable and easily diffusible
H2O2; both O2

-� and H2O2 are considered major ROS in-
volved in redox signaling through iron/sulfur cluster modi-
fication and cysteine oxidation.

More potent oxidants such as �OH, exert irreversible redox
reactions (14). In peripheral nerves, redox signaling is impli-
cated in physiological processes, including axonal outgrowth
and regeneration, as well as pathophysiology, including pain
processing and nerve degeneration (35, 72, 143).

Intracellular ROS levels in the PNS are maintained in
check via antioxidant defense mechanisms, which consist of
enzymes and nonenzymatic scavengers. Enzymes are mainly
under the control of the transcription factor NF-E2-related
factor 2 (Nrf2) and include superoxide dismutase (SOD),
glutathione peroxidase (GPx), and catalase (71, 88, 137). On
the contrary, nonenzymatic scavengers are primarily of die-
tary origins and include a-tocopherol (vitamin E), b-carotene,
and ascorbate (vitamin C).

Neurons and Schwann cells can initially increase Nrf2-
dependent antioxidant signaling in the face of cellular stressors
at early disease stages before progression to irreversible dam-
age (53, 137). Interestingly, we have shown that Schwann cells
have a high basal antioxidant potential under physiological
conditions, which is further increased during metabolic stress.
This feature is thought to confer resistance to oxidative damage
relative to the more vulnerable neurons (137).

An imbalance between ROS generation and the ability of
the antioxidant defense mechanisms to clear excess ROS, or
effectively repair the resulting damage, is deleterious and is
associated with irreversible oxidative modifications to
macromolecules as well as impaired redox signaling.
These processes eventually lead to uncontrolled ROS
generation commonly referred to as oxidative stress (119),
an effect that has been implicated in nerve degeneration
and PNS disorders.

Sources That Generate ROS As a By-Product
of Metabolism in the PNS

Multiple cellular sources generate ROS in the PNS as a by-
product of oxidative phosphorylation and metabolism. The

mitochondrial electron transport chain is perhaps the most
studied ROS source in the PNS, which can generate O2

-� as a
result of an electron leak leading to a 1-electron reduction
from oxygen to O2

-�, instead of water (2).
Compared with other cell types, mitochondria make up

half of the cytoplasmic volume of high energy consuming
peripheral neurons, which require up to 4.7 billion adenosine
triphosphate (ATP) molecules per second under normal
physiologic conditions (153) to maintain their membrane
potential across a large surface area (115). Because of this
high mitochondrial content, the electron transport chain was
long thought to be the major ROS source that sustains the
oxidative potential in the PNS under physiological conditions
besides being a substantial ROS source in PNS disorders (3,
16). Interestingly, Nox enzymes, mainly Nox4 and Nox5,
might localize to mitochondria, turning the mitochondrial
electron transport chain into both an oxidation target and an
ROS source (10, 81, 93).

In addition to the mitochondrial electron transport chain,
multiple enzymes in the PNS can produce ROS as by-
products of their catalytic activities (Fig. 1). These include
xanthine oxidase, located in the cytoplasm (116, 127), cy-
tochrome P450 monooxygenases (unpublished data), and
cyclooxygenases (128), residing in the endoplasmic retic-
ulum (ER), as well as lipoxygenases (147), found in the
nuclear and cytosolic regions and membranes (124). Studies
have mostly evaluated the function of these ROS-generating
enzymes in PNS pathophysiology and their role in nor-
mal PNS physiology is an avenue warranting further
investigation.

NADPH Oxidases of the Nox Family As a Dedicated
Source of ROS

In contrast to the other ROS-generating systems, NADPH
oxidases of the Nox family (Nox) are transmembrane proteins
with no known metabolic function, except catalyzing ROS gen-
eration across biological membranes (120). This occurs via
electron transfer from NADPH as an electron donor. Two
NADPH molecules transfer two electrons to flavin adenine di-
nucleotide, which passes the electrons to two iron-containing
heme groups. The electrons are then transferred to oxygen as an
electron acceptor, thereby yielding O2

-� largely thought to be
the major product of the electron transfer (Fig. 2). In most
mammals, the Nox enzyme family consists of seven members:
Nox1 through 5 and Duox 1 and 2. Interestingly, the Nox5
isoform is only expressed in higher mammals and is absent in
rats and mice, which limits our understanding of its physio-
logical and pathophysiological significance in humans (39).

The prototype NADPH oxidase, Nox2, originally discov-
ered in neutrophils, is one of the best-characterized members
of the Nox family and is critical for innate immunity (25). It
consists of two transmembrane catalytic subunits (gp91phox

[commonly referred to as Nox2], and the regulatory subunit
p22phox), three cytosolic subunits (p47phox, p67phox, and
p40phox), and a small Rho GTP-binding protein (Rac1 or
Rac2). These subunits are disassociated in the inactive state,
but assemble upon enzyme stimulation to produce O2

-�

(112).
While other Nox members share a certain extent of

structural homology with Nox2, the mechanisms by which
they are activated may vary; for example, similar to Nox2,
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Nox1–4 full activation also requires interaction with p22phox

to produce ROS (112). Nox1 through 3 enzymes require
cytosolic subunits (p47phox and p67phox, or homologues) to
form a fully functional enzyme complex (112). However,
unlike the other isoforms, Nox4 is constitutively active and
does not require any cytosolic subunits for full activation
(92). Nox5 and Duox enzymes contain N-terminal EF-hand
domains with four binding sites for Ca2+, which is required
for enzyme activation (103).

Under physiological conditions, Noxs are maintained at a
relatively low level of constitutive activity to regulate redox
signaling in the vicinity of target molecules. While Nox-
dependent redox signaling mainly regulates cell differentia-
tion, proliferation, and apoptosis, some Nox isoforms exert
cell-specific functions. For example, as mentioned above,
phagocyte Nox2 is heavily involved in the innate immune
response, while Nox3 is highly expressed in the inner ear and
plays a role in otoconia biogenesis (84).

With respect to the ROS type, Nox isoforms generally
produce O2

-� as their primary product. However, data have
demonstrated that Nox4, Duox1, and Duox2 generate H2O2

(26, 105). Evidence also shows that H2O2 can be detected
following Nox5 activation (20, 118). While the biochemical
mechanism underlying H2O2 generation is unknown, a rapid
conversion of O2

-� into H2O2 before release from the enzyme
has been suggested as a contributing factor. It has been fur-
ther demonstrated that Nox4-dependent H2O2 generation
relies on a histidine (His-222) residue, localized in the ex-
tracellular loop of the enzyme (105, 126), a mechanism that
requires validation in the other isoforms.

In the following sections, we review Nox cellular distri-
bution, as well as their physiological and pathophysiological
involvement in the PNS. Because the roles of Nox3 and
Duox1-2 in the PNS are unclear, we focus this review on
Nox1, Nox2, Nox4, and Nox5.

Nox Expression in the PNS

Nox subcellular localization

Nox enzymes reside both at the plasma membrane and in
intracellular compartments, including the ER, mitochondria,
and the nuclear envelope (103). Under resting conditions,
Nox2 is closely associated with p22phox and together pri-
marily localize to intracellular and plasma membranes, while
cytosolic subunits are typically located in the cytoplasm
(102). Upon cell activation, the cytosolic subunits translocate
to membrane-bound Nox2 to form a fully functional enzyme
complex (102). Nox4 on the contrary is expressed intracel-
lularly and can be found in the ER (146), the nuclear envelope
(22), and the mitochondria (10). While both Nox1 and Nox5
have been identified in the plasma membrane (49, 130), re-
ports have also detected Nox5 at several intracellular sites,
including the perinuclear area, the mitochondria, and the ER
(130).

Because of their high reactivity, this diverse subcellular
localization of Noxs has several consequences, including
how Nox isoforms influence redox signaling as well as how
Nox isoforms function under normal and disease states. For
example, Nox2 assembly and activation on the plasma
membrane of neutrophils are essential for ROS generation
and pathogen elimination at the injury site (36). A recent
report identified mitochondrial Nox4 as an energetic sensor,
whose activity is directly regulated by ATP in renal cells
(117). These results suggest a close connection between ATP
turnover and Nox4 redox signaling and could be of relevance
to the PNS.

With respect to the PNS, axons are intimately associated
with Schwann cells, and growing evidence highlights the
importance of the Schwann cell/axon cross talk in peripheral
nerve metabolic support (11). This in turn raises the possi-
bility that ROS release from axons into the extracellular
space may directly influence the surrounding Schwann cells
and vice versa. Specifically, Nox4-derived oxidative stress in
sensory dorsal root ganglion neurons is accompanied by
Schwann cell injury and dysmyelination in a mouse model of
neuropathic pain (72). While the underlying mechanism is
unknown, one can speculate that Nox4-derived ROS in axons
could damage Schwann cells in a paracrine manner, similar to
what has been observed in the vasculature (12, 13, 98). This
novel aspect of Nox signaling is discussed in detail below.

Nox cellular distribution in the PNS

Relative to the better characterized CNS (103), the cellular
distribution of Nox enzymes in the PNS has not been com-
prehensively analyzed (Table 1). Data, however, demonstrate
that Nox isoforms can be expressed simultaneously at mul-
tiple PNS sites (28, 73). In addition, it is generally thought
that Nox expression in the PNS is maintained at low basal
levels under physiological conditions, and upregulated in
disease states (103).

FIG. 2. NADPH oxidase family of enzymes as a dedi-
cated source of ROS. Nox enzymes are a family of trans-
membrane proteins. They bind within their C-terminus,
NADPH, which acts as the electron (e-) donor. Two
NADPH molecules transfer two e- to FAD, also bound
within the C-terminus, which passes the e- to two Fe-
containing heme groups. Finally, the e- are transferred to O2,
the terminal acceptor, catalyzing the transformation to O2

-�,
although Nox4 and Nox5 release H2O2. Nox1–4 share a
certain extent of structural homology and all require inter-
action with the regulatory subunit p22phox to produce ROS.
Nox5 does not require p22phox, but is Ca2+-dependent and
thus contains N-terminal EF-hand domains with four Ca2+-
binding sites (103). Ca2+, calcium; FAD, flavin adenine
dinucleotide; Fe, iron; O2, molecular oxygen. Created with
BioRender.com.
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Dorsal root ganglion neurons express Nox1, Nox2, and
Nox4 (59, 72, 136). Studies have also reported the expression
of Nox accessory proteins p22phox, p47phox, and Rac1 in rodent
primary cultures of dorsal root ganglion neurons (17, 111, 136).

As we mentioned above, Nox subcellular localization in
dorsal root ganglion neurons is a crucial determinant of the
downstream signaling effects of intracellular versus extra-
cellular Nox-derived ROS. While this is still an area requiring
further research, multiple studies have used dihydroethidium
(DHE) for detecting O2

-� in neuronal cultures or whole pe-
ripheral nerve samples (35, 57), which suggests a role for
Nox-derived ROS in intracellular redox signaling. Increasing
studies are, however, assessing ROS release into the extra-
cellular space using cytochrome c assay and Amplex Red (23,
72), which may reflect a role in cell-to-cell communication
and in the propagation of ROS signals into neighboring cells.

Schwann cells mainly express Nox1 and Nox4 (28, 35),
with no available reports on Nox2 protein expression.

As a whole, Nox subcellular localization in Schwann cells
remains largely unexplored. Recent data, however, have shown
that Nox1 can generate both intra- and extracellular oxidants in
Schwann cells in a neuropathic pain model. The authors sug-
gest that intracellular ROS maintain mechanical allodynia,
while extracellular H2O2 promotes Nox2-expressing macro-
phage recruitment to the perineurial space (28). Simultaneous
expression of Schwann cell Nox1 and macrophage Nox2 in the
PNS leads to a sustained feed-forward loop of oxidative injury.
These results suggest a potential interaction between different
Nox isoforms to regulate redox signaling, a novel concept that
is further discussed below.

Macrophages mostly express Nox2 (28, 70), which is low
in the absence of a stimulus (77). Once activated, reports
demonstrate the Nox2-mediated oxidative burst at the injury
site in rodent models of PNS disorders (28, 70). Besides
Nox2, Nox4 is upregulated in spinal cord macrophages at late
stages of neuropathic pain and, together with Nox2, modu-
lates macrophage polarization (9). Whether Nox2 and Nox4
are simultaneously coexpressed in PNS macrophages and the
significance of this coexpression on peripheral nerve health
are areas requiring additional studies.

Nox Signaling in the PNS Under Physiological
Conditions

Under physiological conditions, Nox enzymes regulate
redox signaling by generating low ROS levels, in a spatially
confined manner, which induces conformational changes in
the target molecule, in turn impacting its interactions and
downstream function (14). Signaling proteins containing
active-site and structural cysteine residues are perhaps the
most susceptible targets for redox modifications and include
kinases, phosphatases, ion channels, and transcription factors

(108). Oxidation targets that may be especially important for
peripheral nerve function include redox switches Nrf2 and
NFjB (69, 82), as well as sensory neuron ion transient re-
ceptor potential (TRP) channels (40).

The direct contributions of Nox enzymes to these processes
in the PNS remain unclear and are not discussed in this review.
Instead, we consider examples of cellular functions of Nox
enzymes in neurite outgrowth and axon regeneration (Fig. 3).

Neurite outgrowth

Redox signaling is implicated in the regulation of neurite
outgrowth, a highly coordinated process that allows exact
pathfinding for developing and regenerating neurons in re-
sponse to environmental cues (150). In this context, an early
study showed that exposing cultured neurons to nerve growth
factor (NGF) induces neurite outgrowth in an ROS-
dependent manner (125). More recent data revealed that
Rac1, the Nox cytosolic subunit, and increased Nox activity
are both required for neurite outgrowth in vitro (78).

When evaluating the contribution of specific Nox isoforms
to this process, Ibi et al. found that Nox1-dependent ROS
suppress neurite outgrowth (58). However, studies in Aplysia
bag cell neurons showed that Nox2 and its cytosolic subunit
p40phox localize in growth cones, dynamic structures com-
posed of an actin and microtubule cytoskeleton located at the
tip of elongating neurites, which allows outgrowth and
guidance to the proper target.

The authors suggest that Nox2/p40phox may modulate
neurite outgrowth by oxidizing the actin cytoskeleton and
changing its polymerization state (101). Findings in cultured
hippocampal neurons further demonstrated that Nox2-
derived H2O2 can also oxidize ryanodine receptors (RyR)
localized in the ER, releasing Ca2+. This Ca2+-dependent
process regulates the different aspects of neurite outgrowth,
including axonal development and polarization (144). To-
gether, these data suggest that physiological Nox levels are
required for neurite outgrowth during development (Fig. 3A).
Moreover, Nox isoforms (e.g., Nox1 vs. Nox2) may have
differential effects on neurite outgrowth, an idea that requires
further research.

Tissue repair and axonal regeneration

As we mentioned above, neurons and their long axonal
processes have high energy demands with considerable ATP
consumption. Neuron maintenance and repair require effi-
cient signaling over long distances, which can be achieved
through bidirectional protein and organelle transport between
cell body and axons (114).

Indeed, lesions to peripheral nerves trigger well-
orchestrated cellular and molecular events, including an in-
flammatory response at the injury site to induce axonal

Table 1. Nox Cellular Distribution in the Peripheral Nervous System

PNS cellular localization Nox isoforms Accessory proteins References

Dorsal root ganglion neurons Nox1, Nox2, and Nox4 p22phox, p47phox, and Rac1 (17, 59, 72, 111, 136)
Schwann cells Nox1 and Nox4 Not identified (28, 35)
Macrophages Nox2 and Nox4 p22phox and p47phox (9, 28, 70)

Nox, NADPH oxidase; PNS, peripheral nervous system.
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regeneration (7). This inflammatory response favors a highly
oxidizing environment, and accumulating evidence suggests
that ROS are in turn essential for axonal regeneration and
functional recovery after peripheral nerve injury (29, 50,
113). Earlier studies mainly examined axonal regeneration in
Drosophila and zebrafish [reviewed in Terzi and Suter (129)],
which consistently pointed to a key role of Duox-mediated
ROS in axon reinnervation and wound healing (76, 104, 113).

More recently, studies in genetically modified mouse
models revealed that macrophage-derived Nox2 promotes
axon growth and regeneration in mouse dorsal root gan-
glion neurons (50). Hervera et al. found that exosomal
Nox2 is taken up by injured axons via endocytosis and
retrogradely transported to the cell body in endosomes
in an importin-b1–dynein-dependent mechanism. En-
dosomal Nox2 oxidizes phosphatase and tensin homo-
logue (PTEN), triggering a disulfide bond formation,
which inactivates PTEN. PTEN inactivation favors
phosphatidylinositol 4,5-bisphosphate (PIP2) phosphory-
lation to phosphatidylinositol (3,4,5)-trisphosphate (PIP3)
and PI3K-Akt pathway activation, promoting nerve repair
and axon regeneration (50).

The same team went on to show that in vivo activation of
neuronal Nox2 promotes axonal regeneration and partial res-
toration of sensory nerve function after spinal cord injury (29).

Overall, these studies strongly support a role for Nox-
dependent ROS as signaling molecules required for tissue
regeneration after PNS injury (Fig. 3B). The idea of Nox
shuttling from macrophages to damaged axons is a novel
concept, which advocates a new way forward in our under-
standing of physiological redox signaling in the PNS (51). In
addition, these results are particularly exciting in light of the
growing interest in axo-glial metabolic communication (6)
and require further investigation in in vitro and in vivo models
of PNS disorders.

Nox Pathophysiological Involvement in PNS

Table 2 outlines the involvement of major Nox isoforms
and their potential roles in PNS disorders detailed below.

Neuropathic pain

Neuropathic pain is a common and debilitating compli-
cation associated with a range of PNS disorders, including

FIG. 3. NADPH oxidase signaling in the PNS under physiological conditions. Nox-derived ROS promote neurite
outgrowth (A) and axon regeneration (B) under physiological conditions. (A) Nox2 and its cytosolic subunit p40phox

localize in growth cones, dynamic structures composed of an actin and microtubule cytoskeleton located at the tip of
elongating neurites, which allows outgrowth and guidance to the proper target. Nox2-derived H2O2 oxidizes the actin
cytoskeleton, changing its polymerization state and favoring neurite outgrowth (101). Nox2-derived H2O2 can also
oxidize RyR localized in the ER, releasing Ca2+. This Ca2+-dependent process regulates different aspects of neurite
outgrowth, including axonal development and polarization (144). (B) Following peripheral nerve lesion, macrophages
release exosomal Nox2, which is taken up by injured axons via endocytosis and retrogradely transported to the cell
body in an importin-b1–dynein-dependent mechanism. Endosomal Nox2 oxidizes PTEN, triggering a disulfide bond
(SS) formation, which inactivates PTEN. PTEN inactivation favors PIP2 phosphorylation (P) to PIP3 and PI3K-Akt
pathway activation, promoting nerve repair and axon regeneration (50). PIP2, phosphatidylinositol 4,5-bisphosphate;
PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PTEN, phosphatase and tensin homologue; RyR, ryanodine receptors.
Created with BioRender.com.
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diabetic neuropathy, amputation, acute peripheral nerve in-
jury, and chemotherapy-induced neuropathy (64). It presents
as hypersensitivity with allodynia and hyperalgesia or con-
tinuous pain sensations (38). Current therapies only mar-
ginally provide relief due to the lack of understanding of pain
processing (19).

Preclinical studies in animal models of neuropathic pain
implicate oxidative stress as a prominent pathogenic factor in
pain sensitization (73). Specifically, increasing evidence sug-
gests that Nox enzymes contribute to pain processing (42, 70,
140), and the most studied isoforms are Nox1, Nox2, and Nox4
(Fig. 4). Nox2-dependent ROS are a key mediator of oxidative
stress in pain sensitization after peripheral nerve injury (28, 70,
77, 86). Kallenborn-Gerhardt et al. also demonstrated that in-
creased Nox2 signaling in infiltrating macrophages promotes
dorsal root ganglion damage and neuropathic pain after pe-
ripheral nerve injury, an observation not present in Nox2-
deficient mice (70). Besides its action on sensory neurons, Nox2
induction in infiltrating macrophages can also target Schwann
cells, which in turn activate Nox1, as we discussed above (28).

In addition to its effect on peripheral immune cells, Nox2
can modulate neuropathic pain after peripheral nerve injury by
its actions on microglia located in the dorsal horn of the spinal
cord, a mechanism that requires Toll-like receptor 2 (TLR2)-
dependent activation of the inflammatory response (77, 86).
These findings suggest that Nox2-derived ROS in central and
peripheral immune cells mediate, at least in part, neuropathic
pain. This raises the possibility of inhibiting excess Nox2 ac-
tivity as a meaningful therapeutic strategy. The caveat with
this approach lies in the critical roles of Nox2-derived ROS in
the innate immune response (133). In addition, we have dis-
cussed in a previous section the emerging role of Nox2 in
axonal regeneration following PNS injury (50).

These results conflict with the findings that Nox2 mediates
pain processing and suggest that the role of Nox2 may differ
at different stages of peripheral nerve injury, which calls for
caution in the use of Nox2 inhibitors as these may limit re-
generation. Furthermore, genetic deletion of Nox2 functional
subunits p47phox-/- and gp91phox-/- leads to arthritis, joint
inflammation, and increased bone destruction (134). Thus,
inhibiting Nox2 could be of limited therapeutic use for
treating neuropathic pain due to its physiological roles in the
immune response and axonal outgrowth (50).

Nox4 is also implicated in pain processing after peripheral
nerve injury (42, 72, 140). Geis et al. found that Nox4 up-
regulation contributes to early neuropathic pain and increases

proinflammatory cytokine release at the lesion site (42),
worsening the pain sensation (121). While Nox4 genetic
deletion prevented this acute neuropathic state, the authors
found that pharmacological inhibition using the dual Nox1/4
inhibitor GKT136901 did not prevent pain in the later stages
of neuropathy (42), suggesting that targeting Nox4 should
occur early in the disease course.

Yet, another study showed that Nox4 upregulation in no-
ciceptive primary afferent neurons maintains neuropathic

Table 2. Nox Isoform Involvement in Peripheral Nervous System Disorders

PNS disorder
Nox isoform(s)

involved Potential role(s) References

Neuropathic
pain

(a) Nox1
(b) Nox2
(c) Nox4

(a) Macrophage infiltration; thermal and mechanical hyperalgesia
(b) Central and peripheral immune regulation in pain sensitization

after peripheral nerve injury
(c) Peripheral pain processing, neuroinflammation, and dysmyelination

(28, 42, 59, 70, 72)

CIDP Nox2 Unclear (91)
CIPN Nox4 Pain hypersensitivity; increased proinflammatory mediators (96, 97)
DPN (a) Nox2

(b) Nox4
(a) Pain processing and allodynia
(b) Schwann cell injury; neurophysiological defects

(21, 35, 136)

CIDP, chronic inflammatory demyelinating polyneuropathy; CIPN, chemotherapy-induced peripheral neuropathy; DPN, diabetic
peripheral neuropathy.

FIG. 4. Role of NADPH oxidases in pain processing.
Nox2 induction in both central and peripheral immune cells
contributes to neuropathic pain. In the dorsal horn of the
spinal cord, Nox2 activation following peripheral nerve in-
jury leads to O2

-� generation, microglial activation, and pain
hypersensitivity (77, 86). In addition, Nox2 upregulation in
infiltrating macrophages promotes sensory neuron damage
and neuropathic pain after peripheral nerve injury (70).
Besides its action on sensory neurons, Nox2 induction in
infiltrating macrophages can also target Schwann cells,
which in turn activate Nox1 (28). This initiates a pro-
oxidative feed-forward loop, leading to sustained macro-
phage infiltration to the damaged area, further exacerbating
neuroinflammation and neuropathic pain (not shown in the
figure). Nox4 is also involved in peripheral pain processing
through H2O2 release in nociceptive primary afferent neu-
rons, which is associated with neuropathic pain and dys-
myelination, as evidenced by peripheral myelin protein
MPZ and PMP22 degradation (72). Created with BioR-
ender.com.
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pain in both the subacute and late phases after peripheral
nerve injury by mechanisms involving Schwann cell injury
and dysmyelination, as evidenced by peripheral myelin pro-
tein MPZ and PMP22 degradation (72). This group went on
to demonstrate, using mice with sensory neuron-specific
Nox4 deletion, that the Ca2+-binding protein S100A4 is an
oxidation target of Nox4, which mediates hypersensitivity
downstream of Nox4 (140).

These studies suggest that Nox4 signaling may vary during
different stages of neuropathic pain. Future studies are nee-
ded to identify Nox4 signaling kinetics in neuropathic pain by
direct comparisons across different clinically relevant animal
models, on different genetic backgrounds, using pharmaco-
logical inhibitors and global and tissue-specific genetic ma-
nipulations (60) to identify potential therapeutic windows for
pharmacological intervention.

In addition to the role of Nox1 in Schwann cells (28), Ibi
et al. have demonstrated that Nox1-derived ROS mediate
thermal and mechanical hyperalgesia in dorsal root ganglia
using Nox1 knockout mice (59). Nox1-dependent pain pro-
cessing is thought to involve the enhanced activity of the
inflammatory sensor transient receptor potential vanilloid 1
(TRPV1) (59).

Chronic inflammatory demyelinating polyneuropathy

Chronic inflammatory demyelinating polyneuropathy
(CIDP) is an autoimmune disease of the PNS (85), which
typically presents as a slowly progressive and symmetric
neuropathy, with impaired sensorimotor function (85). While
immune therapies are generally effective, at least half of
CIDP patients require prolonged treatment to prevent disease
relapse (45). Identifying targetable pathways in CIDP is
therefore needed to develop more effective therapies and to
improve disease outcomes.

Numerous pathogenic mechanisms are implicated in hu-
man and mouse CIDP, including neuroinflammation,
Schwann cell dysfunction, and oxidative stress (74). Because
of its known role in neuroinflammation (122), it is perhaps
not surprising that Nox2 activity is increased in granulocytes
and monocytes of CIDP patients (91). Interestingly, treat-
ment with intravenous immunoglobulin increases this activ-
ity compared with pretreatment values. The significance of
this increased Nox2-mediated ROS following treatment re-
mains unclear. However, another study found that Nox2 may
play a role in combating neuroinflammation in multiple
sclerosis (100). While a similar mechanism may occur in
CIDP, future studies are required to validate this hypothesis
in clinically relevant mouse models and determine the precise
mechanisms downstream of Nox2.

Chemotherapy-induced peripheral neuropathy

Chemotherapy-induced peripheral neuropathy (CIPN), a
disabling consequence of cancer therapies (109), is pre-
dominantly a sensory and painful neuropathy (89). Currently,
there are no effective CIPN treatments beyond symptomatic
relief, and a better understanding of disease pathogenesis is
essential for developing much needed mechanism-based
neuroprotective therapies.

One of the established mechanisms by which chemother-
apeutic agents induce cancer cell apoptosis is via ROS gen-
eration (148). Yet, ROS production is not only restricted to

the tumor environment, but can diffuse to the neighboring
healthy cells and induce damage as well (79). Importantly,
sensory dorsal root ganglion neurons and their axons, which
are the first to be affected during CIPN, have low antioxidant
potential and high mitochondrial content, and, unlike the
CNS, lack a protective vascular barrier, rendering them more
susceptible to oxidative damage (38, 137). While increased
ROS levels and lipid peroxidation are present in the periph-
eral nerves of multiple experimental CIPN models (31, 33,
149), much less is known about the exact source of ROS in
CIPN.

While some studies report ROS overproduction secondary
to mitochondrial dysfunction (75, 94), there remains little
direct evidence on the primary ROS source in the context of
disease. With respect to Noxs, increased NADPH oxidase
activity in the spinal cord of a rat model of CIPN results in
neurotoxic peroxynitrite accumulation and CIPN develop-
ment (32, 62). Miao et al. reported a role for Nox4 signaling
in the dorsal root ganglion and the dorsal horn of the spinal
cord during painful CIPN (96, 97). These findings suggest
that Nox4 may be a primary source of ROS in CIPN. How-
ever, the lack of studies assessing changes in other Nox
subunits, both in the CNS and PNS in the presence or absence
of specific inhibitors, limits conclusions about the therapeutic
potential of Noxs in CIPN.

Diabetic peripheral neuropathy

Diabetic neuropathy is a common and debilitating com-
plication affecting more than 50% of all diabetic patients.
While diabetes-induced nerve damage can present in multi-
ple forms, the most common form is diabetic peripheral
neuropathy (DPN), a length-dependent and symmetric pe-
ripheral nerve degeneration (37). There are no disease-
modifying therapies for DPN beyond glycemic control,
which often fails to slow or reverse progression, especially in
prediabetes and type 2 diabetes (T2D) (15). It is therefore
critical to identify specific pathogenic factors contributing to
DPN development to develop targeted mechanism-based
therapies.

Experimental and clinical data, including our own, have
shown that oxidative stress is a major component of cellular
and molecular injury in DPN (4, 35, 56, 136, 137, 154).
Mechanisms of injury downstream of hyperglycemia con-
verge and lead to oxidative stress. Moreover, high-fat diet
(HFD)-fed mice, which develop robust peripheral neuropathy
closely resembling human disease, have increased nerve
oxidative stress (136). These findings indicate that other
metabolic stressors, such as dyslipidemia, an independent
DPN risk factor, may also induce ROS and contribute to DPN
at early disease stages before progressing to overt T2D.
However, untargeted antioxidant therapy, including our own
clinical trial of allopurinol, a-lipoic acid, and nicotinamide
(110), has only exhibited limited therapeutic potential (154).

Among the sources of ROS in the PNS, we have previously
shown that Nox activity is increased in dorsal root ganglion
neurons following multiple metabolic stressors, including
hyperglycemia and hyperlipidemia (136, 138), implicating
Nox enzymes in DPN pathogenesis. What is more important,
however, is the specific Nox isoform altered in DPN-relevant
cell types, which may underlie oxidative damage in DPN
(summarized in Fig. 5).
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Studies show that Nox2 functional subunits p47phox and
gp91phox are upregulated in the spinal cord of streptozotocin
(STZ)-induced type 1 diabetic (T1D) rats, which develop
neuropathic pain (152). These changes are associated with
increased ROS generation and lipid peroxidation, and re-
duced SOD activity, ultimately resulting in tactile allodynia
(152). Nox2-derived ROS also contributed to neuropathic pain
in a T2D rat model rendered diabetic through an HFD and a
single low STZ dose (21). Mechanistic analyses further
showed that Nox2 induction in spinal cord microglia leads
to chronic pain through a direct interaction with caveolin-1
(Cav-1), a regulatory protein involved in lipid homeostasis (21).

In line with these findings, we have previously shown that
p47phox is increased in dorsal root ganglion neurons treated with
oxidized low-density lipoproteins to mimic the dyslipidemic
milieu in DPN (136). Taken together, these results provide
supporting evidence for a role for Nox2 in the development of
DPN and neuropathic pain, which may be conserved across
diabetes type.

In addition to Nox2, we were the first to show that Nox4 is a
major ROS source in peripheral nerves of STZ-induced T1D
mice and that its pharmacological inhibition using GKT137831
prevents hyperglycemia-induced nerve dysfunction (35). In-
terestingly, we also showed that Nox4 mRNA levels were
significantly increased in skin biopsies of T2D patients without
clinical signs of DPN, an effect that was further enhanced in
T2D patients with DPN (35). These clinical data are com-
plemented by preclinical findings, which show increased Nox4-
derived ROS in sciatic nerves from prediabetic HFD-fed mice
even in the absence of hyperglycemia (unpublished data) and
hyperglycemic T2D db/db mice (151).

Overall, these results support the hypothesis that Nox4-
derived ROS are instrumental for human and murine DPN

progression in prediabetes, type 1 diabetes, and T2D. Thus,
in addition to hyperglycemia, additional studies exploring
the link between Nox4 and different metabolic drivers of
prediabetes, T2D, and DPN, such as dyslipidemia and in-
sulin resistance, will be critical to validate Nox4 thera-
peutic efficacy in DPN.

Beyond Nox4, the human Nox5 isoform has emerged as
a pathogenic factor in diabetic complications (30, 66).
Particularly, data from humanized transgenic mice ex-
pressing Nox5 in different kidney cell populations have
identified a role for Nox5 in promoting diabetic kidney
disease, even in the absence of the Nox4 effect (66, 67).
Consistent with these findings, our preliminary observa-
tions in sural nerve biopsies from T2D participants with
DPN indicate that the human Nox5 promoter is hypo-
methylated (47), which promotes increased Nox5 gene
and protein expression (34).

These data suggest that in addition to Nox2 and Nox4,
Nox5-derived ROS may play a key role in human DPN de-
velopment. We are currently examining the selective ex-
pression of Nox5 in Schwann cells and dorsal root ganglion
neurons in transgenic mice to evaluate cell-specific Nox5
effects in the presence or absence of diabetes. These data will
also allow us to evaluate the relative effects and the oxidation
targets of Nox4 versus Nox5 in DPN.

Nox Inhibition As a Therapeutic Target
for PNS Diseases

Given the emerging evidence implicating specific Nox
isoforms as critical mediators of oxidative stress and nerve
injury, Nox inhibition could be a promising therapeutic strat-
egy to treat PNS diseases. Below we discuss these advantages.

FIG. 5. Schematic summary of Nox-dependent mechanisms involved in diabetic peripheral neuropathy. Nox2, 4,
and 5 are induced in peripheral nerves under diabetic conditions. Nox2 is activated in both dorsal root ganglion neurons and
spinal cord. Increased spinal cord Nox2 is associated with reduced SOD activity and neuropathic pain (152). Nox2 is
thought to mediate pain hypersensitivity by interacting with caveolin-1, a regulatory protein involved in lipid homeostasis
(21). The LXR, a master regulator of lipid and glucose homeostasis, is inhibited in diabetes. This inhibition is accompanied
by Nox4 induction in the sciatic nerves of type 1 diabetic mice and in cultured Schwann cells exposed to high glucose
conditions. Nox4-derived ROS results in myelin injury and neurophysiological defects in hyperglycemia-induced peripheral
neuropathy (35). The human Nox5 isoform is hypomethylated at the promoter region (47), which leads to increased Nox5
gene and protein expression in sural nerve biopsies of type 2 diabetic subjects with peripheral neuropathy (34). LXR, liver X
receptor. Created with BioRender.com.
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Antioxidants

In the past two decades, untargeted antioxidant therapy
aimed at neutralizing ROS overproduction was considered
the only approach to reduce oxidative stress in the PNS.
Although promising results were obtained using antioxidant
therapy to treat PNS diseases in the experimental setting (18,
38), clinical trials, especially for DPN, were either of limited
efficacy or were inconclusive (83, 110). This failure was
mainly attributed to the lack of antioxidant specificity against
the ROS source altered in a disease- and tissue-specific
manner. In fact, it is thought that antioxidant supplementation
could result in off-target effects or lead to global suppression
of other ROS-generating enzymes or Nox isoforms, including
those required for normal physiology (133).

Another limitation is related to the rapid oxidization by
ROS, which leads to cellular damage even before initiation of
antioxidant beneficial effects (103).

Nonspecific Nox inhibition

Diphenyleneiodonium (DPI) and apocynin are the two
most commonly used nonspecific Nox inhibitors. Besides
Nox inhibition, DPI inhibits other flavoproteins, such as
xanthine oxidase and nitric oxide synthase (145). DPI as a
therapy has been primarily studied in diabetic complications
where it has cytoprotective effects in complication-prone
tissues (61), including peripheral nerves (61, 68). However,
its use in vivo is associated with insolubility and toxicity
issues (133), rendering DPI a poor therapeutic option.

Apocynin may interfere with ROS detection by chemilu-
minescence and displays variable efficacy and potency (145).
Unlike DPI, apocynin inhibition efficiency in vitro is low and
very high concentrations are required for the antioxidant ef-
fect (52), which explains why it is more suitable and more
commonly used in vivo (133, 145). Experimental evidence
shows that apocynin alleviates neuropathic pain in the pres-
ence or absence of diabetes (48, 107). Apocynin treatment
restored nerve conduction velocity and corrected blood flow
and vascular conductance deficits in STZ-induced T1D rats
(24). Although available safety data show low toxicity (123),
to our knowledge, there are no studies addressing apocynin
efficacy in patients with PNS disorders.

Specific Nox inhibition

A specific Nox inhibitor is essential to determine the
therapeutic potential of targeting Noxs in PNS diseases. As
opposed to global genetic deletion, administering a specific
Nox inhibitor at a particular dose in vivo will be crucial for
restoring Nox activity back to the homeostatic levels, rather
than completely abolishing enzyme activity (134). Accord-
ingly, recent high-throughput screening campaigns have ef-
fectively identified compound classes with enhanced
selectivity against Nox enzymes, including the orally avail-
able, small-molecule Nox1/Nox4 allosteric inhibitors of the
pyrazolopyridine chemical series: GKT136901 and its close
analogue GKT137831. GKT compounds preferentially in-
hibit Nox1 and Nox4, and to a lesser extent Nox5 (1).

These dual Nox1/Nox4 inhibitors have gained consider-
able attention mainly because of their ability to prevent the
development of diabetic complications, including DPN in the
preclinical setting (30, 44). Specifically, we have shown that

GKT137831 treatment improves nerve conduction velocity,
sensorimotor deficits, and thermal sensitivity in neuropathic
STZ-induced T1D mice, effects attributed to Nox4 inhibition
(35). Experimental advances using GKT137831, particularly
in the area of diabetic kidney disease, led to a randomized
phase II trial in T2D participants with advanced diabetic
kidney disease treated with a renin/angiotensin/aldosterone
system inhibitor for 12 weeks (Genkyotex Innovation SAS;
NCT02010242, GSN000200, completed).

The dual Nox1/Nox4 inhibitor had a favorable safety
profile and improved several secondary outcome measures.
Unfortunately, it did not effectively improve albuminuria, the
primary outcome measure. Many reasons for drug failure
were cited, such as inclusion of participants with very ad-
vanced kidney disease, short trial duration, low drug dose, as
well as the heterogeneous nature of T2D-induced kidney
disease relative to type 1 diabetes (133).

Accordingly, a new ongoing clinical trial addressing many of
these concerns will shed light on the efficacy of GKT137831 in
T1D patients with persistent albuminuria, using a longer treat-
ment duration and a higher drug dose (27) (Genkyotex Innova-
tion SAS; ACTRN12617001187336, UTN U1111-1187-2609).
While DPN pathogenesis differs significantly between type 1
diabetes and T2D (15), experimental evidence suggests that
Nox4 may be a viable therapeutic target for DPN conserved
across diabetes type. It would therefore be interesting to evaluate
the therapeutic efficacy of Nox4 inhibition using GKT137831 on
DPN in type 1 diabetes, T2D, or preferably both.

In addition to DPN, the neuroprotective effects of the GKT
compounds were tested in a rodent model of CIPN (97).
GKT137831 improved mechanical and thermal sensitivity in
CIPN rats, which was accompanied by reduced neuronal
oxidative stress, proinflammatory cytokines, and increased
Nrf2 signaling (97).

VAS2870 is a less specific pan-Nox inhibitor with a slight
preference for Nox2 inhibition (5). While the therapeutic
potential of VAS2870 is unknown for PNS dysfunction, re-
ports show that VAS2870 treatment reduces neurodegen-
eration and improves neural function in a mouse model of
acute ischemic stroke, an effect possibly mediated by Nox2
and/or Nox4 (80, 132). The therapeutic potential of VAS2870
is an area worthy of further investigation in PNS diseases,
particularly in the context of neuropathic pain and CIDP,
where Nox2 has emerged as a prominent pathogenic factor.

Novel Aspects of Nox Signaling: Potential Relevance
to PNS Diseases?

Nox-derived ROS production in microparticles

Over the past decade, there has been a paradigm shift in
PNS research, from focusing solely on neurons and their
axonal extensions as an isolated system, to studying the in-
teractions between axons and other nerve cell populations,
namely Schwann cells and macrophages. Indeed, growing
evidence points to the importance of Schwann cells and the
Schwann cell/axon cross talk in axon viability and function
(38, 135), such as through energy substrate transfer from
Schwann cells to axons during periods of high energy de-
mand and ROS scavenging by Schwann cells (6, 137).

Under conditions of metabolic dysfunction, however,
studies show that Schwann cells can transfer lipotoxic species
into the axon, promoting neurodegeneration (55, 135).
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Interestingly, this shuttling activity can be mediated by
Schwann cell-derived extracellular vesicles (EVs) under both
normal and stress conditions (87, 142). EVs are a heteroge-
nous group of membranous vesicles, released by all cells into
body fluids or tissues (41). They mediate intercellular com-
munication by transferring molecular cargo enriched with
enzymes, nucleic acids, and metabolites to recipient cells
(90). According to their biogenesis and size, EVs are
commonly classified into three main types: exosomes
(40–150 nm), originating from the endocytic pathway, mi-
croparticles (MPs; 100–1000 nm), derived from plasma
membranes, and apoptotic bodies (50–5000 nm), released
following apoptosis. EVs are implicated in neurodegenera-
tion in disorders of the CNS [reviewed in Hill (54)].

In the PNS, most studies to date focus on the contribution
of Schwann cell-derived exosomes to nerve regeneration
after axonal injury and DPN through microRNA (miRNA),
growth factor, and metabolite transfer (87, 142). Yet, the role
of EVs in nerve redox signaling and the effect of oxidative
stress on EV molecular cargo remain understudied.

Newly emerging ideas in the Nox field include the concept
of intercellular ROS shuttling in MPs (98). The role of MPs has
been generally studied in the context of vascular dysfunction,
and increased MP levels positively correlate with adverse
cardiovascular events and dyslipidemia (8, 106). Interestingly,
increasing data implicate MPs in processes such as angio-
genesis, vasorelaxation, inflammation, as well as oxidative
stress (12, 95, 131), and further suggest that MPs may them-
selves be metabolically active and generate ROS (12).

Relevant to this review, multiple studies report that
endothelium-derived MPs contain the Nox4 isoform as well
as the regulatory subunit p22phox and produce Nox-dependent
ROS (13, 63, 98). Secreted MPs can disrupt endothelial and
vascular smooth muscle cell function in a paracrine/autocrine
manner via a pro-oxidative feed-forward loop of injury,
leading to apoptosis, inflammation, and impaired vascular
tone (12, 13, 98).

Similar to the vasculature, it is tempting to speculate that
disruption of the redox status between glial cells and axons, or
the transfer of Nox-derived ROS from glia to axons via MPs,
may contribute to nerve degeneration and PNS disorders (Fig. 6).

Nox isoform interaction: is it biologically relevant?

As detailed above, PNS cell types simultaneously express
several Nox isoforms, each exerting a distinct role (28).
Emerging data suggest that these isoforms can interact and
regulate ROS generation promoting sustained oxidative
stress in disease states (98). Indeed, previous data reported
the ability of Nox homologues such as Nox2 and Nox4 to
dimerize (139). Furthermore, in cultured human endothelial
cells with normal Nox2 and Nox4 expression, Nox5 knock-
down is sufficient to abolish Nox-dependent ROS generation
(99). In addition, this response is not accompanied by com-
pensatory Nox2 or Nox4 increases, suggesting a potential
regulatory effect of Nox5 on ROS generation.

More recently, Jha et al. reported similar results in trans-
genic models expressing human Nox5 in kidney mesangial
cells, highlighting the ability of Nox5 to promote kidney
disease progression, even in the absence of Nox4 upregula-
tion (66). Perhaps more importantly, the same group showed
that Nox5 may interact with Nox4 to regulate redox signaling

in cultured renal cells exposed to metabolic stressors (65).
While the precise mechanisms underlying these observations
remain unclear, the findings do suggest, at least partly, an
interdependent effect of Nox4 and Nox5 on the cellular ox-
idative response.

Thus, future studies are warranted to determine the relative
Nox isoform expression and function in PNS cell types, their
interactions, and their independent and interdependent ef-
fects on ROS levels. These findings will in turn be critical to
understanding the cellular oxidative response and damage in
PNS diseases.

Conclusion

In summary, oxidative stress research has evolved from the
traditional view that ROS are exclusively harmful with focus
on untargeted antioxidant therapies, to new advances cen-
tered on understanding the intricacies of redox signaling and
the regulation of ROS sources in a cell- and disease-specific
manner. The NADPH oxidase family, specialized for ROS
generation, appears to be particularly important in the PNS
for multiple cellular functions, ranging from neurite out-
growth and tissue repair to pathophysiological implications
and neurodegeneration.

How specific Nox isoforms mediate peripheral nerve
damage has fostered preclinical research examining the ef-
fect of Nox genetic and pharmacological manipulation on
nerve function. While Nox inhibitors are currently being
tested in the context of PNS diseases, these are not isoform

FIG. 6. Diagram summarizing our proposed mecha-
nism of Nox-containing MPs in PNS diseases. We spec-
ulate that Nox-derived ROS are released from macrophages
and/or Schwann cells via MPs, and engulfed by axons by
endocytosis at the injury site. This ROS-producing MP
transfer may disrupt the axo-glial redox state, contributing
to nerve degeneration and PNS diseases. MP, microparticle.
Created with BioRender.com.
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specific and may simultaneously inhibit several Nox isoforms.
Thus, the development of isoform-specific Nox inhibitors with
improved specificity is more promising for a better under-
standing of Nox biology in PNS health and disease.

The growing appreciation of the importance of axo-glial
metabolic cross talk on nerve health is a recent area of interest
among PNS researchers and may be of potential relevance to
nerve redox status. Indeed, more research is needed in the
area of Nox shuttling in MPs and how Nox isoforms interact
to regulate nerve redox status and function in the axo-glial
milieu. While much remains to be elucidated, increased ex-
perimental and clinical knowledge in the Nox field may fa-
cilitate the development of much needed mechanism-based
therapies for the treatment of peripheral neuropathies.
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Abbreviations Used

ATP¼ adenosine triphosphate
Ca2+¼ calcium
CAT¼ catalase

CIDP¼ chronic inflammatory demyelinating
polyneuropathy

CIPN¼ chemotherapy-induced peripheral neuropathy
CNS¼ central nervous system
COX¼ cyclooxygenases
CYP¼ cytochrome P450 monooxygenases
DPI¼ diphenyleneiodonium

DPN¼ diabetic peripheral neuropathy
Duox¼ dual oxidases

ER¼ endoplasmic reticulum
ETC¼ electron transport chain

EV¼ extracellular vesicle
FAD¼ flavin adenine dinucleotide

Fe¼ iron
H2O¼water

H2O2¼ hydrogen peroxide
HFD¼ high-fat diet
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Abbreviations Used (Cont.)

LOX¼ lipoxygenases
LXR¼ liver X receptor

MP¼microparticle
Nox¼NADPH oxidase
Nrf2¼NF-E2-related factor 2

O2¼molecular oxygen
O2

-�¼ superoxide anion
�OH¼ hydroxyl radical
PIP2¼ phosphatidylinositol 4,5-bisphosphate

PIP3¼ phosphatidylinositol (3,4,5)-trisphosphate
PNS¼ peripheral nervous system

PTEN¼ phosphatase and tensin homologue
ROS¼ reactive oxygen species
RyR¼ ryanodine receptors
SOD¼ superoxide dismutase
STZ¼ streptozotocin
T1D¼ type 1 diabetic
T2D¼ type 2 diabetes
XO¼ xanthine oxidase
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A Role for Fatty Acids in Peripheral Neuropathy
Associated with Type 2 Diabetes and Prediabetes

Amy E. Rumora,1,2 Bhumsoo Kim,2 and Eva L. Feldman2

Abstract

Significance: As the global prevalence of diabetes rises, diabetic complications are also increasing at an
alarming rate. Peripheral neuropathy (PN) is the most prevalent complication of diabetes and prediabetes, and is
characterized by progressive sensory loss resulting from nerve damage. While hyperglycemia is the major risk
factor for PN in type 1 diabetes (T1D), the metabolic syndrome (MetS) underlies the onset and progression of
PN in type 2 diabetes (T2D) and prediabetes.
Recent Advances: Recent reports show that dyslipidemia, a MetS component, is strongly associated with PN in
T2D and prediabetes. Dyslipidemia is characterized by an abnormal plasma lipid profile with uncontrolled lipid
levels, and both clinical and preclinical studies implicate a role for dietary fatty acids (FAs) in PN pathogenesis.
Molecular studies further show that saturated and unsaturated FAs differentially regulate the nerve lipid profile
and nerve function.
Critical Issues: We first review the properties of FAs and the neuroanatomy of the peripheral nervous system
(PNS). Second, we discuss clinical and preclinical studies that implicate the involvement of FAs in PN. Third,
we summarize the potential effects of FAs on nerve function and lipid metabolism within the peripheral nerves,
sensory neurons, and Schwann cells.
Future Directions: Future directions will focus on identifying molecular pathways in T2D and prediabetes
that are modulated by FAs in PN. Determining pathophysiological mechanisms that underlie the injurious
effects of saturated FAs and beneficial properties of unsaturated FAs will provide mechanistic targets for
developing new targeted therapies to treat PN associated with T2D and prediabetes. Antioxid. Redox Signal.
37, 560–577.

Keywords: fatty acids, neuropathy, diabetes, prediabetes, dyslipidemia

Introduction

D iabetes is one of the fastest growing epidemics of the
21st century. Over 463 million adults worldwide cur-

rently have diabetes, and the number of diabetes cases is
projected to reach 700 million by 2045 (66). This massive
increase in diabetes cases over the next two decades will
impact one tenth of the world’s population, and result in a

global rise in diabetes-related deaths and diabetic complica-
tions (132). Type 2 diabetes (T2D) is the predominant type of
diabetes, accounting for 90%–95% of global diabetes cases,
and is characterized by impaired insulin secretion and pro-
gressive insulin resistance (5, 66).

Before developing T2D, almost all individuals have pre-
diabetes, a condition that precedes T2D and is a major risk
factor for the development of T2D (41). In the United States
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alone, 1 in 3 adults have prediabetes placing them at risk of
developing T2D. Although lifestyle interventions such as diet
or exercise can slow the progression from prediabetes to
T2D, 3%–11% of prediabetes cases progress to T2D each
year (47, 100).

The global rise in both diabetes and prediabetes cases
has led to a parallel increase in diabetic complications.
Peripheral neuropathy (PN), the most prevalent compli-
cation of diabetes and prediabetes, occurs in *50% of
T2D as well as 30% of prediabetes patients (14, 49, 105).
PN is characterized by progressive peripheral nerve
damage that leads to tingling, numbness, and/or pain
(35). The distal-to-proximal loss of normal sensation
arises first in the feet and progresses proximally in a
stocking-and-glove distribution.

The progressive loss of sensory function in PN causes
severe morbidity and is a leading cause for nontraumatic
amputations (88). In addition, the financial expenditure
related to PN health care costs in the United States is
>US$10.9 billion annually (49). Therefore, there is a
pressing need to identify the factors that lead to PN in T2D
and prediabetes to develop new and targeted therapies for
PN; however, the molecular mechanisms that drive PN are
incompletely understood.

Dyslipidemia is increasingly recognized as an important
risk factor for PN in T2D and prediabetes (50, 75, 137).
Broadly defined as an abnormal plasma lipid profile, dysli-
pidemia commonly develops in patients with T2D and pre-
diabetes, is a component of the metabolic syndrome (MetS)
(2), and is thought to play a major role in tissue-specific
complications associated with metabolic diseases.

The plasma lipid profile is influenced by diet, in particular
the dietary fatty acid (FA) level and composition (39). Con-
suming an unhealthy diet, such as the western diet, composed
of foods rich in saturated FAs (SFAs), is associated with
increased plasma lipid levels, elevated low-density lipopro-
tein cholesterol, and the development of dyslipidemia in both
human subjects and preclinical animal models. The Ameri-
can Diabetes Association advises patients with T2D and
prediabetes to reduce the dietary intake of saturated and
trans-FAs, and supplement their diet with sources of mono-
unsaturated FAs (MUFAs) and polyunsaturated FAs (PU-
FAs) (77).

Dietary FAs have emerged as both potential mediators and
treatments for PN in T2D and prediabetes (25, 114, 144). The
molecular mechanisms that underlie the injurious or benefi-
cial effect of FAs on nerve function are an active area of
study. Herein, we first review the clinical and preclinical
studies that delineate the importance of dietary FAs in
modulating peripheral nerve function in PN associated with
T2D and prediabetes. Second, we discuss the metabolic ef-
fects of dietary FAs on the peripheral nervous system (PNS)
in T2D and prediabetes. Finally, we detail the molecular ef-
fects of FAs on complex lipid synthesis, lipid metabolism,
and mitochondrial function in the PNS.

Dietary FAs

FAs are essential molecules for the nervous system, and
are critical for maintaining neuronal health and function
(130). FAs play a number of important cellular functions

ranging from substrates for mitochondrial FA b-oxidation
and mediators of intracellular signaling to components of
complex lipid species in plasma membranes and organelles
(30). Circulating FAs are the major source of FAs for the
nervous system, and can be obtained from the diet or syn-
thesized through de novo lipogenesis FA synthesis. The
physiological destination and functional role of FAs are de-
fined by the structure of the FA hydrocarbon chain.

FAs are composed of an aliphatic hydrocarbon chain ter-
minating in a carboxylic acid functional group. Although FAs
tend to be hydrophobic in nature due to the hydrophobicity of
the hydrocarbon chain, the carboxylic acid is a polar func-
tional group that participates in FA b-oxidation (30). During
b-oxidation, two carbons are removed from the carboxyl end
of the FA to generate acetyl-CoA, which enters the tricar-
boxylic acid cycle (TCA) to produce cellular energy.

FAs are classified by hydrocarbon chain length and degree
of saturation, which correspond to the number of carbons and
double bonds in the hydrocarbon chain, respectively (Fig. 1).
Short-chain FAs contain 2–4 carbons, medium-chain FAs are
composed of 6–12 carbons, long-chain FAs consist of 14–18
carbons, and very long-chain (VLC) FAs contain 20–24
carbons. FAs also have varying degrees of saturation. SFAs
lack double bonds and have fully saturated hydrocarbon
chains, while unsaturated FAs have one or more double
bonds (Fig. 1A–C). MUFAs contain one double bond typi-
cally between the 9th and 10th carbons in the hydrocarbon
chain, which causes a kink in the FA structure (Fig. 1B).
Among other types, PUFAs constitute omega-3 or omega-6,
which indicates the location of the first double bond closest to
the methyl group within the hydrocarbon chain (Fig. 1C).

The most common omega-3 FAs are eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA). Bends in the hy-
drocarbon chain that result from a single double bond in
MUFAs or multiple cis-double bonds in PUFAs play an
important role in cellular membranes by preventing tight
packing and improving membrane fluidity and curvature. The
length and degree of saturation of FA acyl chains dictate the
FA intracellular localization and function (1, 130). The hy-
drocarbon chain length of FAs dictates the intracellular lo-
calization and downstream metabolic and signaling
pathways. The degree of saturation of a FA plays a key role in
membrane fluidity and organelle dynamics.

There are two categories of FAs, including essential FAs,
which must be obtained from the diet, and nonessential FAs,
which may be synthesized by cells and tissues within the
body. Essential FAs, including linoleic acid and linolenic
acids, cannot be synthesized endogenously and must be ob-
tained from dietary sources (28). These FAs play important
roles in membrane fluidity, regulation of enzymatic reac-
tions, and receptor signaling in the nervous system (130).
Nonessential FAs can be either obtained from the diet or
synthesized intracellularly through de novo lipogenesis
pathways. Nonessential FAs include saturated, monounsat-
urated, and some polyunsaturated FAs.

Different types of foods contain distinct FA profiles (Fig. 1).
Red meats, and processed and fried foods contain high levels of
long-chain saturated FAs, whereas dairy products, such as milk
and cheese, are rich in medium-chain saturated FAs (97). These
foods are commonly found in the western diet, and have been
associated with the development of both prediabetes and T2D.
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Nuts, seeds, avocados, and plant-based oils are rich in
MUFAs, such as oleic acid and palmitoleic acid (69). These
foods are commonly consumed at high levels in the Medi-
terranean diet, and improve metabolic function in patients
with T2D and prediabetes (108, 139). Omega-3 FAs are
commonly found in foods such as fish, flaxseed, and plant-
based oils. In T2D and prediabetes, the western diet plays a
major role in the development of dyslipidemia, and a high-fat
diet (HFD) rich in SFAs underlies the onset and progression
of PN in preclinical models of prediabetes (57, 94).

Aberrant dietary FA intake promotes dyslipidemia in pa-
tients with T2D and prediabetes. In healthy individuals, in-
sulin release after a meal suppresses FA release from adipose
depots in the body, and FA metabolism is under tight regu-
lation. FAs are stored as energy in triglycerides in adipose
tissue, and serve as fuel for the heart and muscles. In dysli-
pidemia, however, high plasma FA levels result from both the
diet and FA mobilization from adipose tissue (32). This el-
evation in plasma FAs contributes to insulin resistance and
also increases FA levels, promoting metabolic dysfunction in
peripheral tissues, such as the PNS.

The PNS

The PNS consists of the somatic nervous system and the
autonomic nervous system. Although both the somatic ner-
vous system and autonomic nervous system are impacted by
T2D and prediabetes, this review will focus on the somatic
nervous system. The somatic nervous system, which consists

of both motor and sensory nerves, is responsible for trans-
mitting sensory information from the periphery to the central
nervous system (CNS) (Fig. 2). Sensory neurons are afferent
neurons that transmit sensory information from receptors in
the sensory nerve terminals to the CNS, whereas motor
neurons are efferent neurons that carry information from the
CNS to muscles and organs within the body.

Axons from peripheral neurons are myelinated or unmy-
elinated. Myelination in the PNS is carried out by resident
Schwann cells (SCs), which produce lipids and proteins to
insulate the axons and facilitate efficient nerve conduction
(109) (Fig. 2). SCs myelinate a single segment of an axon,
called the internode, which is separated from other internodes
by unmyelinated regions called Nodes of Ranvier. The my-
elin sheath is a lipid-rich multilamellar structure composed of
closely packed lipid bilayers (104, 121). This lipid-rich my-
elin sheath is composed of 70%–85% lipids, and is attuned to
changes in FAs and metabolic flux (40).

Myelinated and unmyelinated axons are bundled into
nerve fibers surrounded by a layer of connective tissue called
the endoneurium. Sensory nerve fibers, including Aa, Ab,
Ad, and C fiber types, are each responsible for relaying
specific types of sensory signals. The large, myelinated Aa
fibers receive signals from the muscle spindle and Golgi
tendon, and are responsible for proprioception required for
spatial position and movement.

The Ab fibers include large and mid-diameter myelinated
fibers, which carry touch and pressure sensations as well as
mechanoreceptor-mediated signals. Small afferent Ad fibers

FIG. 1. The structural properties of
FAs. (A) SFAs contain no double bonds
and lack kinks in the hydrocarbon chain.
Long-chain SFAs, such as palmitic acid,
are found in foods, such as red meats,
fried foods, and processed foods. (B)
MUFAs, such as oleic acid, contain a
single double bond that causes a kink in
the hydrocarbon chain. Plant-based oils,
nuts, and avocados are common dietary
sources of MUFAs. (C) PUFAs contain
two or more double bonds that create
multiple kinks or bends in the hydrocar-
bon chain. For example, linoleic acid is
an omega-6 PUFA that contains two
double bonds, and eicosapentaenoic acid
is an omega-3 PUFA that contains five
double bonds. The major sources of PU-
FAs are fish, nuts, and plant-based oils.
MUFA, monounsaturated fatty acid;
PUFA, polyunsaturated fatty acid; SFA,
saturated fatty acid.
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are thinly myelinated fibers, and transmit mechanoreceptor-
triggered cold, touch, and pressure sensations. Finally, thin
unmyelinated C fibers are <1 lm in length and are surrounded
by nonmyelinating SCs that occur in groups, known as Re-
mak bundles. These fibers serve as PNS nociceptors, and
transmit heat, pain, and nociception sensory signals (37).

PN associated with diabetes and prediabetes tends to
present as a loss of sensory function with only a small effect
on motor function (38). The different anatomical locations of
motor and sensory neuron cell bodies may contribute to the
susceptibility of sensory neurons to diabetic metabolic flux
(38). Motor neurons localized in the ventral horn inside the
spinal cord are protected by the blood–brain barrier, whereas
dorsal root ganglion (DRG) sensory neurons are located
outside of the spinal cord, and lack either a blood–brain or
blood–nerve barrier.

Consequently, unlike motor neurons, DRG sensory neu-
rons are exposed to circulating metabolites, including FAs,
glucose, and other metabolites, making them vulnerable to
metabolic stressors and axonal injury in diabetes and pre-
diabetes (38). Unmyelinated C nerve fibers are also partic-
ularly sensitive to injurious metabolites, such as FAs, likely
secondary to the absence of a myelin sheath (Fig. 2) (38).
Thus, the lack of protective barriers makes both DRG sen-
sory neurons and C fibers more susceptible to metabolic
injury.

The morphology of DRG sensory neurons also makes them
more susceptible to injurious circulating metabolites. DRG
neurons extend axons, which are among the longest axons in
the body, extending up to 1 m in length from the cell body to
the axon terminal. DRG neurons have a pseudounipolar
morphology where the stem axon bifurcates into a peripheral
axon branch and a central axon branch (91).

This unique morphology is key for transmitting sensory
information from the peripheral axon branch to the bifurca-
tion, and then to the CNS via the central axon branch (91).
After a stimulus, action potentials are generated in the pe-
ripheral nerve branch and conducted toward the CNS.
However, the extremely large axon to cell body ratio presents

unique bioenergetics challenges for DRG neurons and axon
health and function. To maintain energy homeostasis distally
in the axon, DRG neurons employ mitochondrial axonal
transport mechanisms to provide mitochondria throughout
the entire length of the axon.

Clinical Data on the Impact of FAs on Neuropathy

Nerve injury from hyperglycemia was previously consid-
ered the principal molecular driver of PN, although the
pathophysiology of type 1 diabetes (T1D) and T2D is dis-
tinct. Over the last decade, however, the multifactorial nature
of T2D prompted clinical studies to investigate unique met-
abolic processes associated with PN in T1D and T2D. The
concept that hyperglycemia is not the sole metabolic factor
underlying PN in T2D was addressed in a Cochrane review
evaluating the efficacy of glucose control for regulating PN in
T1D compared with T2D subjects separately (13).

This systematic review compared 17 randomized, con-
trolled studies consisting of subjects with T1D, T2D, or both.
It found that glucose control significantly reduces PN de-
velopment in T1D subjects, as identified by a decrease in
abnormal nerve conduction studies and vibration thresholds.
However, in subjects with T2D, glucose control had no sig-
nificant impact on nerve conduction and vibration thresholds.
These clinical studies suggest that the mechanisms underly-
ing PN differ between T1D and T2D (12, 13).

In an effort to distinguish T2D risk factors that correlate
with PN, the impact of the MetS on PN was evaluated (8).
The MetS is a group of metabolic disorders that is highly
prevalent in T2D subjects, *73%–83% prevalence, and is a
major risk factor for T2D (119, 142). To assess the effect of
MetS components on PN, a cohort of 2382 subjects with PN
assessments from the Health, Aging, and Body Composition
(Health ABC) study were evaluated for prevalence of PN,
after stratification for glycemic status and MetS components.
Interestingly, although PN was more common in subjects
with diabetes, MetS components, including prediabetes and
obesity, were linked to secondary measures of PN (16).

FIG. 2. The peripheral nervous system. The peripheral nerves are composed of nerve fibers containing axons and
myelinating SCs. Motor neurons are protected by the spinal cord, whereas sensory DRG neurons are exposed to circulating
metabolites, such as FAs. Some nerve fibers are myelinated by SCs to provide protection and support rapid nerve con-
duction velocity, while other fiber types, such as C fibers, are unmyelinated and more susceptible to metabolic injury. SCs
may also contribute to metabolic injury by transporting toxic lipids and other metabolites to axons. Figure included with
permission from Feldman et al. (38). DRG, dorsal root ganglion; SC, Schwann cell.
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In addition, PN was more prevalent in subjects with a
higher number of MetS components independent of glycemic
status (16). Another cross-sectional, population-based study
consisting of 4002 subjects from China sought to identify
individual MetS components associated with PN. In agree-
ment with previous studies, diabetes and obesity were the
major metabolic drivers of PN (11). The three components of
MetS that correlated with PN in T2D were diabetes, predia-
betes, and obesity, which all intersect with components of
dyslipidemia (16, 17, 79).

The association of dyslipidemia with PN was evaluated in
a longitudinal study, the Danish arm of Anglo-Danish-Dutch
study of Intensive Treatment of Diabetes in Primary Care
(ADDITION-Denmark). This study examined incident PN
in T2D subjects at a 13-year follow-up appointment after
enrollment in the ADDITION-Denmark study (6). The co-
hort of 1,445 subjects showed that obesity along with re-
duced levels of high-density lipoprotein cholesterol, a MetS
component, is a substantial risk factor for PN in T2D. In
parallel, a separate study on 5249 T2D subjects from the
Danish Centre for Strategic Research in Type 2 Diabetes
(DD2) Cohort found that PN is associated with MetS com-
ponents, including elevated triglyceride levels, hyperten-
sion, and obesity (23).

To determine whether obesity is an independent risk factor
for PN in nondiabetic individuals, another study evaluated
the 138 obese subjects and 46 lean controls and the preva-
lence of PN (15). This study discovered that obesity in nor-
moglycemic individuals associates with PN. Altogether,
these studies indicate that MetS is a major risk factor for PN.
Since dyslipidemia is commonly associated with MetS in
T2D and prediabetes, we contend that dietary FA intake may
contribute to PN in T2D.

Based on the emerging role of dyslipidemia in PN patho-
genesis, another study determined whether lipid lowering
statins would reduce the prevalence of PN in T2D subjects
(124). Despite numerous studies showing an association of
PN with dyslipidemia, the incidence of PN was similar in
both T2D subjects with and without statin therapy (72).
Therefore, the reduction of triglyceride and cholesterol levels
by statins had little effect on PN. These results suggest that
overall dyslipidemia is not responsible for PN in T2D sub-
jects, but rather that specific lipid species underlie neuropathy
progression.

To identify specific lipid metabolites that associate with
PN in T2D, we evaluated global plasma metabolomics in a
cohort of T2D subjects with and without PN compared with
lean control subjects from ADDITION-Denmark (111). We
found that individuals with T2D and PN had changes in
plasma metabolites related to lipid and energy metabolism
compared with T2D subjects without PN.

This prompted us to evaluate alterations in plasma lipid
metabolites identified by the global metabolomics analysis.
The abundance, chain length, and saturation of both plasma
FAs and complex lipids were appreciably altered in T2D
subjects compared with lean controls (111). T2D subjects
shifted from beneficial VLC unsaturated FAs in the plasma
to toxic long-chain saturated FAs. In addition, plasma
complex lipids showed an increase in diacylglycerol and
phosphatidylethanolamine species, and a decrease in phos-
phatidylcholine, sphingomyelin, ceramide, and acylcarni-
tine species (111).

A separate study comparing obese T2D subjects with and
without PN showed that plasma serine and 1-deoxyhy-
droceramide levels are inversely correlated with quantitative
C fiber assessment as a measure of PN, suggesting that 1-
deoxyhydroceramides are potential mediators of PN in T2D
and obesity (44). Collectively, these studies suggest that PN
is associated with changes in plasma lipid species and me-
tabolites of lipid metabolism in T2D and prediabetes.

Dietary supplementation studies with MUFAs or PUFAs in
T2D and prediabetic subjects with PN show significant
beneficial effects on metabolic parameters and nerve func-
tion. A European Prospective Investigation into Cancer and
Nutrition (EPIC)-InterAct study showed that plant-based
omega-3 and omega-6 PUFAs inversely correlate with T2D,
suggesting that PUFAs improve metabolic function in T2D
subjects (43). In this study, T2D was inversely correlated
with plant-based omega-3 a-linoleic acid and omega-6 PUFA
linoleic acid, while EPA and DHA had no association. These
results highlight the need to evaluate the effect of individual
FAs, not overall FA levels.

To evaluate the connection between dietary PUFA con-
sumption and PN, a National Health and Nutrition Ex-
amination Survey study found that dietary PUFA intake is
associated with lower incident neuropathy in diabetic sub-
jects (129). In addition, individual FAs c-linolenic acid (67,
70) and EPA (98) confer significant improvements in PN
associated with T2D. A similar dietary supplementation
paradigm in subjects with T1D, however, had no effect on
nerve conduction or sensory nerve function, further sup-
porting the idea that metabolic factors contributing to PN in
T1D and T2D are unique (76).

In addition, a recent cross-sectional study on 147 T2D
subjects showed that high dietary iron intake and a high ir-
on:PUFA ratio correlate with PN, suggesting that the iron
level determines the level of benefit conferred by dietary
PUFAs (71). The effect of different types of FAs on nerve
function is likely the result of altered lipid metabolism within
the nerve. However, the molecular mechanisms that are dif-
ferentially regulated by saturated and unsaturated FAs in the
nerve are still an active area of research.

Preclinical Data on the Impact of FAs on Neuropathy

Similar to humans, obese and prediabetic mice develop PN
associated with dyslipidemia and metabolic dysfunction (57,
94, 136, 137). Preclinical animal models are a valuable tool
for identifying molecular mechanisms and lipid changes that
associate with PN in prediabetes and T2D. Mice fed a HFD
have impaired glucose tolerance, increased body weight, and
a higher percentage body fat compared with their standard
diet-fed counterparts (11, 57, 94).

The HFD mice also develop PN characterized by a re-
duction in sural and sciatic nerve conduction velocities, an
increase in hind paw latency, and a decrease in C fibers, as
measured by the intraepidermal nerve fiber density (IENFDs)
in the hind paw (57, 94). Genetic models of T2D also con-
sistently develop the same PN phenotypes, along with overt
T2D characterized by hyperglycemia, dyslipidemia, and PN
(96). Three common murine models of T2D are (i) ob/ob
mice with leptin deficiency, (ii) db/db mice that lack the
leptin receptor, and (iii) mice fed a HFD and treated with one
low dose of streptozotocin (STZ).
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Both prediabetic and T2D animal models are dyslipidemic,
and align with the metabolic phenotypes in prediabetic or
T2D humans. Using drugs to reduce free FAs in rodents
improves nerve function. For example, pioglitazone treat-
ment in db/db mice improved small fiber function as mea-
sured by sural nerve conduction velocity and IENFD (58, 62)
and acipimox treatment of male Zucker fa/fa rats, a robust
model of T2D when fed a HFD, restored nerve conduction
velocities (81). Although these studies indicate that dyslipi-
demia and FAs contribute to PN development and progres-
sion in murine models, the molecular changes that underlie
these beneficial effects on PN are not completely understood.

As a first step to identify dysregulated pathways that un-
derlie PN in prediabetes and T2D, we performed lipidomics
(94, 122) and transcriptomics (94) studies on peripheral
nerves from HFD murine models of prediabetes and T2D. We
integrated lipidomic profiles from one sciatic nerve and
transcriptomics from the other sciatic nerve for each mouse.
This analysis showed dysregulation of lipid pathways in
both the HFD-fed prediabetic mice and the HFD-STZ T2D
mice (94).

Specifically, we found increases in triglycerides containing
SFAs as well as increases in diacylglycerol acyltransferase 2
(DGAT2), the enzyme that carries out the committed step in
triglyceride synthesis. Lipid metabolism was also altered in the
sciatic nerve from db/db mice (122). These studies indicate
that high levels of SFAs in the HFD are incorporated into the
nerve lipidome altering the sciatic nerve lipid profile, which
may contribute to PN in prediabetes and T2D.

To determine whether the FA composition of the diet
contributes to PN in the HFD murine models, we and others
compared the effects of dietary SFAs and unsaturated FAs
on metabolic and PN phenotypes in prediabetic and T2D
mice (114). Mice fed a SFA-rich HFD from 6 to 16 weeks of
age developed PN and metabolic dysfunction. However,
mice switched from the SFA-rich HFD to a MUFA-rich
HFD exhibited a significant improvement in nerve function,
including increased sensory and motor nerve conduction
velocities and restoration of C fibers as measured by in-
creased IENFDs.

Similarly, the Yorek laboratory discovered the beneficial
effects of Menhaden oil supplementation for improving nerve
function in murine models of PN. Menhaden oil is composed
of elevated levels of omega-3 PUFAs EPA and DHA. Sup-
plementation of the HFD with Menhaden oil led to significant
improvements in sensory and motor nerve conduction ve-
locities, thermal nociception, and IENFDs in HFD- and low-
dose STZ-treated Sprague Dawley rats and C57BL6/J mice
(24, 29, 127).

Altogether, these results show that dietary FAs modulate
nerve function in rodent models of PN associated with
prediabetes and T2D. Dietary SFAs underlie PN in rodent
models of prediabetes and T2D, while dietary MUFAs and
PUFAs improve nerve function. The molecular mecha-
nisms that underlie the differential regulation of nerve
function by SFAs and MUFAs are not completely under-
stood. One possibility is that SFAs impair lipid metabolism
within the nerve resulting in an altered nerve lipid profile
that drives PN development and progression. We will next
detail the mechanisms by which SFAs and MUFAs/PUFAs
might differentially regulate lipid metabolic pathways in the
nerve.

FAs and Nerve Lipid Metabolism

Under homeostatic conditions, neuronal lipid metabolism
is centered on a balance of lipid uptake, de novo lipogenesis,
and FA b-oxidation to maintain neuronal health and func-
tion (104, 130). However, dyslipidemia leads to an accu-
mulation of neurotoxic lipids, aberrant lipid lipogenesis,
and impaired mitochondrial energy production. Dietary FAs
are fundamental players in the development of dyslipidemia
and drastically impact these lipid metabolism processes.

Adipose and liver regulate circulating FA levels through
uptake, storage, and mobilization of triglycerides and FAs
(Fig. 3). After meal consumption, dietary FAs are esterified
into triglycerides and incorporated into chylomicrons in the
intestine (53). The majority of these chylomicrons are taken
up by tissues with high lipoprotein lipase activity, such as
adipose tissue and muscle, whereas chylomicron fragments
are taken up by the liver. These FAs are converted into tri-
glycerides in very-low-density lipoproteins (VLDLs) or re-
main nonesterified FAs, which are then packaged into
lipoprotein particles and transported through the bloodstream
to peripheral tissues, such as the peripheral nerves (3).

In obesity, excessive intake of the foods rich in SFAs is
associated with weight gain, impaired glucose tolerance, and
increased body fat mass. This elevation in adiposity is often
associated with adipose tissue dysfunction characterized by
inflammation, adipocyte expansion, impaired insulin signal-
ing, dysfunctional triglyceride storage, and increased FA
mobilization (18). The liver also becomes dysfunctional in
obesity with an overload of intrahepatic lipid and decreased
production of VLDL triglycerides (82). Therefore, adipose
tissue and liver dysfunction dictate changes in circulating
FAs, and are closely associated with the development of
dyslipidemia and obesity (95).

FA Uptake

Circulating FAs taken up by neurons and SCs are oxidized
to generate cellular energy or converted into complex lipids
to support the nerve. Circulating lipids, such as triglycerides,
in lipoprotein particles are hydrolyzed into free nonesterified
FAs by lipoprotein lipase localized in the peripheral nerves
on the surface of cells within the endoneurium, the connec-
tive tissue that surrounds a myelinated nerve (33, 61). The
free FAs are then transported into neurons and SCs, and the
mode of transport is determined by the FA chain length (51).
Short- or medium-chain FAs are passively diffused into cells
by a membrane flip-flop mechanism. Conversely, long-chain
FAs and VLC FAs must be transported into the neurons or
SCs by FA transporters.

Two major FA transporters in peripheral nerves are FA
translocase (CD36) and FA transport protein (FATP) (Fig. 4).
Both CD36 and FATP have a high affinity for long-chain
saturated and unsaturated FAs, and contribute to obesity and
metabolic dysfunction (102). CD36 is localized on the cell
membrane of neurons and SCs, and facilitates FA transport
through a central FA transport tunnel (102). FATPs consist of
a single transmembrane domain, an extracellular FA binding
site that allows for FA transport, and an intracellular ATP
binding site with acyl-CoA synthetase activity that converts
incoming FAs into acyl-CoAs (85).

Once inside the cell, FA binding proteins (FABPs) fa-
cilitate intracellular FA distribution by acting as lipid
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chaperones to transport FAs to organelles (89, 90, 107).
Only four of the six FABP isoforms are expressed in the
nervous system, of which the peripheral myelin protein 2
(PMP2/M-FABP) isoform is found only in myelin in the
peripheral nerves and the E-FABP isoform is mainly lo-
calized to neurons (133). The affinity of FABPs for FAs is
proportional to FA hydrocarbon chain length and degree of
saturation with the highest affinity for VLC FAs and fewer
double bonds.

FA transporters in the dyslipidemic sciatic nerve are dra-
matically affected by circulating dietary FAs. Using a tran-
scriptomics and lipidomics analysis, we recently found that
the expression level of both lipoprotein lipase, Lpl, and CD36
in the sciatic nerve is modulated by a HFD, indicating that the
higher level of FAs in both prediabetes (94) and T2D (63,
101) alters FA uptake in PN. Although both neurons and SCs
express CD36 and FATP, the known role of CD36 and FATP
in dyslipidemic sensory neurons is limited. In SCs, CD36 and
FATP mediate uptake of circulating FAs, which profoundly
affects the myelin lipid composition by incorporating FAs
into the myelin sheath (104, 143). In fact, ablation of CD36
perturbs nerve remyelination pathways after injury, sug-
gesting that CD36 is essential for the proper maintenance of
the myelin sheath (36, 104).

FABPs play an important role in PN associated with
Charcot Marie Tooth disease (CMT) (59), but recent evi-
dence indicates that FABPs also contribute to PN in T2D
and prediabetes (56). The FABP PMP2 is expressed in
myelinating SCs and facilitates structural stability in mye-
linated large axons by anchoring myelin lipid bilayers (116,
126, 131, 145). Mutant PMP2 causes severe demyelinating
PN characterized by decreased nerve conduction velocities

in CMT type 1A, emphasizing the importance of this FABP
for nerve function (59). In addition to providing a scaffold
for myelin lipid bilayers, PMP2 has a strong affinity for both
cholesterol and FAs, and is likely to play a major role in FA
cellular transport and metabolism in SCs (104, 110, 145).

Indeed, we identified a downregulation of PMP2 gene
expression in the sciatic nerve of db/db mice, indicating that
elevated levels of circulating lipids in diabetic murine
models impair nerve lipid homeostasis and potentially
myelin structure (56). FABP5 is the major isoform ex-
pressed in DRG neurons and is also an important regulator
of nerve function. Small nucleotide polymorphisms in
FABP5 are associated with T2D, indicating that a loss of
FABP function contributes to metabolic dysfunction (9).
Indeed, omega-3 PUFAs increase FABP5 expression that
provides neuroprotection after spinal cord injury. Increasing
FABP5 levels in neurons also prevents palmitate-induced
lipotoxicity (78).

FA transporters and FABPs are critical regulators of en-
ergy homeostasis in neurons, and contribute to the patho-
genesis of diabetes, obesity, and their complications (74, 83).
These studies suggest that dysregulation of FA transport by
CD36, FATP, and FABPs may be a critical molecular target
in PN associated with prediabetes and T2D.

FAs and Mitochondrial Function, Trafficking,
and Dynamics in the PNS

After transport into the cell, FAs may be oxidized by mi-
tochondrial b-oxidation to generate cellular energy in the form
of ATP under homeostatic conditions. Synthesis of cellular
ATP from FAs occurs in the mitochondria by sequential

FIG. 3. FA and lipid metabo-
lism. Dietary FAs are first pro-
cessed through the intestine where
they are converted into triglycer-
ides and packaged into chylomi-
crons. Triglyceride-containing
chylomicrons are then utilized by
the adipose tissue or muscle, which
are highly energy dependent. Here,
triglycerides are broken down by
LPL to release NEFAs to be me-
tabolized for energy production.
Fragments of chylomicrons, how-
ever, are taken up by the liver and
metabolized into NEFAs, which
can then be synthesized into tri-
glycerides and packaged into
VLDL, or released as NEFAs into
the bloodstream. The peripheral
nerves are exposed to VLDL and
FAs in the bloodstream because
the nerves are not protected by the
spinal cord. FA, fatty acid; NEFA,
nonesterified fatty acid; LPL, li-
poprotein lipase; PNS, peripheral
nervous system; VLDL, very-low-
density lipoprotein. Created with
Biorender.com.
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http://<B>FIG. 3.</B>&emsp;<B>FA and lipid metabolism.</B> Dietary FAs are first processed through the intestine where they are converted into triglycerides and packaged into chylomicrons. Triglyceride-containing chylomicrons are then utilized by the adipose tissue or muscle, which are highly energy dependent. Here, triglycerides are broken down by LPL to release NEFAs to be metabolized for energy production. Fragments of chylomicrons, however, are taken up by the liver and metabolized into NEFAs, which can then be synthesized into triglycerides and packaged into VLDL, or released as NEFAs into the bloodstream. The peripheral nerves are exposed to VLDL and FAs in the bloodstream because the nerves are not protected by the spinal cord. FA, fatty acid; NEFA, nonesterified fatty acid; LPL, lipoprotein lipase; PNS, peripheral nervous system; VLDL, very-low-density lipoprotein. Created with <URL>Biorender.com


reactions including FA b-oxidation, followed by the TCA, and
finally oxidative phosphorylation. A detailed description of
mitochondrial bioenergetics and dynamics in PN has been
previously published (115). DRG neurons and SCs rely on
mitochondrial ATP production to maintain nerve health and
function (130). In addition to ATP production, DRG neurons
require mitochondrial trafficking mechanisms to transport
mitochondria throughout the axon and provide energy at distal
regions of the axon. Mitochondrial fusion/fission events are
also required to maintain energy balance (115).

We recently discovered that the effect of FAs on DRG
neuron mitochondrial function is dependent on FA hydro-
carbon chain length and degree of saturation (112–114). We
observed a significant decrease in mitochondrial membrane
potential in DRG neurons treated with diabetic concentra-
tions of long-chain SFAs palmitate (C16:0) and stearate
(C18:0), whereas shorter chain SFAs laurate (C12:0) and
myristate (C14:0) did not affect mitochondrial depolarization

(112, 113). The loss of mitochondrial membrane potential in
long-chain SFA-treated DRG neurons was associated with
loss of ATP in immortalized DRG neurons (113, 114).

In addition, long-chain SFA palmitate treatments pro-
foundly affected DRG neuron mitochondrial bioenergetics
marked by a significant and dose-dependent decrease in spare
respiratory capacity, as well as an increase in mitochondrial
uncoupling and proton leak (112). Interestingly, mitochon-
drial depolarization and ATP loss due to long-chain SFAs
were completely abrogated with the addition of exogenous
long-chain MUFA oleate (C18:1), potentially due to the
formation of axonal lipid droplets (114).

These alterations in mitochondrial function were accom-
panied by impairments in axonal mitochondrial trafficking.
Cell culture models of dyslipidemia show significant im-
pairment in axonal mitochondrial trafficking in DRG axons
(Fig. 5). DRG axons treated with long-chain SFAs palmitate
(C16:0) and stearate (C18:0) had significant and dose-

FIG. 4. FA uptake in neurons and SCs. FAs are transported into neurons and SCs through FA transporters, CD36 and FATP,
whereas medium- and short-chain FAs enter cells by passive diffusion. FAs are then converted into acyl-CoAs and metabolized by
mitochondria to produce ATP. Alternatively, FAs are bound by FABPs, and delivered to organelles or other cellular membranes.
PMP2 is a FABP that is uniquely expressed in the myelin of the peripheral nervous system and plays an important structural role in
the myelin sheath. E-FABP is localized to neurons and plays an important role in nerve function. SCs are also highly dependent on
de novo lipogenesis regulated by transcription factor SREBP and FASN. De novo lipogenesis decreases in response to elevated
levels of PUFAs and increases in response to SFAs. De novo lipogenesis is activated by LXR and SREBP transcriptional
regulation, which increases the expression of FASN and complex lipid synthesis. Conversely, FA uptake pathways are upre-
gulated by transcription factor PPARc that increases the expression of CD36 and FABP. FABP, fatty acid binding protein; FASN,
fatty acid synthase; FATP, fatty acid transport protein; LXR, liver X receptor; PPARc, peroxisome proliferator-activated receptor
gamma; SREBP, sterol regulatory element-binding protein. Created with Biorender.com.
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dependent decreases in the percentage of motile mitochon-
dria (Fig. 5A, D, E) (113). Shorter chain SFAs laurate (C12:0)
and myristate (C14:0) had no effect on the level of mito-
chondrial trafficking in DRG axons (Fig. 5A–C) (113).

Long-chain MUFA oleate had no effect on mitochondrial
trafficking, and supplementation of oleate into the palmitate
treatments completely prevented the inhibition of mito-
chondrial trafficking caused by palmitate alone (Fig. 5A, F,
G) (114). This suggests that long-chain SFAs with hydro-
carbon chains >16 carbons in length have a detrimental effect
on axonal mitochondrial trafficking and function, whereas
shorter SFAs and MUFAs have no effect. Furthermore, the
impairment in mitochondrial trafficking and function can be
prevented by MUFA supplementation.

Mitochondrial fusion and fission dynamics are also pro-
foundly impacted by complex lipids derived from FAs. Mi-
tochondrial fission and fusion dynamics play an important
role in regulating energy balance (115). Lipids including
cardiolipin, phosphatidylethanolamine, phosphatidic acid, and
diacylglycerols play a major role in mitochondrial fission/
fusion, and the level of these lipids is modulated by FAs.

Cardiolipin is a mitochondria-specific phospholipid en-
riched with the essential FA linoleic acid that regulates mi-
tochondrial fusion, fission, and function. The availability of
linoleic acid modulates the level of cardiolipin in the mito-
chondria, which directly impacts mitochondrial fusion and
fission dynamics and mitochondrial function (21, 45). Inter-
estingly, despite elevated levels of linoleic acid in the HFD,
there is a steep decrease in cardiolipin in the sciatic nerve of
HFD-fed murine models of prediabetes (94), suggesting
that increased linoleic acid levels in the HFD are not suffi-
cient to maintain mitochondrial cardiolipin levels and pre-
vent mitochondrial dysfunction caused by long-chain SFAs
in the HFD.

Phosphatidylethanolamine, a phospholipid that is rich in
the outer mitochondrial membrane and inner mitochondrial
membrane, plays an important role in mitochondrial fusion.
Phosphatidic acid stimulates mitochondrial fusion, whereas
diacylglycerols promote fission. The interplay between these
two lipid species tightly regulates fusion and fission dy-
namics (45). Although the effect of dietary FAs on mito-
chondrial fusion and fission remains incompletely
characterized, mice fed a 60% HFD rich in SFAs exhibited
significant alterations in the level of these complex lipids,
indicating that changes in dietary FA composition may alter
mitochondrial fusion and fission (94).

Much like DRG neurons, SCs can use mitochondrial b-
oxidation of FAs to produce energy, but elevated levels
of long-chain FAs result in SC mitochondrial dysfunction

in PN associated with T2D and prediabetes. Elevated
levels of long-chain FAs cause a loss of SC mitochondrial
coupling efficiency and mitochondrial dysfunction (55).
However, overexpression of long-chain acyl-CoA syn-
thase 1 (Acsl1), which metabolically activates long-chain
FAs for mitochondrial oxidation, is sufficient to rescue
mitochondrial function. In the presence of elevated long-
chain FAs, overexpression of Acsl1 in SCs alleviates ox-
idative stress, mitochondrial dysfunction, incomplete b-
oxidation, and SC injury by improving metabolic activa-
tion of long-chain FAs (55).

Similarly, a murine model with SC-specific KO of the
mitochondrial transcription factor A (TFAM) gene (Tfam), a
transcription factor that is critical for mitochondrial biogen-
esis and function (73), developed severe PN (134). These
TFAM SC knockout mice displayed mitochondrial dysfunc-
tion marked by a shift from lipid synthesis to FA b-oxidation
(135). The loss of FA synthesis pathways significantly re-
duced crucial lipids in the myelin and instead triggered an
elevation in acylcarnitine levels. These acylcarnitines were
then excreted from the SCs triggering DRG neuron intracel-
lular calcium flux and axonal degeneration. Therefore, func-
tional SC mitochondria are critical for supporting peripheral
neurons (134).

In conjunction with TFAM, two transcription factors,
peroxisome proliferator-activated receptor coactivator 1 al-
pha (PGC-1a) and sirtuin 1 (SIRT1), play an important role in
mitochondrial biogenesis. TFAM, PGC-1a, and SIRT1 re-
spond to metabolic cues to preserve mitochondrial copy
number and maintain efficient mitochondrial b-oxidation for
ATP production. However, this pathway is compromised in
PN associated with T2D (19, 34) and prediabetes (120).
Conversely, caloric restriction enhances the mitochondrial
biogenesis and mitochondrial oxidative capacity through the
TFAM, PGC-1a, and SIRT1 pathway (34). These studies
suggest that dysregulation of lipid uptake, b-oxidation, and
mitochondrial biogenesis occurs in PN through the TFAM,
PGC-1a, and SIRT1 pathway (19).

Oxidative Stress

Both hyperglycemia and dyslipidemia contribute to oxi-
dative stress in diabetic PN (137, 138). Refer to Dr. Paul
Fernyhough’s Forum article for a detailed review about ox-
idative stress in T1D. Also, refer to Dr. Stephanie Eid’s
Forum article for an extensive review on oxidative stress in
the PNS.

During b-oxidation, long-chain nonesterified FAs can also
generate reactive oxygen species (ROS) in PN (125, 137).

‰

FIG. 5. Axonal mitochondrial trafficking is differentially impacted by saturated and unsaturated FAs in sensory
neurons. Mitochondrial trafficking is modulated by FA chain length and degree of saturation. Mitochondrial motility was
recorded in live DRG neurons for 150 s. (A) Kymographs of mitochondrial motility were generated by stacking the fluores-
cence intensity from individual GFP-labeled mitochondria along the y-axis for each image taken during the 150 s video.
Stationary mitochondria are depicted as straight vertical lines, while motile mitochondria are not straight lines. Shorter chain
SFAs laurate (B) and myristate (C) had no significant effect on the number of motile mitochondria, while long-chain SFAs
palmitate (D) and stearate (E) significantly impaired mitochondrial motility in a dose-dependent manner. (F) Increasing
concentrations of MUFA oleate does not alter mitochondrial trafficking in DRG neurons and (G) prevents the impairment of
mitochondrial trafficking caused by palmitate treatments alone. Values are expressed as mean – SEM. *P < 0.01, ordinary one-
way ANOVA with Tukey’s multiple-comparisons test. Figure included with permission from Rumora et al. (115).
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Basal levels of nonesterified FAs in both neurons and SCs are
utilized for ATP generation, but excessive levels of FAs
trigger the production of superoxide and other ROS species
due to leaky electrons from the electron transport chain (130).
The generation of ROS within the nerve causes nerve injury
by triggering apoptosis in DRG neurons (117, 118, 138).
Dyslipidemic Zucker fatty (fa/fa) rats with increased circu-
lating nonesterified FAs had lower sensory nerve conduction
velocities, tactile allodynia, and thermal and mechanical
hypoalgesia associated with oxidative–nitrosative stress
within the nerve (81).

Reducing oxidative–nitrosative stress within the pe-
ripheral nerves significantly improved nerve function (81).
Fortunately, unsaturated FAs may provide therapeutic
benefits by reducing oxidative stress in murine models of
diabetic PN (144). Omega-3 PUFAs in Menhaden oil sig-
nificantly lower neuronal oxidative stress by scavenging
free radicals (48), which stabilizes mitochondrial function
(7). This also prevents the generation of proinflammatory
modulators (48). These results suggest that modulating the
redox state may be a feasible approach for future PN
therapeutics.

De Novo Lipogenesis

Although cells and tissues mainly obtain FAs from dietary
sources (26, 87), nonessential FAs can be synthesized intra-
cellularly through de novo lipogenesis. The canonical purpose

of de novo lipogenesis is to generate FAs for triglyceride
synthesis and energy storage (4).

In the first step of lipogenesis, ATP-citrate lyase converts
citrate to acetyl-CoA (Fig. 4). Acetyl-CoA is then carboxylated
to malonyl-CoA by the rate-limiting enzyme acetyl-CoA car-
boxylase, which is activated by insulin during the fed state and
impaired by glucagon during the fasting state (128, 140). Finally,
FA synthase (FASN) converts malonyl-CoA to palmitate, which
can be incorporated into triglycerides. These de novo lipogenesis
enzymes are under the tight regulation of two transcription
factors: sterol regulatory element-binding protein (SREBP1)
and peroxisome proliferator-activated receptor gamma
(PPARc), both of which are highly regulated by FAs (Fig. 4).

Regulation of FASN expression by SREBP1 and PPARc,
and therefore de novo lipogenesis, is sensitive to changes in
FA levels (Fig. 4). Unsaturated, but not SFAs decrease the
nuclear level of SREBP1 in a length-dependent and
saturation-dependent manner (52). PUFAs decrease the ex-
pression of SREBP1 and FASN, which results in a decrease
in lipogenesis (68) (Fig. 6). PPARc activity is also regulated
by numerous FAs that activate PPARc to stimulate lipid
uptake and maintain lipid homeostasis (42, 106). In addition,
PPARc cooperates with another nuclear receptor, liver X
receptor (LXR), to regulate FA metabolism (64), a cross-talk
that is promoted by unsaturated FAs (141) (Fig. 4). In murine
models of prediabetes, LXR agonists protect DRG neurons
from the SFA-induced endoplasmic reticulum stress response
and reduced allodynia (46).

FIG. 6. The effect of saturated and unsaturated FAs on de novo lipogenesis, complex lipids, and mitochondria in
neurons and SCs. Under basal conditions, de novo lipogenesis is not activated, and normal levels of complex sphingolipids,
including glycosides, cerebrosides, and sulfatides, are maintained in SCs. Normal mitochondrial trafficking mechanisms,
mitochondrial function, and ATP production also sustain DRG neuron health and function. Conversely, in dyslipidemia,
elevated levels of SFAs trigger de novo lipogenesis and toxic acylcarnitine production in SCs, which can be shuttled to axons to
contribute to axonal degeneration. In SCs, SFAs also lead to a decrease in complex sphingolipids essential for nerve function. In
DRG neurons, SFAs impair mitochondrial trafficking mechanisms, mitochondrial function, and increase ROS. However, dietary
supplementation with unsaturated FAs can potentially prevent mitochondrial bioenergetics and trafficking dysfunction by
sequestering SFAs into lipid droplets. ROS, reactive oxygen species. Created with Biorender.com.
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De novo lipogenesis is an essential process for myelinating
SCs (87). SCs surround large-caliber axons, and produce
myelin to insulate the axons and sustain saltatory conduction.
Since myelination is an energetically expensive metabolic
process, it requires careful coordination of RNA, protein, and
lipid synthesis for membrane production (54, 86, 92, 103).
FASN is critical for maintaining the lipid composition and
myelination of the peripheral nerves (87).

In fact, SC-specific FASN depletion impairs PPARc
transcriptional regulation. Interestingly, increased FA up-
take via rosiglitazone treatment compensated for insuffi-
cient FA synthesis in FASN-deficient mice. In line with
these results, we have identified changes in PPARc in pre-
diabetic mice as well as an activation of PPARc in the
nerves of db/db mice receiving a rosiglitazone isomer,
pioglitazone (58, 94). Therefore, altered de novo lipogenesis
by insulin resistance and altered FA levels may contribute to
PN in T2D and prediabetes.

Lipid Composition of DRG Neurons and Myelin

Careful coordination of FA uptake, b-oxidation, complex
lipid synthesis, and de novo lipogenesis sustains the health and
function of neurons and SCs within the peripheral nerves.
Under homeostatic conditions, these lipid metabolic processes
maintain the optimal proportion of lipids in the myelin and
peripheral nerves to facilitate nerve conduction. Nerve tissue
in the PNS contains free FAs, glycerolipids, sphingolipids,
glycerophospholipids, cholesterol, and sterol lipids, which are
uniquely distributed across each cell type (SC vs. neuron) and
morphological localization (cell body vs. axon) (60, 93, 104).

These lipids are incorporated into membranes, lipid rafts,
organelles, cytosolic lipid species, and myelin, and are crit-
ical for nerve function. To understand the pathogenesis of PN
associated with T2D and prediabetes, it is critical to deter-
mine the effect of dietary FAs on peripheral nerve lipid
composition. The FA properties of myelin can alter the
speed and strength of sciatic motor nerve conduction (31),
indicating that FAs associated with dyslipidemia may alter
the nerve lipid composition and cause nerve injury. We
contend that dyslipidemia alters the nerve lipidome, trig-
gering injurious changes that affect myelination, sensory
neuron function, and in turn, contribute to PN in T2D and
prediabetes (94).

The myelin sheath is composed of 70%–85% lipids (104),
and the major lipid classes in the myelin are 40% cholesterol,
40% phospholipids, and 20% glycolipids. The cholesterol and
glycolipid levels are significantly higher in the myelin than in
other tissues. Myelin phospholipid species include plasmalo-
gen, phosphatidylcholine, phosphatidylethanolamine, phos-
phatidylserine, phosphatidylinositol, and sphingomyelin,
while the glycolipids are mainly galactosylceramides.

Ethanolamine plasmalogen is the most abundant myelin
phospholipid, but its role in the peripheral nerves is not fully
understood. Several studies suggest that ethanolamine plas-
malogen stabilizes the compact lipid structure in myelin
membranes (80), prevents peroxidation of unsaturated mye-
lin lipids (80), and mediates proper myelination within the
peripheral nerves (27). This unique lipid profile is essential
for maintaining myelin structure. Interestingly, many of these
myelin lipids are altered in studies on the lipidomic alter-
ations in whole nerves from HFD-fed mice (94).

Complex lipids within the myelin also contain a high level
of VLC FAs compared with other tissues, which are important
for maintaining the myelin integrity (22, 104, 123). Murine
models deficient in ceramide synthase 2 (CerS2), the enzyme
responsible for VLC sphingolipids synthesis, show that VLC
sphingolipid deficiency is associated with severe multifocal
detachment of myelin from the axon (65). Therefore, myelin
integrity requires SC-mediated maintenance of VLC lipid
levels within the myelin sheath. This study suggests that ele-
vated levels of SFAs in dyslipidemia may impair CerS2 ac-
tivity, thereby altering the level of VLC sphingolipids. Indeed,
VLC glycosphingolipids including gangliosides (84), sulfa-
tides (99), and galactosylceramides (99) were significantly
depleted in murine models of T2D and prediabetes (Fig. 6).

Compared with myelin, the lipid content of DRG neurons
is lower but plays an important role in sensory neuron
function (10). The lipid composition of DRG neuron cell
bodies and axons is distinct. Approximately 37% of the dry
weight of the DRG neuron soma is lipid, consisting of 15.4%
cholesterol, 4.8% galactolipid, and 57.1% phospholipids (10,
60). Fifteen percent of the dry weight of DRG axons is
composed of lipids, which consists of 22.1% cholesterol,
7.7% galactolipid, and 56.4% phospholipid.

In both the DRG cell body and axons, the molar ratio of
galactolipids was 2:1 with cerebrosides two times higher than
that of sulfatides. Disruption of the DRG neuron lipidome in
ApoE knockout mice is associated with severe peripheral
sensory nerve defects and impaired electrophysiology (20),
emphasizing the importance of the lipid composition for DRG
neuron function.

Although the effect of dyslipidemia on complex lipid
levels in DRG neurons is not completely understood, it is
likely that dietary FAs also alter the complex lipid profile of
DRG neurons in dyslipidemia. This contention is supported
by evidence that SFAs and MUFAs profoundly and differ-
entially effect sensory neurons both in vivo (120) and in vitro
(112–114), and that IENFD is also modulated by the degree
of FA saturation in HFD-fed mice (94). Specific sulfatide,
cerebroside, and phospholipid species were also significantly
reduced in DRG from diabetic mice. These studies suggest
that elevated dietary FAs associated with dyslipidemia con-
tribute to changes in complex lipid species within the nerve,
and may contribute to PN in T2D and prediabetes.

Conclusions

Clinical studies have identified an association between PN
and dyslipidemia in T2D and prediabetes, suggesting that
FAs contribute to the development and progression of PN.
Indeed, preclinical studies show that diets rich in injurious
SFAs cause PN, while beneficial unsaturated FAs signifi-
cantly improve nerve function in murine models of predia-
betes and T2D. Peripheral nerve function is dependent on
maintaining a specific lipid profile, which is regulated by
dietary FA uptake, mitochondrial FA b-oxidation, oxidative
stress, and de novo lipogenesis in DRG neurons and SCs
(130). Molecular studies that determine the effect of SFAs
and unsaturated FAs on these metabolic pathways and al-
terations in both neurons and SCs will greatly improve our
understanding of the pathophysiological changes that un-
derlie T2D and prediabetic PN.
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Determining how these pathways alter the nerve lipidome
in relation to PN in preclinical rodent models will provide
insight into the lipid changes that underlie PN. In addition,
axoglial interactions between DRG axons and SCs may
regulate nerve function through the transfer of lipids or me-
tabolites between the two cell types. Therefore, the biology of
FAs is likely to play an important role in the molecular
mechanisms that underlie PN in T2D and prediabetes.
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Towards prevention of diabetic peripheral neuropathy: 
clinical presentation, pathogenesis, and new treatments
Melissa A Elafros, Henning Andersen, David L Bennett, Masha G Savelieff, Vijay Viswanathan, Brian C Callaghan, Eva L Feldman

Diabetic peripheral neuropathy (DPN) occurs in up to half of individuals with type 1 or type 2 diabetes. DPN results 
from the distal-to-proximal loss of peripheral nerve function, leading to physical disability and sometimes pain, with 
the consequent lowering of quality of life. Early diagnosis improves clinical outcomes, but many patients still develop 
neuropathy. Hyperglycaemia is a risk factor and glycaemic control prevents DPN development in type 1 diabetes. 
However, glycaemic control has modest or no benefit in individuals with type 2 diabetes, probably because they 
usually have comorbidities. Among them, the metabolic syndrome is a major risk factor for DPN. The pathophysiology 
of DPN is complex, but mechanisms converge on a unifying theme of bioenergetic failure in the peripheral nerves 
due to their unique anatomy. Current clinical management focuses on controlling diabetes, the metabolic syndrome, 
and pain, but remains suboptimal for most patients. Thus, research is ongoing to improve early diagnosis and 
prognosis, to identify molecular mechanisms that could lead to therapeutic targets, and to investigate lifestyle 
interventions to improve clinical outcomes.

Introduction 
The prevalence of diabetes is increasing worldwide.1 
In 2019, 463 million people, or about 9·3% of the 
world’s population, had either type 1 or type 2 diabetes 
and more than 4 million people died from diabetes-
related complications.1 Diabetes will affect an estimated 
578 million people by 2030 and 700 million by 2045.1 
This growth is largely attributed to an increase in type 2 
diabetes prevalence in ageing populations. Although 
diabetes prevalence will increase worldwide, the greatest 
increases are expected to occur in countries with 
economies transitioning from low-income to middle-
income status, particularly in the Middle East and North 
Africa.1 As the prevalence of diabetes increases, the 
burden of diabetes-related complications is also 
expected to grow.

Among diabetes complications, damage to the 
peripheral and autonomic nervous system is the most 
prevalent. Distal symmetric polyneuropathy, which 
presents as lower limb sensory loss followed by upper 
limb sensory loss, is the most common type of diabetic 
nerve damage. Distal symmetric polyneuropathy will be 
the focus of this Review and will be referred to as diabetic 
peripheral neuropathy (DPN). The effects of DPN on 
patient morbidity and quality of life are substantial; it 
predisposes to falls and superficial injuries, which can 
lead to infection and amputation.2 Individuals with 
diabetes and DPN are at higher risk of all-cause and 
cardiovascular mortality than are individuals with 
diabetes but without DPN.3

Unfortunately, DPN management remains 
suboptimal. In people with type 1 diabetes, glucose 
control slows DPN progression.4 However, in type 2 
diabetes, glucose control only marginally affects DPN 
progression, especially when patients have metabolic 
syndrome. Therefore, managing DPN in people with 
type 2 diabetes currently revolves around weight loss 
and exercise to mitigate the metabolic syndrome.5 Early 
intervention might slow DPN progression, making 

timely diagnosis crucial. In this Review, we will cover 
advances in epidemiology, clinical presentation, and 
diagnosis of DPN, highlighting emerging approaches 
for early detection. We will also outline new evidence on 
DPN pathophysiology. Additionally, we will address 
treatment and the research approaches into lifestyle 
interventions that could improve patient outcomes, as 
well as the obstacles that must be overcome to secure 
these outcomes.

Epidemiology and risk factors
Studies of DPN incidence and prevalence in people with 
diabetes most frequently use standardised measures of 
neuropathy, which combine symptoms and signs from 
physical examination findings. Cross-sectional and 
cohort studies done since 2017 have reported a DPN 
incidence of about 8·8 cases per 1000 person-years in 
individuals with type 1 diabetes6 and 24–26·9 cases per 
1000 person-years in individuals with type 2 diabetes6–9 
(table 1). A recent worldwide meta-analysis (29 studies, 
with 50 112 partici pants) found that individuals with 
type 2 diabetes had a higher DPN prevalence (31·5% 
[95% CI 24·4–38·6]) than those with type 1 diabetes 
(17·5% [13·1–36·5]).18 Because diabetes duration is a 
strong DPN risk factor, DPN is present in fewer 
adolescents than adults.9,11 However, the US SEARCH 
study reported substantial age-adjusted DPN prevalence 
in adolescents (type 2 diabetes, 17·7% vs type 1 diabetes, 
8·5%).11 Furthermore, DPN prevalence varies by country 
and can range from 1% to 80%.16 This large variation 
probably arises from multiple factors, including disease 
severity, diabetes duration, DPN definition, and comorbid 
conditions predisposing to neuropathy, especially the 
metabolic syndrome.

Diabetes is the strongest  risk factor for DPN, along 
with disease characteristics, such as diabetes duration 
and severity, measured by haemoglobin A1C levels.20,21 
Additionally, several studies suggest an association 
between glycaemic variability and DPN presence,22 
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although there is some discordance in the findings.23 
The UK Prospective Diabetes Study Group found that 
intensive glucose control lowered the relative risk of 
DPN onset in patients with type 2 diabetes, assessed by 
biothesiometer, but only after a 15-year follow-up;24 
however, substantial attrition was reported as a 
limitation in this study. The Rio de Janeiro Type 2 
Diabetes Cohort Study found that glycaemic variability 
did not correlate with incident DPN, determined by 
clinical examination and neuropathic symptoms, over a 
median 9·3-year follow-up, although it did correlate 
with a composite outcome of both incident and 

worsening DPN symptoms.25 Moreover, nerve damage 
might begin long before individuals with hyperglycaemia 
develop overt diabetes, and a growing body of evidence 
supports an association between prediabetes and early 
small-fibre symptoms.26

Control of hyperglycaemia affects DPN progression in 
patients with type 1 diabetes.4 However, overall, glucose 
control might only moderately affect DPN onset and 
progression in patients with type 2 diabetes, suggesting 
the presence of additional risk factors. Clinical research 
has identified the metabolic syndrome as the crucial risk 
factor, which comprises, in addition to elevated fasting 

Country Study type and population DPN measure Prevalence

Abdel-Motal et al 
(2017)10

Algeria, Bahrain, Egypt, Libya, 
Jordan, Morocco, South Africa, 
and Sudan

Systematic review of 2243 people 
with type 1 diabetes

Multiple DPN 
measures

18·0%

Dabelea et al (2017)9 USA Cross-sectional study of 1746 people 
with type 1 diabetes (mean age 
17·9 years [SD 4·1]) and 272 young 
people with type 2 diabetes (mean 
age 22·1 years [SD 3·5])

MNSI-E Type 1 diabetes, 8·5%; type 2 
diabetes, 17·7%

Jaiswal et al (2017)11 USA Cohort study of 1734 young people 
with type 1 diabetes (mean age 
18·0 years [SD 4·0]) and 258 young 
people with type 2 diabetes (mean 
age 22·0 years [SD 3·5])

MNSI-E Type 1 diabetes, 7·0%; type 2 
diabetes, 22%

Cardinez et al (2018)12 Canada Longitudinal study of 361 people with 
type 1 diabetes older than 50 years

MNSI-Q 42·7%

Ponirakis et al 
(2019)13

Qatar Cross-sectional study of 1095 people 
with type 2 diabetes

Douleur 
Neuropathique en 
4 questions

34·5%

Christensen et al 
(2020)14

Denmark Longitudinal cohort study of 
5249 people with type 2 diabetes

MNSI-Q 17·9%

Jeyam et al (2020)15 Scotland Cohort study of 5558 people with 
type 1 diabetes

MNSI-Q 13%

Lu et al (2020)16 Argentina, Bangladesh, China, 
Germany, India, Italy, Kenya, 
Mexico, Pakistan, Poland, Russia, 
Serbia, Uganda, and Ukraine

Cross-sectional study of 2733 people 
with type 2 diabetes in clinics

Sensory symptoms 
for >3 months

Overall, 26·7%; Kenya, 0·6%; 
Ukraine, 79·6%

Mizokami-Stout et al 
(2020)17

USA Cohort study of 5936 people with 
type 1 diabetes

MNSI-Q 11%

Sun et al (2020)18 Australia, Bangladesh, China, 
France, India, Iran, Malaysia, 
Nigeria, Sri Lanka, Sweden, 
Taiwan, Turkey, UK, and USA

Meta-analysis of 50 112 participants 
(comprising people with type 2 
diabetes and healthy controls)

Multiple DPN 
measures

Type 1 diabetes, 17·5%; type 2 
diabetes, 31·5%

Amutha et al (2021)6 India Longitudinal cohort study of 
3252 people with type 1 diabetes and 
889 people with type 2 diabetes

Vibratory perception 
threshold

Incidence of type 1 diabetes, 
8·8 cases per 1000 person-years; 
incidence of type 2 diabetes, 
24·0 cases per 1000 person-years

An et al (2021)7 USA Retrospective chart review of 
135 119 people with type 2 diabetes in 
one health system

Medical diagnosis 
codes

Incidence: 26·9 cases per 
1000 person-years

Aronson et al (2021)8 Canada Cross-sectional study of 471 people 
with type 1 diabetes and 3903 people 
with type 2 diabetes

Modified Toronto 
Clinical Neuropathy 
Score

Type 1 diabetes, 16·7%; type 2 
diabetes, 29·3%

TODAY Study Group 
(2021)19

USA Cohort study of 674 young people 
with type 2 diabetes (mean age 
14·0 years (SD 1·9)

MNSI-E, MNSI-QE 34·9%

DPN=diabetic peripheral neuropathy. MNSI-E=Michigan Neuropathy Screening Instrument Examination. MNSI-Q=Michigan Neuropathy Screening Instrument 
Questionnaire. MNSI-QE=Michigan Neuropathy Screening Instrument Questionnaire and Examination.

Table 1: Prevalence and incidence of diabetic peripheral neuropathy, as reported by studies published since 2017 
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Country Population DPN measure Findings

Hanewinckel 
et al (2017)30

Netherlands Rotterdam Study of 908 participants Symptom questionnaire, 
neurological examination, nerve 
conduction study

BMI independently associated with lower sural sensory nerve action potential 
(OR 1·53 [95% CI 1·13 to 2·09]) and peroneal compound motor action potential 
(OR 1·49 [1·11 to 1·99]) amplitudes

Jaiswal et al 
(2017)11

USA SEARCH for Diabetes in Youth study of 
1734 young people with type 1 diabetes 
and 258 young people with type 2 
diabetes

MNSI-E; MNSI-Q Higher LDL cholesterol,  triglycerides, obesity, diastolic blood pressure, and lower 
HDL cholesterol were risk factors in young people with type 1 diabetes; lower HDL 
was a risk factor in young people with type 2 diabetes; poor glycaemic control 
correlated with DPN in type 1 diabetes (OR 1·53 [95% CI 1·24 to 1·88] but not in 
young people with type 2 diabetes (OR 1·05 [0·7 to 1·56])

Andersen 
et al (2018)29

Denmark Danish arm of the Anglo-Danish-Dutch 
study of Intensive Treatment of 
Diabetes in Primary Care (ADDITION) of 
1256 participants with type 2 diabetes 
without DPN at baseline

MNSI-Q Baseline weight (HR 1·09 [95% CI 1·03–1·16]), waist circumference 
(HR 1·14 [1·05 to 1·24]), BMI (HR 1·14 [1·06 to 1·23]), log2(methylglyoxal; HR 1·45 
[1·12 to 1·89]), HDL cholesterol (HR 0·82 [0·69 to 0·99]), and LDL cholesterol 
(HR 0·92 [0·86 to 0·98]) were significantly associated with incident DPN

Callaghan 
et al (2018)20

China Study of 4002 participants in Pinggu, 
China; 37·2% normoglycaemic, 18·9% 
with diabetes, and 44·0% prediabetic

MNSI-E; MNSI-Q Diabetes (OR 2·60 [95% CI 1·77 to 3·80]), weight (OR 1·09 [1·02 to 1·18]), and the 
number of metabolic syndrome components (OR 1·17 [1·03 to 1·32]) were 
significantly associated with DPN

Kurisu et al 
(2019)31

Japan 625 participants (69% normoglycaemic, 
12% with diabetes, and 19% 
prediabetic)

Interview, Achilles tendon 
reflexes, quantitative vibration 
threshold, nerve conduction 
study

Type 2 diabetes (OR 3·65 [95% CI 1·68 to 7·93]) and dyslipidaemia (OR 0·53 
[0·30 to 0·96]) were significantly associated with DPN in multivariable models, but 
not prediabetes (OR 1·47 [0·69 to 3·12]) or waist circumference (OR 1·02 
[0·95 to 1·10]); no parameters were associated with DPN when participants with 
type 2 diabetes were excluded

Schlesinger 
et al (2019)32

Germany Cooperative Health Research in the 
Region of Augsburg (KORA) F4/FF4 
cohort of 513 participants

MNSI-E Overweight (OR 3·06 [95% CI 1·57 to 5·97]), obese (OR 3·47 [1·72 to 7·00]), and 
waist circumference (OR 1·22 [1·07 to 1·38]) were significantly associated with DPN 
in multivariable models; interaction analyses did not reveal any differences by 
diabetes status

Callaghan 
et al (2020)33

USA University of Michigan bariatric surgery 
clinic study of 138 obese participants

Primary, Toronto consensus 
definition of probable DPN; 
secondary, IENFD in distal leg 
and four nerve conduction 
studies in sural, tibial, and ulnar 
nerves

BMI was comparable in obese participants with and without DPN (p=0·86); waist 
circumference (OR 1·39 [95% CI 1·10 to 1·75]), triglycerides (OR 1·31 [1·00 to 1·70]), 
systolic blood pressure (OR 2·89 [1·49 to 5·61]) were significantly associated with 
DPN

Callaghan 
et al (2020)34

USA University of Michigan bariatric surgery 
clinic study of 138 obese participants

Primary, Toronto consensus 
definition of probable DPN; 
secondary, IENFD in distal leg 
and one nerve conduction study 
in sural nerve

Waist circumference (–1·48 [95% CI –2·38 to –0·57]), HDL cholesterol (–3·38 
[–6·38 to –0·37]), and systolic blood pressure (2·30 [0·12 to 4·48]) were significantly 
associated with cognitive decline by National Institutes of Health Toolbox 
composite, after adjusting for age, Wide Range Achievement Test 4, and education 
level

Christensen 
et al (2020)14

Denmark Danish Centre for Strategic Research in 
Type 2 Diabetes (DD2) cohort of 
5249 participants with type 2 diabetes

MNSI-Q; Douleur Neuropathique 
en 4 Questions

In regression analyses, central obesity (waist circumference, waist-to-hip ratio, and 
waist-to-height ratio) was associated with DPN; triglycerides (≥1·7 mmol/L, 
aPR 1·36 [95% CI 1·17 to 1·59]), HDL cholesterol (<1·0 mmol/L for male, 1·2 mmol/L 
for female, aPR 1·35 [95% CI 1·12 to 1·62]), high-sensitivity C-reactive protein 
(≥3·0 mg/L, aPR 1·66 [95% CI 1·42 to 1·94]), and HbA1c (≥78 mmol/mol [9·3%], 
aPR 1·42 [95% CI 1·06 to 1·88] were significantly associated with DPN

Reynolds 
et al (2020)21

India Chennai study of 652 participants 
(20% normoglycaemic, 45% with 
diabetes, and 35·5% prediabetic)

Primary, MNSI combined index; 
secondary, MSNI-E, MNSI-Q, 
monofilament, biothesiometer

DPN prevalence increased with poorer glycaemic status (p<0·01), but not with 
number of metabolic syndrome components; in normoglycaemic participants, 
neuropathy prevalence increased as the number of metabolic syndrome 
components increased (p=0·04); diabetes (OR 3·41 [95% CI 1·28 to 9·11]), but not 
waist circumference (OR 1·00 [0·88 to 1·14]) significantly associated with DPN in 
multivariable models

van der Velde 
et al (2020)35

Netherlands Maastricht Study of 2401 participants 
(59% normoglycaemic, 25% with 
diabetes, and 15·4% prediabetic)

Nerve conduction studies, 
vibration perception threshold, 
Douleur Neuropathique en 4 
Questions

Fasting blood glucose was associated with worse peroneal (–0·17 [95% CI 
–0·21 to –0·13]) and tibial –0·18 [–0·23 to 0·14]) nerve conduction velocities. Larger 
waist circumference was associated with lower sural (0·08 [–0·13 to –0·02]) sensory 
nerve conduction velocity and higher vibration perception threshold (0·08 
[0·04 to 0·13]); triglycerides, HDL cholesterol, LDL cholesterol, and systolic blood 
pressure were not associated with DPN.

Today Study 
Group 
(2021)19

USA Treatment Options for type 2 Diabetes 
in Adolescents and Youth (TODAY) 
study of 674 young people with type 2 
diabetes

MNSI-E; MNSI-Q BMI (per 5 kg/m²; HR 1·28 [95% CI 1·15 to 1·43]), HbA1c (HR 1·26 [1·14 to 1·40]), 
male sex (HR 1·81 [1·25 to 2·62]), and age (HR 1·11 [1·01 to 1·21]) were significantly 
associated with DPN in multivariable models

We used the search  terms “diabetic peripheral neuropathy” with “obesity, metabolic syndrome” and “risk factors, metabolic syndrome”. We selected studies with more than 100 participants with type 1 diabetes, 
type 2 diabetes, or combined participants published since 2017. DPN=diabetic peripheral neuropathy. OR=odds ratio. MNSI-E=Michigan Neuropathy Screening Instrument Examination. MNSI-Q=Michigan 
Neuropathy Screening Instrument Questionnaire. LDL=low-density lipoprotein cholesterol. HDL=high-density lipoprotein cholesterol. HR=hazard ratio. IENFD=intraepidermal nerve fibre density. 
HbA1c=haemoglobin A1c. aPR=adjusted prevalence ratio.

Table 2: Risk factors for diabetic peripheral neuropathy that are related to the metabolic syndrome, as identified from clinical studies published since 2017
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glucose, obesity, dyslipidaemia (high triglycerides, low 
high-density lipoprotein [HDL]), and hypertension. 
Obesity measured centrally by waist circumference or 
overall by BMI especially increases DPN risk, in both the 
context of diabetes and independent of glycaemia in 
adults14,27–29 and in young people (table 2).11,19

Other risks factors are low HDL levels11,14,28,29 and higher 
weight,20,29 high triglycerides,14,33 high blood pressure,33 
high concentrations of serum biomarkers of inflam-
mation,14 and high oxidative stress (ie, methylglyoxal).29 
Furthermore, the presence of more metabolic syndrome 
components increases the likelihood of DPN, particularly 
small-fibre symptoms, and shortens the time to symptom 
onset, suggesting a possible dose–response relationship 
in people with prediabetes20,28 and diabetes.21 Other 
independent risk factors include age and lack of physical 
activity.14,27 Importantly, although the metabolic syndrome 
components are more frequent in type 2 diabetes than in 
type 1 diabetes, these components also increase DPN risk 
in individuals with type 1 diabetes.11,36 Statin use has 
previously been reported to increase DPN risk; however, 
in a large nationwide registry done in Denmark, statin 
use was not linked to increased risk of DPN.37

A newly emerging area is the role of genetic risk factors 
in DPN. Although predominantly a metabolically 
acquired neuropathy, DPN is multifactorial and poly-
genic38 risk factors are being identified. Single nucleotide 
poly morphisms (SNPs) that predispose to or are 
protective for DPN have been identified in metabolism 
and vasculature genes, but validation studies are needed. 
Genome-wide association studies (GWAS) have 
identified potential SNP risk modifiers of DPN.39,40 For 
example, SNPs to mitogen-activated protein kinase 
14 have been linked to DPN (rs3761980, rs80028505)39 

and foot ulcers (rs80028505)40 in two independent cohorts 
of European descent. A multi-ancestry meta-analysis of 
data from patients with type 2 diabetes (n=228 499) 
versus healthy controls (n=1 178 783) resulted in a 
polygenic risk score, which was moderately, but 
significantly, associated with DPN.38

Epigenetic determinants of DPN are another emerging 
research avenue.41,42 The epigenome is modifiable through 
environmental cues, including metabolism, and might 
constitute a mechanism of metabolically acquired DPN. 
In individuals with type 2 diabetes and DPN, there is 
decreased peripheral nerve genomic DNA methylation 
and loci-specific differential DNA methylation, sup porting 
a role for epigenetic regulation in neuropathy develop-
ment.42 The role of DNA methylation in DPN development 
in people with type 1 diabetes is less clear.41 Another 
putative but preliminary research area is the genetics and 
epigenetics of microRNAs in DPN.43

Overall, metabolic parameters—encompassing both 
diabetes and the metabolic syndrome—are strong DPN 
risk factors. Genetic and epigenetic factors remain in the 
research domain, although studies are starting to clarify 
their role in DPN development.

Clinical presentation and diagnosis 
Diabetes can cause several patterns of peripheral 
nerve injury, including DPN, autonomic neuropathy, 
radiculoplexus neuropathy, radiculopathy, and mono-
neuropathy. DPN, the focus of this Review, is the most 
common (figure 1).44 DPN usually presents with sensory 
symptoms, which begin symmetrically in the toes and 
slowly advance up to the calves, before beginning in the 
fingers followed by the arms. Symptoms encompass 
numbness and tingling, and, in some patients, pain 
(burning, stinging, shooting, or deep aching). Neurological 
examination can reveal decreased sensation to multiple 
modalities, including vibration, pinprick, and proprio-
ception, following the same distribution pattern as the 
symptoms. Some patients have symptoms (pain) and 

Figure 1: Clinical presentation of diabetic peripheral neuropathy
The most common manifestation of diabetic peripheral neuropathy is a distal 
symmetric polyneuropathy, which manifests in the lower limbs first, followed by 
the upper limbs in a so-called stocking-glove configuration. Signs and 
symptoms start in the toes (darker pink) and progress proximally towards the 
calves, at which point, nerve injury occurs in the fingers and moves up to 
encompass the hands (lighter pink).
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signs (decreased pinprick sensation) attributable to injury 
of unmyelinated nerves, known as small fibres. Other 
patients experience symptoms (numbness) and signs 
(decreased vibration and proprioception) attributable to 

injury of large, myelinated nerves, known as large fibres. 
Pressure is perceived via thinly myelinated fibres, which 
fall under the large fibre category. Most patients exhibit 
both small and large fibre involvement. Motor signs and 

Panel 1: Diagnosis of diabetic peripheral neuropathy

Diagnostic methods in routine clinical use
Clinical history
Diabetes is the most common cause of peripheral neuropathy. 
Long diabetes duration, uncontrolled diabetes (high levels of 
haemoglobin A1c), obesity, dyslipidaemia, hypertension, and 
age are risk factors of DPN.

Clinical presentation
Positive symptoms (eg, tingling, burning, and lancinating pain) 
and negative sensations, such as numbness, usually occur in a 
symmetric distal-to-proximal formation, starting in the feet up 
to the calves, and then progressing to the fingers.

Physical examination
Temperature or pinprick sensation tests assess small fibre 
neuropathy. Vibration tests assess large fibre neuropathy. 
Monofilament tests assess ulcer risk. Small fibre neuropathy 
usually precedes large fibre neuropathy. Isolated small and large 
fibre neuropathy can also occur.

Methods for clinical diagnosis of atypical presentations or in 
research settings
Nerve conduction studies
Electrodiagnostic measures of nerve conduction velocities in 
sensory (sural, peroneal, tibial) and motor (peroneal, tibial) 
nerves using surface or needle electrodes.44 Nerve conduction 
velocities and amplitudes drop with progressive large fibre 
neuropathy. Abnormality (velocity or amplitude) in the sural 
nerve with at least one other nerve conduction abnormality 
signifies large fibre neuropathy. Alternatively, a composite 
Z-score summation from multiple nerves is compared with 
normative values.

Intraepidermal nerve fibre density
Intraepidermal nerve fibre density is the gold standard for small 
fibre neuropathy.44 Immunohistochemical tests can be done on 
skin punch biopsy, generally on the distal leg. Stained small fibres 
are counted and compared with normative values. Intraepidermal 
nerve fibre density drops with progressive small fibre neuropathy. 
Morphological (eg, fibre length, branching, axonal swellings), and 
molecular (eg, substance P, calcitonin gene-related peptide, and 
growth associated protein 43) changes can be assessed.

Diagnostic criteria
Hierarchical classification schemes rate the degree of certainty 
in the diagnosis, ranging from possible, to probable, to definite, 
using a combination of signs and symptoms (eg, the Toronto 
Consensus Panel).44

Diagnostic methods in research settings
Corneal confocal microscopy
Non-invasive imaging of corneal fibres, which are counted and 
compared with normative values.44 Corneal confocal 

microscopy can also assess fibre length and branching. Studies 
suggest that decline in nerve fibre density can correlate with 
DPN progression. Sensitivity is 60·0–91·0% and specificity is 
40·0–87·0%.46

Hand-held electrodiagnostic device
A handheld point-of-care device, which measures sural nerve 
conduction velocity and response amplitude in a few minutes.47 
Sensitivity is 84·3–90·5% and specificity ranges from 
68·3 to 86·1%.

Sticker sweat detector
A sticker affixed to the plantar surface of the foot, which 
measures moisture (sweat) by turning from blue to pink.47 
Sensitivity ranges from 65·1 to 100·0% and specificity from 
32·0 to 78·5%.

Instrument sweat detector
Measures conductance of chloride ions from sweat released 
from hands and soles of the feet after electrical stimulation of 
sweat glands. Measures sudomotor function in a few 
minutes.47 Sensitivity is 87·5% and specificity 76·2%.

Diagnostic methods for painful DPN in research settings
Quantitative sensory testing
Standardised protocols can measure the response to well-
defined sensory stimuli.44 Parameters include thermal and 
mechanical detection; pain, vibration, and pressure pain 
thresholds; dynamic mechanical allodynia; and wind-up ratio, 
which assess function in all fibre types (Aβ large myelinated, 
Aδ thinly myelinated, and C unmyelinated).

Microneurography
A needle electrode measures spontaneous activity and 
stimulus-evoked of unmyelinated C fibres in peripheral nerves, 
usually peroneal.48 Irregular so-called saw-tooth baselines in 
abnormal nerves have been observed. This is a labour-intensive 
technique, which requires cross-laboratory validation.

Hoffman-Reflex rate-dependent depression
Differentiates pain of spinal disinhibition origin from pain of 
peripheral origin by measuring the deep tendon reflex response 
neural pathways.48

Functional brain imaging (fMRI)
fMRI uses different protocols, including the BOLD response, 
arterial spin labelling, and connectivity analysis. This type of 
imaging relates these changes to both spontaneous and 
evoked pain states, illustrating the distributed cortical 
network involved in the discriminative and affective pain 
components, as well as the descending pain modulatory 
system.
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symptoms are much less common than are sensory 
symptoms, although motor involvement is often seen on 
electrodiagnostic testing.

The American Diabetes Association recommends 
evaluation of DPN in patients with type 2 diabetes at 
diagnosis and in patients with type 1 diabetes 5 years 
after diagnosis, and then annually thereafter for both 
patients with type 1 and type 2 diabetes.5 Screening 
should comprise a detailed clinical history and 
examination, including assessment of temperature or 
pinprick sensation (small fibre), vibratory sensation 
(large fibre), and ability to perceive pressure using a 10 g 
monofilament (large fibre). Electrodiagnostic testing 
and referral to a neurologist are rarely needed, except for 
patients presenting with atypical features (eg, rapid 
onset, asymmetrical signs, non-length dependent 
neuropathy, or pronounced motor complications).

Clinical history and examination are the mainstays of 
clinical diagnosis. However, confirmatory testing is 
available for large fibre (electrodiagnostic) and small 
fibre (intraepidermal nerve fibre density) nerve injury. 
Electrodiagnostic tests have good test characteristics, 
with areas under the curve (AUCs) ranging from 

0·76 to 0·90,45 but defining the parameters that 
constitute an atypical test is challenging. Moreover, they 
do not assess small fibre involvement. Intraepidermal 
nerve fibre density has good test characteristics 
(AUCs 0·75 to 0·82)45 but is invasive. Furthermore, 
many countries do not have the facilities to perform 
intraepidermal nerve fibre density assessments, and, 
where available, whether commercial laboratories 
perform comparably to academic centres remains 
uncertain. Overall, confirmatory testing is not usually 
needed for clinical management, but is used in clinical 
research and is helpful in the diagnosis of patients with 
atypical presentations (panel 1).

In addition to these diagnostic tests, clinical scales are 
also available to identify and monitor patients with 
neuropathy (panel 2). At least 18 such scales exist, mostly 
assessing similar domains (eg, sensory [large and small 
fibre], motor, autonomic and reflexes), but attribute 
variable weight to these domains.49,51 Studies show that 
many of these scales have similar diagnostic characteristics 
regarding sensitivity and specificity. Similar to the afore-
mentioned confirmatory tests,  the diagnostic character-
istics of clinician-rated scales are good.52 A limitation of 

Panel 2: Scales and questionnaires for clinical management of diabetic peripheral neuropathy

Clinical scales
These scales measure a combination of signs and symptoms 
and are used to screen for and monitor diabetic peripheral 
neuropathy (DPN) progression.49

Diabetic Neuropathy Examination Score
Eight-item examination tool that consists of muscle strength; 
muscle jerk reflex at the triceps; pinprick in the index finger 
and great toe; and vibration, joint position, and touch in the 
great toe.

Michigan Neuropathy Screening Instrument Examination (MNSI-E)
A physical exam consisting of great toe vibration with a 128-Hz 
tuning fork, muscle jerk reflex at the ankle joint, monofilament 
testing, and foot exam (appearance, ulcerations). 

Modified Toronto Clinical Neuropathy Score (mTCNS)
Includes six questions regarding impact of symptoms on daily 
living and examination of the loss of sensation to five 
modalities (touch, pinprick, temperature, vibration, and 
proprioception) in lower extremities. The mTCNS is a 
modification of the Toronto Clinical Neuropathy Score, which 
included ankle and knee jerk reflexes and did not include 
gradation of symptom impact or severity of sensory loss.

Neuropathy Impairment Score (NIS)
Examination-based measure that includes muscle strength in 
24 muscle groups; jerk reflexes at the biceps, triceps, 
brachioradialis, quadriceps, and ankle; and sensation to touch, 
vibration, joint position in the index finger and great toe. 
The NIS-LL is a condensed measure focused on the lower 
extremities. The NIS-LL+7 was developed specifically to 
measure impairment in DPN and includes nerve conduction 

studies of sural, tibial, and peroneal nerves, vibratory threshold 
at the great toe using quantitative sensory testing, and heart 
rate response to deep breathing.

Total Neuropathy Score
Multimodality measure that includes history of sensory, motor, 
and autonomic symptoms; strength at major muscle groups; 
muscle jerk reflex at the ankle joint; vibratory threshold at the 
great toes bilaterally and right index finger using quantitative 
sensory testing; and nerve conduction studies of the bilateral 
sural nerves, right common peroneal, and bilateral posterior 
tibial nerves.

Utah Early Neuropathy Score
Examination-based measure that includes muscle strength at 
the great toes; extent of sensory loss to pinprick and vibration 
in the lower extremities; proprioception at the great toes; 
muscle jerk reflexes at the ankle joints; and presence of 
allodynia in the toes or foot.

Screening and assessment scales
Douleur Neuropathique en 4 Questions
Includes questions related to history of seven types of pain, loss 
of sensation to touch and pinprick, and hyperesthesia.50

Leeds Assessment of Neuropathic Symptoms and Signs Pain Scale
Includes five questions related to type of pain and associated 
signs and examination of decreased sensation to pinprick and 
hyperesthesia.50

Michigan Neuropathy Screening Instrument Questionnaire (MNSI-Q)
Includes 15 questions related to history and neuropathy 
symptoms.50
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the scales is the need for trained personnel for 
administering tests. However, the performance of these 
clinical scales is comparable to that of diagnostic testing, 
but without the associated costs, time, and discomfort.45

At least five neuropathic pain questionnaires are also 
available to identify patients with DPN experiencing 
neuropathic pain (panel 2).53 Pain is often underreported 
and undertreated; therefore, identifying painful DPN is 
crucial for clinical management.44,54 Importantly, not all 
pain in these patients is neuropathic in nature; therefore, 
distinguishing neuropathic pain (ie, pain arising from 
lesions or disease affecting the somatosensory nervous 
system) from other pain generators, such as joint pain, 
can inform clinical management.

DPN, and peripheral neuropathy more broadly, often 
remain undiagnosed. The reasons are manifold, but the 
lack of systematic and widespread screening contributes 
to this problem. Moreover, early diagnosis might improve 
prognosis, but current diagnostic methods are of 
suboptimal sensitivity. Therefore, new diagnostic tests 
for DPN are needed and should be rapid, sensitive, 
specific, and inexpensive. Emerging tests include corneal 
confocal microscopy and various point-of-care or rapid 
devices (panel 1).47 Corneal confocal microscopy is less 
invasive than intraepidermal nerve fibre density and has 
acceptable diagnostic accuracy in most studies.46 
However, the test requires specialised personnel and 
equipment and, as a result, is primarily used in research 
settings. A hand-held electrodiagnostic device that 
measures nerve conduction velocity is quick, reliable, 
and inexpensive, and might have diagnostic accuracy 
nearly equal to nerve conduction studies.47 A sticker 
developed for detecting sweat has not been studied as 
extensively as the hand-held electrodiagnostic device, but 
early results indicate its diagnostic test characteristics are 
modest at best.47 Similarly, studies to date do not support 
an instrument designed to detect sweat as a reliable test 
to diagnose neuropathy.47 In summary, although new 
diagnostic tests are being developed and tested, none is 
currently ready for clinical use.

DPN and cognitive impairment 
Several clinical studies show that diabetes55 and obesity56 
predispose individuals to cognitive impairment and  
dementia (eg, Alzheimer’s disease) later in life. Even 
early in life, people with diabetes55 or obesity34 can have 
subtle, but detectable decline in cognition. These 
findings suggest that shared pathological processes 
might occur in the peripheral nervous system (PNS) and 
CNS. As in DPN, mitochondrial dysfunction and bio-
energetic failure also occur in Alzheimer’s disease.57 
Moreover, some risk factors are shared between DPN 
and cognitive impairment, and encompass both glucose 
and lipid metabolism.55,56 In clinical studies of patients 
with type 1 diabetes or type 2 diabetes, DPN is a risk 
factor for cognitive impairment58,59 and brain structural 
changes.60 The possibility of shared or similar 

neuro logical damage in the periphery and centrally in 
diabetes is intriguing

DPN management
DPN prevention and treatment can be challenging. 
Although there is a salutary effect of glycaemic control 
for preventing DPN in patients with type 1 diabetes, 
multiple clinical trials have failed to show a similar effect 
of this intervention in patients with type 2 diabetes.4 The 
guidelines from the American Diabetes Association for 
treating DPN recommend adding a healthy diet and 
exercise to glycaemic control as crucial therapeutic 
interventions for patients with type 2 diabetes with DPN. 
Thus, while glycaemic control is probably important in 
patients with type 2 diabetes, other interventions are also 
needed as standard of care.5

With respect to dietary modifications as a first-line 
treatment, weight loss improves the metabolic 
syndrome, making it an attractive intervention for DPN 
in patients with type 2 diabetes. Recent studies 
demonstrate the importance and limitations of this 
intervention. The Look Ahead study randomly assigned 
5145 patients with diabetes to an intervention primarily 
focused on dietary weight loss for 9–11 years.61 Dietary 
weight loss ameliorated Michigan Neuropathy 
Screening Instrument (MNSI) questionnaire scores, 
but did not change MNSI examination scores. Similarly, 
an observational study by our group demonstrated that 
a dietary weight loss intervention in severely obese 
participants (n=131, mean baseline BMI 40·8 kg/m²) 
had the same findings, with improved MNSI question-
naire scores but a stable MSNI examination.62 
Therefore, weight loss is a promising intervention for 
DPN,63 but further improvements might require earlier 
or different intervention strategies. Exercise studies 
have been more limited, with smaller cohorts or 
without randomisation. Despite these limitations, 
studies have shown that patients with type 2 diabetes 
and DPN can show improvement in intraepidermal 
nerve fibre density with exercise.64 Notably, exercise 
interventions lead to only minimal weight loss in 
patients with diabetes, indicating that, if exercise is 
effective in improving DPN, the mechanisms behind 
such improvements are possibly independent of weight 
loss.

There are no effective pharmacological interventions 
for DPN, although sodium-glucose cotransporter 
(SGLT)-2 inhibitors provide a novel direction. SGLT-2 
inhibitors block glucose resorption in the kidneys, 
increasing glucose excretion, which lowers blood glucose 
concentrations. SGLT-2 inhibitors improve cardio-
vascular outcomes in patients with diabetes,65 and recent 
animal studies indicate that SGLT-2 inhibitors could be 
promising for improving neuropathy outcomes, although 
they might be more effective in the setting of type 1 
diabetes than in type 2 diabetes.66 However, further 
studies on SGLT-2 inhibitors are warranted.
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Figure 2: Pain medication for patients with painful diabetic peripheral 
neuropathy
Adapted from Callaghan and colleagues.68 Tiered approach to pain management 
in patients with painful diabetic peripheral neuropathy. All medications (tricyclic 
antidepressants, SNRIs, gabapentinoids [eg, gabapentin, pregabalin], and sodium 
channel blockers [eg, lidocaine]) have similar effect sizes. Treatment selection 
should focus on alternative parameters such as tolerability and cost. 
SNRIs=serotonin norepinephrine reuptake inhibitors.

First-line treatment 
Tricyclic antidepressants (inexpensive and 
effective) 

If inadequate pain relief or intolerable
adverse effects  

If inadequate pain relief or intolerable 
adverse effects  

If inadequate pain relief or intolerable 
adverse effects  

Second-line treatment
Taper off tricyclic antidepressants
Introduce SNRIs (relatively inexpensive and 
effective)

Third-line treatment
Taper off SNRIs 
Try gabapentin (relatively inexpensive and 
effective) 
If unsuccessful, try a different tricyclic 
antidepressant or SNRI
If unsuccessful, try pregabalin (most 
expensive effective therapy)

Fourth-line treatment
Consider gabapentinoid with tricyclic 
antidepressant or SNRI 
Consider topical agents such as capsaicin or 
lidocaine 

Avoid opioids
No long-term data on efficacy, but increased 
risk of addiction and overdose 

Given the lack of disease-modifying therapies, the 
clinical management of patients with DPN is focused on 
educating patients about the importance of good foot 
care, appropriate shoe wear, and an annual foot 
examination.2 Another essential component of DPN 
management is the control of pain. Four drug classes 
are effective for painful DPN, including serotonin 
norepinephrine reuptake inhibitors, tricyclic anti-
depressants, gabapentinoids, and sodium channel 
blockers.67 All these medications have similar effect sizes 
and differences across classes are minimal. Therefore, 
choosing a neuropathic pain medication should focus on 
factors beyond efficacy, including tolerability, 
contraindications, and cost (figure 2). Topical medications 
are also available, and capsaicin is the best studied.67 
Effect sizes for capsaicin are comparable with those of 
oral therapies. Overall, the effect sizes of all these 
medications are small, and only about one in 
seven patients with painful DPN experience pain relief,44 
emphasising the need for more effective pain 
interventions.

Behavioural interventions also exist for treating 
painful DPN. Exercise, cognitive behavioural therapy, 
and mindfulness have all been studied with early 
promising results.69 Although definitive trials are 
needed, behavioural interventions might provide 
another avenue for treating pain, especially given the 
emerging evidence in other chronic pain conditions, 
such as fibromyalgia.70 Combination therapy with a 
behavioural and a pharma cological intervention might 
be warranted to address painful DPN that is not 
responsive to one treatment modality alone.

Surgical interventions are also available for treating 
painful DPN. Unfortunately, the role of spinal cord 
stimulation remains unclear despite a recent randomised 
clinical trial of 216 participants.71 Although 79% of 
participants responded in the intervention arm versus 
only 5% in the control arm, the results must be interpreted 
with great caution because this trial was an open label 
study without sham surgery in the control group. Future 
surgical intervention studies for painful DPN will need to 
include a sham control and masking to understand what 
role, if any, surgery has for treating painful DPN.

Although opioids, including tramadol and tapentadol, 
effectively reduce pain in DPN patients in the short term, 
there is no information regarding their long-term 
efficacy. Moreover, painful DPN is chronic, and long-
term opioid use can be harmful and lead to dependence, 
drug overdoses, and death,67,68 and should be avoided. 
Furthermore, multiple studies show that opioid treat-
ment is common in patients with painful DPN, despite 
its lack of efficacy.72,73 Many physicians prescribe tramadol 
or tapentadol as alternatives to other opioids, but recent 
evidence suggests that they have the same harmful long-
term effects.74 This evidence has led to guidelines 
recommending extreme caution when prescribing 
opioids for chronic non-cancer pain.67,75

Improvements in the characterisation of pain 
presentations might help predict treatment response to 
pain medications. Characterisation methods include 
sensory profiles, such as pain or sensory quality and 
quantitative sensory testing, microneurography, and 
Hoffman-Reflex rate-dependent depression.48 Quantitative 
sensory testing measures the perceptions evoked by 
distinct sensory stimuli; this test produces individual 
sensory profiles that can be used to stratify patients 
according to pathophysiological mechanisms.76 Micro-
neuro graphy involves inserting an electrode into a 
peripheral nerve and measuring spontaneous and 
stimulus evoked activity of unmyelinated small fibres 
(autonomic and sensory). Hoffman-Reflex rate-dependent 
depression is a means of assessing spinal disinhibition 
from pain by measuring the same neural pathways that 
constitute the deep tendon reflex response. Studies using 
sensory profiling to predict treatment response are still 
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Figure 3: Anatomy and pathophysiology of diabetic peripheral neuropathy
(A) Peripheral neuron cell bodies are only microns in width, but axons are up to several feet in length. For nerve function, neurons traffic mitochondria from the cell body 
along the axons to areas of high energy demand. Failure to traffic mitochondria results in energy failure at axon termini followed by distal-to-proximal (pink to blue) nerve
injury, which underlies the stocking-glove pattern of clinical signs and symptoms. (B) Homoeostatic conditions, healthy nerve (blue): axons take up glucose in an insulin-
independent manner through glucose transporter 3 (GLUT3; green transporter), which is metabolised to pyruvate in the cytoplasm and further to ATP in mitochondria. 
Schwann cells take up glucose in an insulin-dependent manner through GLUT1 (blue transporter); some glucose is metabolised for energy use by Schwann cells, and some 
is metabolised to pyruvate and then lactate for transport to axons through the monocarboxylate transporter 1 (MCT1; grey, on Schwann cells) then MCT2 (purple, on 
axons). Schwann cells take up fatty acids using fatty acid transporters, translocases, or binding proteins, primarily for myelin production. Mitochondria are trafficked in 
anterograde or retrograde direction to areas of high energy demand. Mitochondria generate a mitochondrial membrane potential for ATP production, powering Na+/K+ 
ATPase channel activity (pink; purple spheres represent cations). Mitochondrial biogenesis can replenish dysfunctional mitochondria, which are eliminated by mitophagy. 
In pathological conditions, in a peripheral nerve (pink), hyperglycaemia increases glucose flux into axons through GLUT3; excess glucose that is not metabolised by 
glycolysis can activate other pathways, (eg, polyol, AGEs, and PKC pathways). Downstream, this activation triggers inflammation and disrupts Na+/K+ ATPase channel 
activity (no cations pumped, stop sign). Insulin resistance impairs insulin-dependent GLUT1-facilitated glucose uptake by Schwann cells, disrupting MCT-mediated fuel 
transport to axons and possibly the balance with lipid metabolism and myelin production. Hyperglycaemia and hyperlipidaemia also enhance oxidative stress and 
apoptosis in Schwann cells. Hyperlipidaemia disrupts mitochondrial biogenesis and trafficking in the axon, lowering the  proportion and velocity of motile mitochondria. 
Palmitate also depolarises axonal mitochondria and reduces their ability to dissipate mitochondrial membrane potential to meet physiological energy demands. 
Mitophagy is also impaired. The figure was created by use of BioRender.com. AGE=advanced glycation end products. DPN=diabetic peripheral neuropathy. GLU=glucose. 
GLUT=glucose transporter. LAC=lactate. MCT=monocarboxylate transporter. PKC=protein kinase C. PYR=pyruvate.ROS=reactive oxygen species.
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in their infancy,44,77 and more work remains to integrate 
such measures into clinical trials. Hoffman-Reflex rate-
dependent depression has been investigated in animals,48 
but future studies are needed to determine whether 
this test can predict treatment response in humans. If 
supported by future studies, pain characterisation might 
further our ability to address DPN pain by targeting 
patient-specific characteristics. Current guidelines 
recommend assessing patients for other factors that 
might affect pain perception, such as mood and sleep 
disorders, which helps select medications to manage 
these associated symptoms, possibly producing additional 
benefits for managing pain.67

Pathophysiology 
Peripheral nerve anatomy poses challenges to well-
orchestrated energy distribution and nerve function. Cell 
bodies of peripheral neurons are only microns in width, 
but their corresponding axons can be longer than a metre 
in length. Thus, for healthy nerve function, neurons 
need to traffic energy-producing mitochondria from the 
cell body along the axon, across large distances, to areas 
of high energy demand (figure 3A). When mitochondria 
do not traffic to the distal portion of a long axon or are 
dysfunctional upon arrival, subsequent energy failure 
and axonal injury occurs. This distal-to-proximal loss of 
energy supply to axons occurs in both type 1 and type 2 
diabetes78 and underlies the stocking-glove pattern of 
clinical signs and symptoms. Hyperglycaemia is present 
in both type 1 and type 2 diabetes; however, comorbid 
obesity and dyslipidaemia in type 2 diabetes additionally 
underscore the delicate balance between systemic 
and PNS metabolic requirements for nerve function. 
Thus, bioenergetic failure and mitochondrial dysfunction 
secondary to excessive circulating glucose and lipids 
might provide a unifying mechanism to explain both 
the pathology and clinical presentation of DPN. Axons 
are also dependent on glia for energy substrates and 
healthy function in the CNS;79 however, the importance 
of this dependence in DPN pathophysiology has only 
been recognised recently.80 Glucose enters both axons 
and supporting Schwann cells via specific glucose 
transporters. Through a process known as metabolic 
axoglial coupling,80 Schwann cells can then supply 
energy-requiring long axons with fuel by transferring 
lactate through certain monocarboxylate transporters.81 
The metabolic syndrome results in poor glucose uptake 
in the PNS, which develops insulin resistance, similar to 
peripheral muscle and fat tissue.82 This poor glucose 
uptake in turn disrupts axoglial coupling and depletes 
axonal energy stores, especially in the distal aspects of 
axons, leading to nerve injury and DPN over time. This 
novel idea underlying DPN pathogenesis bears out in 
preclinical studies. High-fat fed mice develop the 
metabolic syndrome, placing long axons in an energy 
crisis with resultant neuropathy, along with impaired 
axonal mitochondrial trafficking and biogenesis.78

High-fat feeding also depolarises energy-starved axonal 
mitochondria, further reducing their ability to provide 
ATP to meet physiological energy demands during nerve 
firing. As mitochondrial damage accumulates with 
disease progression, it triggers persistent damage due to 
energy failure,83 oxidative84 and endoplasmic reticulum 
stress,85,86 and loss of normal ion flux.83,87 Glucose 
accumulation in the nerve leads to an increase in glycation 
end products, and enhances the polyol, hexosamine, and 
protein kinase C pathways (figure 3B). These changes in 
nerve metabolism induce inflammation and disrupt 
osmotic balance, membrane resting potential, axon 
electro physiology, and vascular function.83

Importantly, the effects of fatty acids on neuronal 
mitochondrial function are dependent on chain length 
and saturation; longer-chain, saturated fatty acids are more 
detrimental to neuronal mitochondria than their 
unsaturated counterparts.88 This finding suggests that 
dietary interventions could slow DPN progression. In 
obese prediabetic rodents, supplementing the diet with 
unsaturated fatty acids ameliorates neuropathy, without 
reducing body fat mass or improving systemic insulin 
resistance.88 This amelioration suggests local energy 
effects directly within the nerve. In type 2 diabetes89 and 
obesity90 studies in human beings, DPN correlates with 
distinct plasma signatures of specific lipid classes or 
species. Although causality in the DPN disease process 
has not been established, ceramides, sphingomyelins, and 
lipid signalling inhibitors are being investigated in animal 
models in the context of type 2 diabetes and obesity.91

Although research has focused on the investigation of 
direct metabolic dysfunction in DPN pathogenesis, other 
emerging directions focus on metabolism regulated 
through extracellular vesicles92 and the gut microbiome.93 
We anticipate that these new areas will continue to 
converge on the basic tenet that neural anatomy results in 
unique energy demands which, if not met, can lead to 
injury and ultimately neuropathy.

DPN pain mechanisms 
In patients with DPN, neuropathic pain (ie, pain arising 
from lesions or disease affecting the somatosensory 
nervous system), usually manifests as spontaneous 
burning pain, sometimes associated with hyperalgesia or 
allodynia, and often accompanied by sensory loss.44 
Determinants of painful DPN remain unknown; 
however, it likely results from the complex interactions of 
lesion characteristics (eg, severity), diabetes severity, the 
metabolic syndrome, genetic susceptibility, and environ-
mental factors.83

Hyperexcitability of sensory neurons in the form of 
spontaneous activity and an enhanced response to sensory 
stimuli are thought to be key drivers of neuro pathic pain in 
DPN. In the healthy nerve (figure 4 A, C), ion channels 
sense and transduce the initial stimulus to sensory 
receptors. Voltage-gated sodium channels then generate 
the action potential, which propagates along afferent axons 
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towards the CNS. Finally, within the spinal cord dorsal 
horn, ion channels trigger neurotransmitter release. 
Mutations, changes in expression, or post-translational 
modifications to ion channels alter their functional 
properties and cause hyperexcitability. Several ion channels 
are implicated in painful DPN (figure 4B, D), including 
voltage-gated sodium channels (Nav1·7, 1·8, 1·9),44,83,94 

voltage-gated potassium channels,95 ligand-gated 
transduction chan nels such as TRPA1,96 calcium channels 
(Cav3·2),83 and hyperpolarisation-activated cyclic 
nucleotide-gated channels (HCN2).97 Some of these 
channels have been validated in human studies of painful 
DPN (eg, voltage-gated sodium channels94 and TRPA1),96 
whereas others only in animal models. Nevertheless, 
clinical studies targeting these channels (eg, 
ISRCTN68734605) have been initiated.98

Different mechanisms of ion channel-mediated hyper-
excitability and pain can occur.83 Increased Nav1·8 
expression increases conduction in unmyelinated C fibre 
nociceptors, intensifying impulse transmission to the 
CNS.83 Ion channel mutations resulting in gain of 
function (eg, through impaired inactivation) will lead to 
lowered action potential threshold and enhance spon-
taneous activity and firing frequency.94 Post-translational 
modifications can also alter channel characteristics; for 
example, the modification of TRPA1 by methylglyoxal, an 
oxidised reactive metabolite that is elevated in diabetes, 
results in the activation of this channel (figure 4B).83,96 
TRPA1 senses noxious stimuli, such as exogenous 
reactive oxygen species and noxious cold. Therefore, 
oxidised (4-hydroxynonenal) or reactive oxygen species 
(H2O2) that are increased in diabetes can enhance this 
TRPA1 activation.

GWAS studies of painful DPN shed light on additional 
potential mechanisms; one study has identified that 
SNPs around the locus codifying for the mitochondrial 
phosphate carrier protein SLC25A3, which is involved in 
oxidative phosphorylation, increase the risk of neuro-
pathic pain.99 DOLORisk is a large multicentre obser-
vational study of patients with neuropathic pain, 
including patients with painful DPN, in which robust 
phenotyping data and gene sets are being collected for 
analysis to identify pathogenic SNPs.100 Additionally, 
differences in circulating pro-inflammatory cytokines 
have been shown in clinical studies101 and the involvement 
of the CXCR4 signalling axis has been described in 
experimental models.102

In addition to peripheral mechanisms, CNS dys-
function can also contribute to pain (figure 4E). Changes 
within the dorsal horn of the spinal cord further amplify 
nociceptive signals, contributing to painful DPN. This 
dysfunction includes altered dorsal horn neuron 
morphology and spinal disinhibition.103 The descending 
pain modulatory system, mediated by projections from 
the brainstem, can either inhibit or facilitate transmission 
of nociceptive information within the dorsal horn. 
Conditioned pain modulation provides a means to test 
the integrity of the descending pain modulatory system 
and is predictive of treatment response.2 Functional MRI 
studies suggest that facilitation via the ventrolateral 
periaqueductal grey is increased in patients with painful 
DPN versus those without painful DPN.104 These changes 
are not restricted to neurons, as experimental models 
suggest a contribution of pro-inflammatory microglia.105

Figure 4: pain mechanisms in diabetic peripheral neuropathy
(A) Healthy unmyelinated C fibre (blue) has nerve endings embedded in skin. Inset: Voltage-gated sodium channels 
(eg, Nav1·7, 1·8) and ligand-gated channels (eg, TRPA1) transmit an afferent signal if the stimulus is higher than 
the channel threshold. (B) Neuropathic unmyelinated C fibre has distal-to-proximal length-dependent 
neurodegeneration, (red) starting in the nerve endings. Inset: Channel modification by reactive metabolites 
(eg, methylglyoxal, reactive species [green oval], or channel mutations [red shaded circle]) can lower the current 
threshold for generating an action potential in sensory neurons. Less intense stimulus now evokes an action 
potential and repetitive firing (red) on continued activation. (C) Healthy myelinated fibre has encapsulated nerve 
endings embedded in skin. Inset: Voltage-gated potassium (Kv; located at the juxtaparanode) and sodium (located 
at the nodes) channels propagate signals along nodes of Ranvier by saltatory conduction. (D) Neuropathic 
myelinated fibre has distal-to-proximal length-dependent neurodegeneration that starts in the encapsulated 
nerve ending. Inset: Kv channel expression level drops, leading to hyperexcitability. (E) CNS pain mechanisms. 
Top panel: ascending pathways of CNS dysfunction arising from peripheral to central pain signal amplification 
(red arrows). Sensory DRG (yellow) neurons carrying afferent signals connect with CNS neurons within the dorsal 
horn of the spinal cord, which relay within the brainstem to the brain. Different neuron colors represent various 
ascending pain pathways. Bottom panel: descending pathways of CNS dysfunction arising from the brain to pain 
signal amplification (red arrows) in the spinal cord. Different neuron colors represent various descending pain 
pathways. CNS pain pathways can give rise to autonomic dysfunction and anxiety, depression, and disturbed sleep. 
This figure was created by use of BioRender.com. DRG=dorsal root ganglion. Kv=voltage-gated potassium channel. 
Nav=voltage-gated sodium channel. 
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Multimodal MRIs show structural and functional 
differences in the somatosensory cortex in patients with 
painful DPN versus those with non-painful DPN.106 
These changes could partly reflect deafferentation. 
Painful DPN is also associated with psychological 
changes and comorbidities, including anxiety, depres-
sion, and sleep problems, which can contribute to 
maladaptive pain states. Moreover, brain MRI findings 
might be useful to identify patients with painful DPN 
who are likely to respond to specific pain treatments.107

Conclusions and future directions 
Unfortunately, many patients with diabetes struggle 
with DPN, a prevalent complication which, despite 
being long-recognised, still lacks disease-modifying 
therapies. DPN can develop despite well-controlled 
diabetes,4 suggesting determinants of disease in addition 
to glucose parameters. A better understanding of 
modifiable risk factors such as the metabolic syndrome 
components,11,14,20,27–29,33 could help in the identification of 
the patients most susceptible to DPN development. 
Awareness of modifiable risks also suggests potential 
interventions to slow DPN. Lifestyle interventions, such 
as diet and exercise, might slow DPN progression,61,62,64 
leading to stable disease, and the American Diabetes 
Association recommends diet and exercise as first-line 
prevention for DPN.5 Because these interventions slow 
the progression of DPN, patients might benefit from 
early intervention. Thus, an earlier, more sensitive, and 
more specific diagnosis might help prognosis; however, 
clinical diagnosis has remained essentially unchanged 
over the past few decades and innovation is needed. The 
scarcity of effective therapies for painful DPN is a 
roadblock to pain management, and the long-term 
side-effects of opioids warrant a tiered approach, which 
should avoid opioid prescription. We anticipate that a 
deeper understanding of the pathogenesis of DPN and 
the mechanisms underlying distinct types of pain will 
lead to more effective treatment. This prevalent disorder 
needs a disease-modifying therapy, a goal that underlies 
all current and newly evolving DPN research.
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PERSPECTIVE

Advances in diet-induced rodent models of metabolically acquired
peripheral neuropathy
Stéphanie A. Eid and Eva L. Feldman*

ABSTRACT
Peripheral neuropathy (PN) is a severe complication that affects
over 30% of prediabetic and 60% of type 2 diabetic (T2D) patients.
The metabolic syndrome is increasingly recognized as a major driver
of PN. However, basic and translational research is needed to
understand themechanisms that contribute to nerve damage. Rodent
models of diet-induced obesity, prediabetes, T2D and PN closely
resemble the human disease and have proven to be instrumental for
the study of PN mechanisms. In this Perspective article, we focus on
the development, neurological characterization and dietary fat
considerations of diet-induced rodent models of PN. We highlight
the importance of investigating sex differences and discuss some of
the challenges in translation from bench to bedside, including
recapitulating the progressive nature of human PN and modeling
neuropathic pain. We emphasize that future research should
overcome these challenges in the quest to better mimic human PN
in animal models.

Introduction
The global prevalence of the metabolic syndrome (MetS; see
Glossary, Box 1) has reached epidemic proportions (Saklayen, 2018).
Thirty to sixty percent of patients with MetS are affected
by peripheral neuropathy (PN; Box 1) (Feldman et al., 2019). For
decades, extensive research focused on the role of hyperglycemia in
PN development. However, we found that well-controlled glycemia
only reduces PN incidence in type 1 diabetes (T1D; Box 1), but
marginally improves onset and progression in prediabetes (Box 1)
and type 2 diabetes (T2D; Box 1) (Callaghan and Feldman, 2013;
Callaghan et al., 2012). Although T2D is the most common cause of
PN, central obesity and dyslipidemia are PN risk factors, independent
of glycemic status (Andersen et al., 2018; Callaghan et al., 2020).
Thus, clinical studies support MetS more broadly as a major PN
driver in prediabetes, T2 and obesity, highlighting the metabolically
acquired and diet-induced nature of PN (Callaghan et al., 2018,
2016a,b; Christensen et al., 2020). Additionally, guidelines from
the American Diabetes Association now recommend lifestyle
interventions to improve MetS and prevent PN in prediabetic, T2D
and obese patients (www.ada.org) (Pop-Busui et al., 2017).
Although MetS is increasingly recognized as an independent PN

risk factor, the cellular and molecular mechanisms underlying

disease onset and progression remain unclear. Animal models that
closely mimic the human condition have been invaluable in gaining
insight into PN pathogenesis. Our laboratory and others have
developed rodent models fed a high-fat diet (HFD), which
consistently induces MetS, including obesity, impaired glucose
tolerance and dyslipidemia, as PN develops (Davidson et al., 2010;
Guilford et al., 2011; O’Brien et al., 2020). In this Perspective
article, we provide an overview of the guidelines for assessing PN in
rodents. We then focus on diet-induced rodent models of obesity,
prediabetes and T2D leading to PN, which reproduce human disease
and have proven instrumental for studying PN mechanisms. We
finally highlight the importance of sex differences and discuss
outstanding challenges associated with the use of diet-induced PN
models in research.

“Overall, implementing DiaComp
recommendations standardizes
neuropathy phenotyping, reducing
lab-to-lab variation and facilitating the
collection of rigorous, reproducible and
translatable data, essential for enhancing
our understanding of PN.”

Guidelines for assessing PN in rodents
Rodent models are useful for studying PN etiology because
they facilitate experiments that are not feasible in the clinical
setting. The National Institutes of Health created the Diabetic
Complications Consortium (DiaComp; www.diacomp.org) to
identify new animal PN models and standardize neuropathy
phenotyping to reduce lab-to-lab variation. DiaComp advises that
a robust rodent PN model should exhibit essential pathological
features of the human disease, including abnormal sensory
symptoms (Fig. 1A,B; Box 1) such as allodynia, hyperalgesia
and/or hypoalgesia; nerve conduction velocity (NCV; Box 1)
deficits (Fig. 1C-E); and morphological evidence of intraepidermal
nerve fiber density (IENFD; Box 1) loss (Juster-Switlyk and Smith,
2016) (Fig. 1F-H).

Based on DiaComp recommendations, neuropathy phenotyping
first assesses thermal sensitivity as a measure of sensory dysfunction
using tail-flick or hindpaw withdrawal tests. Alternatively, von Frey
filaments (Box 1) can be used to quantitatively assess sensitivity
to mechanical stimuli. Like humans, diabetic rodents first
develop thermal hypersensitivity and mechanical allodynia
followed by decreased sensitivity or hypoalgesia at later disease
stages (Feldman et al., 2017). Next, neuropathy phenotyping
records electrophysiological sciatic motor and sural sensory NCVs
as measures of large nerve fiber impairment (Fig. 1). Lastly,
quantifying IENFD in mice footpads serves as histological evidence
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of small sensory nerve fiber loss (Hinder et al., 2017; Sullivan et al.,
2007). These structural changes are paralleled by endoneurial
microangiopathy (Box 1) (Fang et al., 2018) and inflammation
(Pop-Busui et al., 2016) in peripheral nerves, which can be
evaluated to further characterize the animal model. In addition to
neuropathy phenotyping, it is important to metabolically

profile obese, prediabetic and diabetic rodents, including
body weights, glycemic status and insulin levels. Furthermore, our
research has shown that dyslipidemia is an independent PN risk
factor in obesity, prediabetes and T2D (Eid et al., 2019; O’Brien
et al., 2020), and should therefore be examined through a basic lipid
profile.

Overall, implementing DiaComp recommendations standardizes
neuropathy phenotyping, reducing lab-to-lab variation and
facilitating the collection of rigorous, reproducible and
translatable data, essential for enhancing our understanding of PN.

Rodent models of obesity, prediabetes, T2D and PN
Because of their genetic similarities to humans, rodents are
considered the model of choice in PN research and have
considerably enhanced our understanding of human PN. In
addition, they have been useful for evaluating responsiveness to
novel or commonly prescribed therapeutic agents, identifying
mechanisms of action in peripheral nerves (Eid et al., 2021a,b,
2020). Another advantage is the ability to genetically manipulate
genes of interest in PN. Earlier animal studies mostly employed
rat PN models (Jakobsen and Lundbaek, 1976; Yagihashi et al.,
1979); however, focus has shifted recently to mice PN models
(O’Brien et al., 2014) because they are more cost effective and have
shorter breeding cycles. Obesity, prediabetes and T2D rodent
models of PN include HFD-induced, spontaneous monogenic
mutations and polygenic strains. Spontaneous mutations in leptin
(ob/ob mice) or leptin receptor (db/db mice or Zucker diabetic
fatty rats) induce T2D secondary to hyperphagia (Box 1).
Although these models consistently develop PN and have been
very useful (Eid et al., 2020; O’Brien et al., 2015), they are limited
by not adequately modeling human PN progression. Most
patients gradually develop hyperglycemia before overt T2D,
whereas these T2D rodent models rapidly develop hyperglycemia,
largely bypassing the prediabetic stage (Hinder et al., 2018;
Oltman et al., 2005). Additionally, loss of leptin signaling may
also confound translatability to individuals with prediabetes and
T2D by differentially impacting glucose and lipid metabolism
irrespective of obesity and T2D (Wang et al., 2014). By contrast,
polygenic T2D mouse models gradually develop MetS
components, closely mimicking the human disease (O’Brien
et al., 2014). Surprisingly, there are no published reports of PN in
these polygenic mice, although they hold great promise as potential
models mirroring human development of MetS. Therefore, our
laboratory is currently examining whether nerve dysfunction occurs
in these mice.

Although genetic and spontaneous models are valuable research
tools for studying PN, this Perspective article will focus on diet-
induced PN models, which have an impressive array of
experimental advantages.

Diet-induced rodent models of obesity, prediabetes,
T2D and PN
HFD generates exemplary obesity and prediabetes models with
PN. Our laboratory’s clinical findings demonstrate that obesity
and prediabetes are major PN drivers (Andersen et al., 2018;
Callaghan et al., 2018, 2020, 2016b). Rodents fed increased dietary
fat progressively display metabolic disturbances, including weight
gain, insulin resistance, dyslipidemia and impaired glucose tolerance
in the absence of hyperglycemia. These metabolic changes are often
accompanied by compromised responses to stimuli, delayed sensory
and/or motor NCVs, and IENFD loss, characteristic of human PN
(Guilford et al., 2011; O’Brien et al., 2020).

Box 1. Glossary

Abnormal sensory symptoms: frequently experienced by diabetic
patients with PN, including allodynia, a pain response to normally
innocuous stimuli; hyperalgesia, increased sensitivity to painful stimuli;
and/or hypoalgesia, decreased sensitivity to painful stimuli.
Dorsal root ganglia neurons: sensory neurons that relay information
from the internal and external environments about nociception, touch,
temperature or muscle length to the central nervous system.
Endoneurial microangiopathy: an abnormality of nerve microvessels
including basement membrane thickening and endothelial cell
hypertrophy, often accompanying PN development and progression
(Fang et al., 2018).
Hydrogenated vegetable shortening: a type of fat used in rodent
studies. Diets with vegetable shortening can be derived from partially
hydrogenated soybean/palm oils or from partially hydrogenated
soybean/cottonseed oils (Kubant et al., 2015).
Hyperphagia: excessive food intake, which in rodents is induced by a
spontaneous mutation in the satiety factor leptin (ob/ob mice) or its
receptor (db/dbmice or Zucker diabetic fatty rats), leading to obesity and
type 2 diabetes (T2D).
Intraepidermal nerve fiber density (IENFD): an assessment of small
unmyelinated fibers. IENFD is a quantitative approach for the diagnosis
of small-fiber neuropathy used in both the clinical and pre-clinical
settings (Juster-Switlyk and Smith, 2016).
Metabolic syndrome (MetS): a cluster of metabolic risk factors that
encompasses elevated fasting glucose (i.e. prediabetes leading to frank
T2D), central obesity, dyslipidemia and hypertension (Saklayen, 2018).
Nerve conduction velocity (NCV): the speed at which an electrical
impulse is transmitted through peripheral nerves. It is the gold standard
for PN diagnosis in the clinical and preclinical settings and quantifies the
extent of large myelinated nerve fiber dysfunction. NCV studies are
reported in m/s and include sensory NCVs measured in the sural nerve
following antidromic supramaximal stimulation at the ankle, in turn
quantified by dividing the distance by the sensory nerve action potential
take-off latency. Motor NCVs in the sciatic nerve are recorded at the foot
dorsum following orthodromic supramaximal stimulation, first at the ankle
then at the sciatic notch. Sciatic motor NCVs are quantified by
subtracting ankle distance from notch distance and dividing by the
difference in ankle and notch latencies (Hinder et al., 2017).
Nociception: the neurophysiological encoding of actual or potential
tissue damage.
Peripheral neuropathy (PN): a debilitating degeneration of peripheral
nerves in a distal-to-proximal manner, which can lead to chronic pain,
non-healing ulcers and lower-limb amputations (Feldman et al., 2019).
Prediabetes: characterized by impaired glucose tolerance, often
leading to frank T2D. Like T2D patients, prediabetic patients
experience long-term complications, including nerve damage or
peripheral neuropathy.
Type 1 diabetes (T1D): an autoimmune disease characterized by
pancreatic β-cell destruction, which leads to insulin deficiency and
hyperglycemia (DiMeglio et al., 2018). It accounts for up to 5-10% of all
cases of diabetes.
Type 2 diabetes (T2D): a component of MetS characterized by
hyperglycemia, impaired insulin signaling and dyslipidemia. It is the
most common form of diabetes and, in addition to genetic factors, is
primarily driven by lifestyle factors such as unhealthy diets and limited
physical activity (Chatterjee et al., 2017).
von Frey filaments: used to quantify mechanical sensitivity ranging
from hyperalgesia or allodynia to lack of sensation or hypoalgesia.
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To date, most diet-induced murine studies have used the C57BL/
6J strain (Coppey et al., 2018b; O’Brien et al., 2020). However,
distinct background strains differentially impact the metabolic and
neuropathic phenotypes in response to HFD (Hinder et al., 2017;

Sullivan et al., 2007). To identify the optimal mouse strain in HFD-
induced obesity, prediabetes and PN, our laboratory recently
compared commonly used strains in diabetes research: BKS,
BTBR and C57BL/6J. We found that C57BL/6J mice fed a HFD
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Fig. 1. Neuropathy phenotyping in diet-induced rodent models. (A) Abnormal sensory symptoms including allodynia, hyperalgesia and/or hypoalgesia are
evaluated by testing rodents’ sensitivity to a heat stimulus applied to the hindpaw. (B) Typical hindpaw withdrawal latency in 60% high-fat diet (HFD) versus
standard diet (SD) mice at 36 weeks (***P<0.001) (reproduced with permission from O’Brien et al., 2018). (C) Electrode placement to record electrophysiological
sciatic motor and sural sensory nerve conduction velocities (NCVs) as measures of large nerve fiber impairment [reproduced with permission from protocols.io
(dx.doi.org/10.17504/protocols.io.7rbhm2n) under the terms of the Creative Commons Attribution License]. To calculate sciatic motor NCV (m/s), the difference
between distance A and distance B (mm) is divided by the difference between the two onset latencies of the compound muscle action potentials (ms). (D,E)
Typical sciatic motor traces recorded after stimulation at the ankle and at the notch in a control leanmouse placed on a SD (D) and in an obese prediabetes mouse
placed on aHFD (E). (F) Quantifying intraepidermal nerve fiber density (IENFD) inmice footpads serves as histological evidence of small sensory nerve fiber loss.
(G,H) Representative images of IENFD in SD (G) and HFD (H) mice at 36 weeks. Scale bar: 50 µm.
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(54% kcal fat) develop the most robust obesity, prediabetes and PN
phenotypes (Hinder et al., 2017), advocating it as the strain of choice
in diet-induced PN models.
In addition to background strain, rodent age, as well as HFD

duration, percentage and dietary fat source, impact the severity of
nerve damage in diet-induced models. The percentage of fat content
in HFD models can be fine-tuned to optimize the PN phenotype.
Earlier studies utilized 42-54% HFD (Table 1); however, our most
recent studies using 60% HFD between 11 and 31 weeks indicate
that increasing the percentage of dietary fat induces a more
pronounced metabolic phenotype, in agreement with The Jackson
Laboratory reports (https://www.jax.org/jax-mice-and-services/
strain-data-sheet-pages/phenotype-information-380050). Moreover,
mice placed on a 60% HFD mice develop severe small- and large-
fiber PN after 11 weeks of HFD (Table 1) (O’Brien et al., 2020,
2018). Overall, studies thoroughly comparing the effect of various
fat percentages for short to long duration may differentially impact
pain, NCVs and IENFDs andmust therefore be rigorously accounted
for and reported. Such studies will be essential to enhance
recapitulation of human PN in animal models.
PN severity also depends on the source of dietary fat and

saturation degree (Rumora et al., 2019; Yorek et al., 2017). Lard-
derived HFD with 42-60% saturated fats induces obesity,
prediabetes and key PN features (Anderson et al., 2014; O’Brien
et al., 2020). Conversely, 54% HFD from hydrogenated vegetable
shortening (Box 1) does not impair large or small nerve fiber
function (Groover et al., 2013). Importantly, replacing lard-based
HFD with diets rich in unsaturated fats, such as plant-based and fish
oil fats, improves nerve function (Coppey et al., 2018a; Rumora
et al., 2019). Our laboratory further shows that supplementing
primary dorsal root ganglia neurons (Box 1) in vitro with

unsaturated fats prevents saturated fat-induced mitochondrial
dysfunction (Rumora et al., 2019). Together, these data suggest
that fat saturation degree may differentially impact PN progression
and that diets rich in unsaturated fats may be neuroprotective,
potentially offering an effective lifestyle intervention.

Lastly, ketogenic diets consisting of 79-90% kcal plant-based fat,
8-9% protein and 0.3-3% carbohydrate improved nociception
(Box 1) and increased IENFD without reversing pre-existing
metabolic abnormalities (Cooper et al., 2018a). How a ketogenic
diet improves nerve function remains unclear. However, it is
thought that ketone bodies may promote axon growth (Cooper et al.,
2018a) and reduce inflammation (Ruskin et al., 2009). These results
suggest that ketogenic strategies may be promising in the treatment
of metabolically acquired PN and should therefore be validated in
the future.

“A better understanding of sex
dimorphism in PN is critical for tailoring
sex-specific therapeutic strategies.”

Sex differences in rodent models of PN
Sex differences are evident in the prevalence, clinical manifestations
and etiology of MetS in humans (Pradhan, 2014) and differential
responsiveness to antidiabetic drugs (Franconi and Campesi, 2014).
There is also increased prevalence of MetS postmenopause in
female individuals, presumably due to estrogen deficiency (Lovre
et al., 2016). However, clinical studies investigating sex as a
potential differential PN risk factor are limited and inconclusive.
One study reported that male T2D individuals were affected by PN
earlier than females (Aaberg et al., 2008), which mirrors recent
findings that female T2D individuals experience more frequent and
intense neuropathic pain despite a milder PN phenotype (Abraham
et al., 2018). However, larger prospective cohorts are required to
validate these findings. Importantly, a better understanding of sex
dimorphism in PN is critical for tailoring sex-specific therapeutic
strategies. This view is in accordance with a recent National
Institutes of Health policy, which now requires preclinical studies to
account for sex differences, reflecting efforts to be more inclusive of
unrepresented groups in clinical studies (Clayton and Collins,
2014).

In this vein, animal studies, which previously focused heavily on
male rodents, are starting to investigate the role of sex dimorphism in
obesity and prediabetes (Zore et al., 2018). Male rodents, such as
C57BL/6J mice, are more susceptible to diet-induced obesity and
prediabetes versus female littermates (Casimiro et al., 2021; Hwang
et al., 2010; Yang et al., 2014). Additionally, inducing obesity

Eva Feldman (back) and Stéphanie Eid (front)

Table 1. High-fat diet (HFD) duration, percentage and dietary fat source impact the severity of small and large nerve fiber damage in diet-induced
models

Chow HFD paradigm (weeks) Neuropathy phenotype
Reference

Fat % Fat source Initiation Duration Final age Behavior NCV IENFD

45% Lard 3 34 37 Thermal hypoalgesia ↓ MNCV and SNCV ↓ Vincent et al., 2009
54% Vegetable oil 7 8 15 Mechanical but not thermal

allodynia
↓ MNCV but not SNCV No change Guilford et al., 2011

42% Anhydrous
milk fat

3-4 12 15-16 Mechanical and thermal allodynia Not reported Not reported Gavini et al., 2018

60% Lard 5 31 36 Thermal hypoalgesia ↓ MNCV and SNCV ↓ O’Brien et al., 2018

Neuropathy phenotyping reported was performed on male C57BL/6 mice at final age. IENFD, intraepidermal nerve fiber density; MNCV, motor nerve conduction
velocity; NCV, nerve conduction velocity; SNCV, sensory nerve conduction velocity.
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and glucose intolerance is more challenging in female Sprague-
Dawley rats, requiring a higher dietary fat percentage and longer
feeding duration relative to males (Coppey et al., 2018b). In line with
an earlier report (Pettersson et al., 2012), our laboratory recently
showed that HFD female mice are protected from insulin resistance
early during HFD feeding versus male littermates (Elzinga et al.,
2021). Interestingly, as in humans (Janssen et al., 2008; Lovre et al.,
2016), estrogen exerts antidiabetic effects on MetS and T2D in
rodents (Riant et al., 2009). Several mechanisms may contribute to
these protective actions, including regulation of pro-inflammatory
mediators and lipid metabolism (Bryzgalova et al., 2008; Stubbins
et al., 2012), which are both crucial for nerve health (Mitro et al.,
2017; Pop-Busui et al., 2016). There are clear differences between
male and female obesity and prediabetes rodent models, which could
have clinical diagnostic and management implications.
Although female mice are clearly protected from metabolic

dysfunction, at least early in the disease course, sex-specific effects
on PN are much less clear-cut. Our laboratory and others are
addressing this issue by characterizing PN in two common animal
models, C57BL/6J mice (Elzinga et al., 2021; Obrosova et al.,
2007) and Sprague-Dawley rats (Coppey et al., 2018b). Our results
in 60% HFD mice indicate that females develop PN to the same
degree as males, despite early protection against insulin resistance
(Elzinga et al., 2021), similar to findings in HFD-fed C57BL/6J
mice and Sprague-Dawley rats that were treated with low-dose
streptozotocin to generate a T2D model (Coppey et al., 2018b).
Overall, these reports evaluated PN at a relatively late disease stage,
and future studies investigating sex differences during the early
stages of PN development are critical. Hormone levels may
differentially affect the metabolic and neuropathic phenotypes;
thus, it is also important to assess sex hormones in future studies.
Why female rodents still develop PN in obesity, prediabetes and

T2D, despite a ‘healthier’ metabolic profile, at least early in the
study, is unclear. Peripheral nerves in female mice still accumulate
sorbitol and oxidative stress and exhibit poly (ADP-ribose)
polymerase activation (Obrosova et al., 2007). Interestingly, these
pathways mediate, at least in part, PN in male neuropathic mice
(Feldman et al., 2017) and may be implicated in disease
development in female mice. Our transcriptomic analysis of
peripheral nerves from ob/ob mice identified dysregulation of
inflammatory and immune response pathways in female mice
(O’Brien et al., 2016), similar to our findings in peripheral nerve
tissue from male mice (O’Brien et al., 2015). Although these results
suggest similar mechanisms of nerve injury, regardless of sex,
further research is required to define sex differences in PN, in
rodents and humans, to develop effective disease-modifying
therapies in both sexes, or tailor sex-specific therapies.

Challenges translating from bench-to-bedside
The limitations of diet-induced rodent models in accurately
mimicking the metabolic aspect of human obesity and T2D have
been previously laid out (Lai et al., 2014). In this section, we focus
on challenges associated with modeling human PN.

Does diet-induced PN in rodents faithfully recapitulate
gradual disease onset in humans?
The pathogenesis of prediabetes, T2D and PN in humans is driven
by a complex interaction of environmental and genetic factors
resulting in gradual disease progression over a long period of
time (Wysham and Shubrook, 2020). Conversely, HFD rodent
studies are often initiated at a young age roughly equivalent to
that of a human teenager, as per The Jackson Laboratory reports

(https://www.jax.org/news-and-insights/jax-blog/2017/november/
when-are-mice-considered-old#:~:text=Mature%20adult%20mice
%20range%20in,ranges%20from%2020%20%2D%2030%
20years). Within only 4 weeks of diet, they display components of
the MetS, including obesity and insulin resistance, although to
variable extents (Wang and Liao, 2012). Similarly, HFD mice,
within this 4-week timeframe, start to exhibit PN features, such as
mechanical hypersensitivity (Groover et al., 2013), and an
established PN phenotype is observed by 8 weeks of HFD
(Cooper et al., 2018b; Guilford et al., 2011). Subsequently, the
duration of most diet-induced rodent studies in PN research is often
short, at a few weeks to a few months at most, which is roughly
equivalent to human adult age (O’Brien et al., 2014) and therefore
does not fully reflect the progressive nature of human PN. This is
particularly true regarding neuropathic pain (discussed in detail
below), which is commonly experienced by prediabetic and T2D
patients (Abbott et al., 2011) and not accurately recapitulated in
diet-induced models. Hence, these findings can potentially lead to
inaccurate depiction of disease pathogenesis in humans, which
should be validated in other robust PN models and clinical studies.
This also applies to drug studies that are effective in diet-induced
rodent models, but do not necessarily translate to improved
outcomes for prediabetic and T2D patients.

Another translational roadblock is the more variable PN
phenotype in humans versus a more uniform phenotype in
rodents. As mentioned earlier, most rodent studies consist of
same-sex animals on the same genetic background, which likely
generate a similar level of nerve dysfunction. By contrast, distinct
lifestyle factors and genetic predisposition in humans likely lead to
variable PN presentation across prediabetic and T2D individuals
(Feldman et al., 2019). Studies including different background
strains within a single animal cohort are therefore essential to mimic
patients with varying susceptibilities to metabolic disorders and PN.

“In light of the current obesity pandemic,
increased preclinical knowledge from
diet-induced rodents will accelerate
the development of disease-modifying
therapies for treating metabolically
induced neuropathic pain, which remains
largely understudied.”

Neuropathic pain
Neuropathic pain is a common, and often the earliest, consequence of
PN, affecting up to 50% of diabetic patients (Abbott et al., 2011). It
manifests as hypersensitivity with hyperalgesia/allodynia or as
spontaneous and continuous pain sensations (Feldman et al., 2017).
Neuropathic pain is often accompanied by disturbed sleep, anxiety
and depression, which reduce patients’ quality of life (Sloan et al.,
2018). Unfortunately, current therapies have limited efficacy due to
incomplete understanding of the pathophysiological mechanisms of
pain. Diabetic animal models, especially streptozotocin-induced T1D
rodents, have been pivotal for studying pain processing and testing
candidate therapeutics (Jaggi et al., 2011). However, much less is
known on the interplay between components of MetS and
neuropathic pain, mostly due to lack of an established animal
model that consistently develops pain symptoms. Two recent studies
reported contradictory findings regarding pain response in the
commonly used C57BL/6J HFD mouse. One study examined the
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effect of genetic differences amongC57BL/6mice from two different
suppliers on pain behaviors following a 7-week plant-based HFD,
observing that C57BL/6 mice from The Jackson Laboratory retained
normal mechanical sensitivity, whereas C57BL/6 mice from Charles
River Laboratories displayed pain behaviors (Cooper et al., 2018b).
By contrast, another study observed that administering a Western diet
containing 42% kcal from anhydrous milkfat for 12 weeks induced
mechanical allodynia and thermal hyperalgesia in C57BL/6 mice
from The Jackson Laboratory (Bonomo et al., 2020). In addition to
different diet duration, a key difference between the two reports is
dietary composition, particularly the high-sucrose (34%) and
-cholesterol (0.2%) content of the Western diet, key drivers of
MetS, which could account for the discrepancies in pain behaviors.
Standardizing paradigms used to induce MetS, including HFD
composition and duration, are required to establish a rodent model
with reproducible and consistent pain phenotype, which should be a
future avenue of work. Another critical consideration is including
older animals to longitudinally assess pain behaviors that start early
during HFD. As emphasized earlier, determining sex-specific pain
responses is also key, especially because human studies show that
T2D female individuals are more prone to pain than males (Abraham
et al., 2018). In light of the current obesity pandemic, increased
preclinical knowledge from diet-induced rodents will accelerate the
development of disease-modifying therapies for treating
metabolically induced neuropathic pain, which remains largely
understudied.

Conclusions
PN is a frequent and complex complication of obesity, prediabetes
and T2D, which requires better understanding to progress
translational research and develop much needed mechanism-
based therapies. Herein, we focused on diet-induced rodent models,
which, although not perfect, share essential metabolic and
neurological features with human obesity, prediabetes, T2D and
PN. We, therefore, recommend them to researchers investigating
nerve damage induced by MetS. In light of the growing
obesity pandemic, diet-induced rodent studies have emphasized
the importance of dietary interventions as a treatment for PN, in
agreement with the American Diabetes Association
recommendations. Moving forward, research should address the
mechanisms underlying the beneficial effects of dietary interventions
on PN, which will help inform the optimal dietary regimen and
develop targeted therapies for PN patients unable or unwilling to
engage in changes in dietary habits.
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A B S T R A C T

The world faces a pandemic-level prevalence of type 2 diabetes. In parallel with this massive burden of metabolic 
disease is the growing prevalence of dementia as the population ages. The two health issues are intertwined. The 
Lancet Commission on dementia prevention, intervention, and care was convened to tackle the growing global 
concern of dementia by identifying risk factors. It concluded, along with other studies, that diabetes as well as 
obesity and the metabolic syndrome more broadly, which are frequently comorbid, raise the risk of developing 
dementia. Type 2 diabetes is a modifiable risk factor; however, it is uncertain whether anti-diabetic drugs 
mitigate risk of developing dementia. Reasons are manifold but constitute a critical knowledge gap in the field. 
This review outlines studies of type 2 diabetes on risk of dementia, illustrating key concepts. Moreover, it 
identifies knowledge gaps, reviews strategies to help fill these gaps, and concludes with a series of recommen-
dations to mitigate risk and advance understanding of type 2 diabetes and dementia.   

1. Problem statement

The world faces a pandemic-level prevalence of type 2 diabetes. The
2021 global estimate is over 536 million affected people or about 10.5 % 
of the adult population,1 up by a staggering 73 million in only two years 
from the 2019 estimate of 463 million (Fig. 1).2 If trends persist, the 
world faces the prospect of 783.2 million affected people by 2045 or 
about 12.2 % of the population.2 Estimated global total diabetes-related 
health expenditures were almost one trillion US dollars in 2021. In 
parallel with this massive burden of metabolic disease is the growing 
prevalence of dementia as the population ages. In 2019, 57.4 million 
people worldwide were living with dementia, which is projected to rise 
to 152.8 million cases by 2050.3 Like diabetes, dementia poses a sub-
stantial socioeconomic burden, incurring around one trillion US dollars 
annually worldwide.4 The situation is rendered graver still since de-
mentia currently lacks effective disease-modifying treatments.5 

The two health issues are intertwined. The Lancet Commission on 
dementia prevention, intervention, and care was convened in 20176 and 
again in 20207 to tackle the growing global concern of dementia by 
identifying risk factors. The Lancet Commission 6,7 and other studies 
increasingly suggest that diabetes8–10 as well as obesity11 and the 
metabolic syndrome12 more broadly, which are frequently comorbid, 

raise the risk of developing dementia. There could therefore be grave 
consequences for the burden of dementia if the prevalence of diabetes1 

and obesity13 increase further. Herein, we outline the studies of type 2 
diabetes on risk of dementia; the review is not comprehensive, but rather 
serves to illustrate key concepts. Moreover, we identify knowledge gaps, 
review strategies that might help fill these gaps, and conclude with a 
series of recommendations to advance the field. 

2. Type 2 diabetes and metabolic syndrome

Type 2 diabetes is characterized by insulin resistance, i.e., an
impaired ability of the body to respond to insulin and metabolize 
glucose, leading to hyperglycemia, defined as a fasting glucose level 
greater than or equal to 100 mg/dL (Fig. 1). Additionally, patients with a 
glycated hemoglobin (HbA1c) higher than 6.5 % also meet the criteria of 
diabetes. In some instances, type 2 diabetes is preceded by prediabetes, 
an insulin resistant state with an elevated HbA1c of 5.7–6.4 %, which is 
above normal values but below the level defining type 2 diabetes. Type 2 
diabetes is frequently co-morbid with obesity and the metabolic syn-
drome. Obesity can be characterized by generalized metrics, such as 
body mass index (BMI), or by parameters of central obesity, such as 
waist circumference. The metabolic syndrome encompasses a collection 
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of metabolic dysfunctions, which broadly include insulin resistance, 
obesity, dyslipidemia, and hypertension. The clinical criteria defining 
individuals with the metabolic syndrome require at least 3 out of 5 
clinical findings that include elevated waist circumference, systolic or 
diastolic blood pressure, triglycerides, and fasting glucose and lower 
high-density lipoprotein cholesterol (Fig. 1).14 

3. Dementia definitions

Dementia is an umbrella term, which encompasses several distinct
clinical entities. It is characterized by a diminished ability to lead a 
normal life on a daily basis due to cognitive impairment from poor 
memory, executive function, and judgement, along with a decline in 
behavioral and social skills. Cognitive impairment progresses with time 
along a continuum, starting from mild cognitive impairment leading to 
frank dementia (Fig. 1). The most common dementia is Alzheimer's 
disease and the closely associated Alzheimer's disease-related dementias 
(ADRDs), which are defined by the presence of extracellular amyloid-β 
plaques and intracellular hyperphosphorylated tau tangles in the brain.5 

Vascular dementia occurs in 20 to 30 % of cases, with Lewy body and 
frontotemporal dementias accounting for 10–25 % and 10–15 % of 
cases, respectively. These dementias differ from Alzheimer's disease in 
neuropathology and the affected brain areas. For the purposes of this 
review, we will use the term “cognitive impairment” to refer to the 
clinical manifestation of dementia and will employ the general term 
“dementia” to refer to the link with diabetes. 

4. Type 2 diabetes and the metabolic syndrome increase
dementia risk

Patients with type 2 diabetes frequently develop neurological com-
plications. Peripheral neuropathy and cardiac autonomic neuropathy 

are long known neurologic complications.15 However, increasingly, 
evidence indicates that type 2 diabetes may also cause injury to the 
brain, possibly through similar pathological processes as occurring in 
peripheral nerves, which would manifest as cognitive impairment and, 
eventually, dementia. Indeed, clinical studies underscore a correlation 
between presence of peripheral neuropathy with the development of 
cognitive impairement.16,17 

There are also important and shared pathological features between 
type 2 diabetes and dementia, which are both characterized by meta-
bolic perturbations in the brain, e.g., insulin resistance,18 altered 
glucose uptake and utilization.19 These similarities in pathology are 
reflected in clinical studies that demonstrate an increased risk of de-
mentia in individuals with type 2 diabetes and dementia.9,10,20 More-
over, the Lancet Commission on dementia prevention, intervention, and 
care now recognizes diabetes as a well-established risk factor for de-
mentia.6,7 The onset of dementia in diabetes patients is gradual. It starts 
with subtle cognitive impairment, which, in progressive patients, de-
velops into mild cognitive impairment followed by frank dementia, 
oftentimes as Alzheimer's disease.21 This progressive cognitive impair-
ment occurs in parallel with structural brain changes, as revealed by 
magnetic resonance imaging (MRI).21 In addition to diabetes, obesity 
and hypertension, also components of the metabolic syndrome, are well- 
established risk factors for dementia based on the Lancet Commission6,7 

and independent studies.22–24 

To estimate the contribution to dementia burden from diabetes, 
obesity, and hypertension, the Lancet Commission estimated the popu-
lation attributable fraction (PAF), which represents the percentage of 
new cases that could be avoided if a specific risk factor was removed.6,7 

Their analysis leveraged risks from institutional guidelines, primary 
studies, and meta-analyses to calculate PAF for various risks on all-cause 
dementia. PAF for diabetes in later life was calculated as 1.1 %, 0.7 % for 
midlife obesity, and 1.9 % for hypertension. Additionally, physical 

Fig. 1. Infographic of type 2 diabetes and dementia 
global prevalence and definitions. 
(A) Diabetes prevalence in blue, y-axis represents
millions of people, x-axis represents decades; circle
area represents estimated global prevalence in 2019,
463 million people (9.3 % of global population) and
2021, 536.6 million people (10.5 % of global popu-
lation) and projected global prevalence in 2045,
783.2 million people (12.2 % of global population);
dementia prevalence in purple, y-axis represents
millions of people, x-axis represents decades; circle
area represents estimated global prevalence in 2018,
50 million people and projected global prevalence in
2030, 82 million people and 2050, 152 million peo-
ple.1,2,4 (B) Definitions of type 2 diabetes (T2D),
prediabetes, and the metabolic syndrome.14 DBP,
diastolic blood pressure; FBG, fasting blood glucose;
HDL-c, high-density lipoprotein cholesterol; SBP,
systolic blood pressure; TG, triglycerides; WC, waist
circumference. (C) Top: Continuum of cognitive
impairment, beginning with an asymptomatic pre-
clinical phase, progressing to mild cognitive impair-
ment, and leading to frank dementia. Bottom:
Umbrella of dementias, height represents proportion
of clinical entity to total dementia prevalence. AD,
Alzheimer's disease; FTD, frontotemporal dementia;
LBD, Lewy body disease.82 Figure contains elements
from Biorender.com. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the web version of this article.)
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inactivity, which is an aspect of poor metabolism and the modern 
sedentary lifestyle, has a PAF of 1.6 % for all-cause dementia. 

In addition to the findings from the Lancet Commission on dementia 
prevention, intervention, and care, we present evidence for the link 
between type 2 diabetes and components of the metabolic syndrome to 
dementia from a series of illustrative studies. Cross-sectional evaluation 
of PREDIMED-PLUS, a study of 6823 older participants averaging 65 
years of age, identified that an HbA1c cutoff of 7 % (i.e., 53 mmol/mol) 
impacted executive function in overweight or obese type 2 diabetes 
participants, after adjusting for education and additional clinical pa-
rameters.20 Longitudinal assessment of The Atherosclerosis Risk in 
Communities, a study of 5099 older participants, over a median of 5 
years found several risk factors for developing mild cognitive impair-
ment, spanning presence of diabetes, diabetes duration, and poor dia-
betes control, following adjustments for education, among other 
parameters.9 Longitudinal analysis of the Japan Public Health Center- 
Based Prospective Study over 23 years of follow-up reported that dia-
betes raised the risk of incident dementia based on 1244 participants, 
after adjusting for education and more variables.10 

Other components of the metabolic syndrome, which are frequently 
comorbid with type 2 diabetes, similarly increase the chance of de-
mentia. Cross-sectional analysis of our own Michigan cohort (n = 184) 
found that obesity, independent even of diabetes, compromised per-
formance on the NIH Toolbox, following adjustments, in addition to 
educational attainment.22 Meta-analysis of 21 longitudinal studies at 
least 2 years long reported obesity increased risk of developing dementia 
in participants below 65 years old but decreased the risk in participants 
older than 65 years.23 Dyslipidemia emerged as a risk factor for cogni-
tive decline at a 20-year follow-up in the ARIC study (n = 13,997) when 
adjusting for education and several additional parameters.24 

Overall, these findings indicate that diabetes and components of the 
metabolic syndrome, i.e., obesity, hypertension, dyslipidemia, predis-
pose individuals to dementia. 

5. Major identified gaps limiting progress

Since diabetes and obesity are modifiable, they may constitute a
potential avenue for lowering future incidence of dementia. Based on 
estimated PAFs, about 1.1 % of dementia cases may be preventable if 
later life diabetes could be avoided.7 Preventing midlife obesity with a 
BMI above 30 kg/m2 could similarly stop about 0.7 % of dementia 
cases.7 Although the percentages of preventable dementia from dia-
betes, obesity, hypertension, and inactivity are low, they comprise a 
significant number of individuals, since annual global incidence rates 
are high. Thus, controlling these modifiable risk factors may pave a way 
forward for managing the anticipated burden of dementia. This is 
especially critical since there is evidence to suggest that age-specific 
incidence of dementia may currently be on the decline, especially in 
higher income countries,7 possibly due to improved education, socio-
economic status, lifestyle, and healthcare.6 However, we stand to lose 
the benefit from the current decreasing trend in dementia incidence if 
we cannot offset the rising prevalence of risk factors like type 2 dia-
betes1,2 and obesity.25,26 

The Lancet Commission summarized the available studies that 
examined modifiable risk from diabetes, obesity, hypertension, and 
inactivity.7 Tentative evidence indicates that controlling hypertension 
with anti-hypertensive medications or exercise to battle inactivity may 
reduce dementia incidence; however, data regarding anti-diabetic 
medications and the long-term effects of weight loss are sparser and 
inconclusive.7 The reasons anti-diabetic medications may not effectively 
lower dementia incidence may be manifold; possibly, once the diabetes 
disease process has started, it may already be too late to mitigate de-
mentia risk due to irreversible damage to the brain. Longitudinal, pro-
spective studies are needed to investigate early changes that occur to the 
brain during prediabetes and diabetes, both to document early injury 
and identify biomarkers for individuals most at-risk of dementia. 

Moreover, it is necessary to evaluate whether early interventions to 
prevent diabetes, rather than treating it once the disease has started, 
may more effectively prevent dementia. 

Alternatively, diabetes is frequently comorbid with other compo-
nents of the metabolic syndrome, such as obesity, which may still incur a 
risk of dementia to diabetic patients, even if they are taking anti-diabetic 
medications. Thus, a multi-pronged approach targeting multiple ele-
ments of the metabolic syndrome, and not just diabetes, may be needed. 
Another possibility is that some diabetes patients may be genetically 
predisposed to dementia and Alzheimer's disease. Indeed, although 
primarily a metabolically-acquired disease, polygenic risk, i.e., arising 
from multiple single nucleotide variants (SNPs) at several sites, exists for 
type 2 diabetes,27 as well as, potentially, for peripheral diabetic neu-
ropathy.27 Dementia and Alzheimer's disease more specifically have 
well-established genetic risk.5,28 Thus, it may be possible if type 2 dia-
betes and dementia share genetic risk, that some patients with type 2 
diabetes may be genetically predisposed to dementia. If highly pene-
trant, this polygenic risk may not be non-modifiable if it is highly 
penetrant even by lifestyle changes. Alternatively, rather than being an 
inherent feature of diabetes biology, studies published to date on anti- 
diabetic drugs on dementia risk may not have been powered to detect 
an effect.29 Larger, well-designed studies of anti-diabetic drugs may help 
address this possibility. Finally, dementia still lacks disease-modifying 
therapies; thus, targeted, mechanism-based therapies are needed, and 
understanding the shared pathophysiology between diabetes and de-
mentia, for example using Omics, could help develop treatments. 

Thus, although diabetes is now definitively recognized as a dementia 
risk factor, along with other components of the metabolic syndrome, the 
path forward remains challenging since the ability to modify dementia 
risk remains uncertain. 

6. Innovative methods to address the knowledge gaps

In this section, we review research methods that may be applied to
address the knowledge gaps in diabetes leading to dementia. The focus is 
on clinical studies in consented participants or on human tissue, 
although a rich literature on research models also exists. We cover brain 
imaging to monitor early changes that occur during the progression of 
disease from prediabetes to diabetes. Additionally, Omics technologies 
generate large datasets of genetic, epigenetic, transcriptomic, proteo-
mic, and metabolic information to uncover the biology underlying the 
risk of dementia from diabetes. 

6.1. Brain imaging 

Reliable brain imaging biomarkers could prove highly trans-
formative as biomarkers relevant to diabetes-related dementia. Non- 
invasive imaging of at-risk individuals could detect early changes to 
the brain prior to clinical manifestation of cognitive impairment. This 
could help as a diagnostic tool of at-risk individuals with prediabetes or 
diabetes or permit initiation of interventions, either possible lifestyle 
interventions or as-yet unavailable disease-modifying therapies, within 
this critical window for neuroprotection. Furthermore, as our under-
standing of mechanisms underlying diabetes-linked dementia pro-
gresses, imaging biomarkers could enable preventative strategies. 
Finally, imaging could track changes over time, providing a longitudinal 
measure of efficacy for any attempted intervention. 

6.1.1. Brain magnetic resonance imaging 
The current imaging technology, based largely on magnetic reso-

nance imaging (MRI), is helpful for detecting brain changes. Difficulty, 
however, arises in determining whether these findings are a direct link 
between a comorbid condition like diabetes to dementia as opposed to 
noncontributory sequelae of a chronic condition. However, incorpo-
rating imaging techniques and biomarkers into modern clinical studies 
strengthens the causative link between diabetes and the progression to 
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dementia. For example, prediabetes30,31 and diabetes8 worsens signs of 
small vessel disease on MRI (white matter hyperintensities, lacunar and 
microinfarcts, microbleeds, or enlarged perivascular spaces) and alters 
brain volumes in regions subserving memory (e.g., hippocampus) 
(Table 1). In the Swedish National Study on Aging and Care- 
Kungsholmen, both prediabetes and diabetes correlated with elevated 
cognitive impairment over a mean follow-up of 9 years.32 Prediabetes 
decreased total brain and white matter volume, whereas diabetic pa-
tients showed an increase in the volume of white matter hyperintensities 
over time. Similarly, in a subset of the Atherosclerosis Risk in Commu-
nities Neurocognitive Study, diabetic participants with HbA1c ≥7 % had 
smaller global and regional brain volumes as well as larger white matter 
hyperintensities versus diabetic participants with HbA1c <7 % or non- 
diabetic individuals.33 However, here, and in other observational 
studies, direct causation between diabetes-related changes on MRI and 
cognitive performance could not be concluded, although the interaction 
persists after controlling for cardiovascular contributors.33,34 

This link between diabetes, dementia, and concurrent pathophysio-
logic processes (e.g., neurovascular disease) is complex; however, some 
studies still demonstrate a strong direct link between diabetes and de-
mentia. In participants from the Alzheimer's Disease Neuroimaging 
Initiative, there was an indirect association between type 2 diabetes with 
increased cortical atrophy (i.e., decreased baseline cortical thickness), 
which in turn correlated with greater cognitive decline.35 Similarly, the 
Canadian Alliance for Healthy Hearts and Minds Study showed diabetes 
was linked to higher odds of cognitive impairment, even after control-
ling for dementia risk factors, such as education, ethnicity, smoking, 
hypertension, and vascular brain injury, suggesting diabetes impacts 
dementia via other factors or directly.36 

6.1.2. Brain functional MRI 
Several studies have utilized functional MRI (fMRI), to investigate 

the impact of diabetes on neural network activity in the context of de-
mentia (Table 1).37 fMRI detects changes in brain blood flow in partic-
ipants in a resting state or while performing cognitive tasks in the MRI 
scanner. The increased regional blood flow serves as a surrogate of 
enhanced regional neural activity. Thus, assessing neural network 
function and connectivity by fMRI enhances structural findings from 
regular MRI imaging. 

Participants with type 2 diabetes exhibit reduced connectivity of the 
default mode network and related structures on resting state fMRI, 
paralleling changes seen in cognitive and neurodegenerative disor-
ders.38,39 Furthermore, this change is more pronounced in participants 
with both type 2 diabetes and cognitive impairment.37,40 Interestingly, a 
dose of intranasal insulin appears to restore connectivity between hip-
pocampus and the default mode network.41 In the majority of task-based 
fMRI studies, participants with type 2 diabetes tend to perform more 
poorly on recall tasks, with concomitant decreased activation in struc-
tures underpinning the tested cognitive functions.37 

The inseparable link between diabetes and vascular pathology, and 
the reliance of most fMRI studies on blood-oxygen level-based contrast, 
advocates caution interpreting these nevertheless compelling studies. It 
is possible diabetes contributes to dementia via both microvascular in-
sults causing downstream neurodegeneration, or directly through insu-
lin resistance in neurons and impaired network function. Since fMRI 
studies rely on the link between neural activation and blood flow, dis-
rupting this presumed relationship may undermine the conclusions of 
fMRI studies linking diabetes directly to neural function. Approaches to 
account for altered neurovascular coupling can be undertaken,42 and 
further studies linking diabetes-related imaging changes and dementia 
will help tease apart this Gordian knot. 

6.1.3. Brain positron emission tomography 
Use of functional imaging may provide an additional dimension of 

data to link disease processes in diabetes with dementia and cognitive 
decline. Positron emission tomography (PET) is a modality that imparts 

a biochemical dimension to imaging data. PET can leverage 18F-fluo-
rodeoxyglucose ([18F]-FDG) uptake (FDG-PET) as a measure of regional 
brain glucose metabolism. FDG-PET shows reduced uptake in brain re-
gions of participants with prediabetes and diabetes similar to brain re-
gions with glucose hypometabolism in participants with Alzheimer's 
disease (Table 1).43–45 Moreover, markers of peripheral insulin resis-
tance also correlate with impaired brain metabolism.43 Interestingly, 
intranasal insulin enhanced cognition in some domains in a small pilot 
clinical study of Alzheimer's disease particiapants.44 Studies are gener-
ally small and confounding parameters may limit interpretation, but 
their potential significance is intriguing. 

PET imaging is also performed using radiolabeled compounds that 
bind to amyloid-β. This PET modality has been used to test the hy-
pothesis that impaired insulin signaling directly exacerbates the for-
mation of amyloid-β plaques and neurofibrillary tau tangles. An early 
study did not find that insulin resistance correlated to amyloid-β burden 
using both [11C]-Pittsburgh Compound B (PiB)-PET and autopsy 
studies.46 Indeed, in a subset of the Finnish Geriatric Intervention Study 
to Prevent Cognitive Impairment and Disability, individuals with posi-
tive PiB-PET had slightly better glucose homeostasis, but possibly not 
after adjusting for covariates.47,48 However, in the Health2000 study, 
individuals with midlife insulin resistance associated with elevated PiB- 
PET positivity.49 In the more recent MEMENTO cohort, diabetes was 
linked to elevated uptake of amyloid-β-binding radiotracers (18F-flor-
betapir or 18F-flutemetamol).50 Diabetes appeared to contribute to 
neurodegeneration markers, which, in turn, correlated strongly to 
cognitive decline, even after controlling for Alzheimer's disease bio-
markers and small vessel disease.50 

The interplay between imaging modality and radiotracer properties, 
timing of imaging, and a host of other diabetes and dementia risk factors 
continues to make this field complex yet promising. 

6.2. Omics technologies 

Omics technologies generate large amounts of data in a system-wide 
manner by agnostically querying molecular pathways. They are 
extremely useful for shedding light on complex diseases or querying the 
intersection or shared biology between two conditions. We examined 
the literature and found applications of genomics, epigenomics, tran-
scriptomics, proteomics, and metabolomics to elucidate the relationship 
between type 2 diabetes and dementia. Data from these studies can help 
address current knowledge gaps by evaluating shared genetic risk be-
tween type 2 diabetes and dementia, as well as shared biological path-
ways, which may provide insight for therapeutic approaches. 

6.2.1. Genome-wide association studies (GWAS) 
Although primarily considered a metabolically-acquired disease, 

type 2 diabetes does possess a component of polygenic inheritance.27 

Similarly, dementia, e.g., Alzheimer's disease, occurs from a combina-
tion of common and rare causative and risk genes of variable pene-
trance, either monogenic or belonging to a polygenic risk profile.5 

Heritability in Alzheimer's disease is 60 to 80 %;5 however, since many 
variants are not causative, risk may be reduced by modifiable factors, 
such as metabolism or metabolic dysfunction, as occurs in type 2 
diabetes. 

Analyses of several GWAS studies have been performed to determine 
whether type 2 diabetes genes overlap with those for dementia, with 
both positive and negative findings (Table 2). Studies have found asso-
ciations of genetic risk for type 2 diabetes and glycemic traits, e.g., 
HbA1c, fasting glucose, insulin resistance and β-cell dysfunction, with 
Alzheimer's disease,51–54 dementia,54 and cerebrovascular disease.55 

GWAS of lacunar stroke found association with type 2 diabetes.56 

Studies that examined functional and pathway enrichment identified 
shared and recurrent pathways in immune responses, cell signaling, 
neuronal plasticity and cellular processes.52 

Conversely, some GWAS investigations yielded no correlations 
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Table 1 
Overview of select imaging studies on type 2 diabetes and dementia. 
Studies arranged chronologically, earliest to latest.  

Reference Link investigated Study population Methods Main findings 

MRI studies 
Schneider 

et al. 201733 
Prediabetes and diabetes 
on brain volume and 
subclinical CVD 

Prediabetes (n = 514; m/f 197/317); 
diabetes (n = 602; m/f 149/453); 
controls (n = 597; m/f 241/356); The 
Atherosclerosis Risk in Communities 
Neurocognitive Study (ARIC-NCS); 
cross-sectional 

MRI Prediabetes and diabetes (HbA1c <7.0 %) 
do not differ significantly in brain volume 
or vascular pathology versus controls; 
diabetes (HbA1c ≥7.0 %) linked to 
smaller total brain and regional brain 
volumes (frontal, temporal, occipital, 
parietal lobes; deep gray matter; 
Alzheimer's disease signature region; 
hippocampus [all p < 0.05]), and higher 
burden of WMH (p = 0.016) versus 
controls; diabetes HbA1c ≥7.0 % versus 
<7.0 % linked to smaller total and 
regional brain volumes and higher WMH 
burden (all p < 0.05); participants with 
diabetes duration ≥10 years versus <10 
years linked to smaller brain volumes and 
higher lacune burden (all p < 0.05); 
adjusted for age, sex, race/field center, 
education, smoking status, hypertension, 
cardiovascular disease, APOE4, and TIV 
(for volume outcomes) 

Cui et al. 
201931 

Structural subcortical gray 
matter changes in 
prediabetes and T2D 

Prediabetes (n = 21; m/f 8/13); T2D 
(n = 21; m/f 7/14); age-, sex-, 
education-matched controls (n = 21; 
m/f 7/14); China; cross-sectional 

MRI Prediabetes and T2D linked to lower gray 
matter volume in the bilateral lateral 
hippocampi, left amygdala, and right 
putamen versus controls; postprandial 
blood sugar in T2D linked to lower gray 
matter volume in the left hippocampus; 
corrected for head size variation; age, sex, 
and education included as covariates 

Dong et al. 
201930 

HbA1c, cognitive function, 
and hippocampal subfields 
volumes in prediabetes and 
T2D 

Prediabetes (n = 17 m/f 8/9); T2D (n 
= 21; m/f 10/11); controls (n = 22; m/ 
f 12/10); China; cross-sectional 

MRI, MoCA, Rey auditory verbal learning 
test, Stroop color and word tests, verbal 
fluency test, Trail Making Tests A & B 

Total left hippocampal (p = 0.046) and 
left hippocampal tail (p = 0.014) volume 
differed across all groups; HbA1c 
correlated negatively with left 
hippocampal tail volume (p = 0.009); 
HbA1c correlated positively with 
executive dysfunction, assessed by trail 
making test B (p = 0.0016) and Stroop test 
C (p = 0.001); corrected for TIV; adjusted 
for age, sex, education, BMI, history of 
hypertension, cholesterol level, and 
APOE4 

Marseglia 
et al. 201932 

Prediabetes and diabetes 
on cognitive decline and 
brain aging 

Prediabetes (n = 947; m/f 326/621); 
diabetes (n = 242; m/f 127/115); 
controls (n = 1557; m/f 570/987); 
MRI subsample (n = 455); Swedish 
National Study on Aging and Care- 
Kungsholmen; 9-year longitudinal 
study 

MRI, MMSE, dementia diagnosed 
according to the Diagnostic and Statistical 
Manual of Mental Disorders, 4th Ed. 

Prediabetes and diabetes linked to faster 
cognitive decline over 9 years versus 
controls, adjusted for baseline age, sex, 
education, SES, BMI, smoking, alcohol 
consumption, physical activity, 
hypertension, heart disease, CVD, and 
APOE4; prediabetes linked to smaller 
TBTV, especially WMV, diabetes linked to 
higher WMH at baseline, diabetes linked 
to faster WMHV increase longitudinally, 
MRI adjusted for TIV and age, analyses 
adjusted for sex, education, SES, BMI, 
hypertension, and heart disease 

Moran et al. 
201935 

T2D on brain atrophy and 
cognitive decline 

T2D (n = 124; m/f 85/39); controls (n 
= 693; m/f 390/303); Alzheimer's 
Disease Neuroimaging Initiative; 5- 
year longitudinal study 

MRI, American National Reading Test, Rey 
Auditory Verbal Learning Test, Boston 
Naming Test, category fluency, Clock 
Drawing Test, Alzheimer's Disease 
Assessment Scale–cognitive subscale, 
Construction Praxis Test, Digit Span 
forwards and backwards tasks, Trail- 
Making Tests A & B, WAIS-R, Wechsler 
Memory Scale–Revised 

T2D linked to lower baseline cortical 
thickness (p = 0.01); no direct T2D effect 
on decline in cortical thickness or 
cognition, but T2D linked to cognitive 
decline via baseline cortical thickness; 
T2D interacted with education, with 
lower T2D impact on baseline cortical 
thickness in participants with higher 
education; covariates were T2D, age, sex, 
education, APOE4, and cognition 

Gerstein et al. 
202136 

Diabetes on brain infarcts, 
small vessels, and 
cognition 

Diabetes (n = 495; m/f 290/205); 
controls (n = 7238; m/f 3236/4002); 
Canadian Alliance for Healthy Hearts 
and Minds; cross-sectional 

MRI, MoCA, Digit Symbol Substitution 
Test 

Diabetes linked to small vessel vascular 
brain injury (OR 1.52, 95 CI 1.15, 2.01) 
after adjusting for CVD risk factors and 
nonlacunar infarcts; diabetes linked to 
cognitive impairment (OR 1.27, 95%CI 
1.03, 1.56) after adjusting for small vessel 
vascular brain injury 

MRI 

(continued on next page) 
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Table 1 (continued ) 

Reference Link investigated Study population Methods Main findings 

Grosu et al. 
202134 

Prediabetes and diabetes 
on WMH 

Prediabetes (n = 98; m/f 62/36); T2D 
(n = 51; m/f 37/14); controls (n = 239; 
m/f 123/116); Cooperative Health 
Research in the Region of Augsburg 
(KORA) FF4 study; cross-sectional 

Prediabetes (p = 0.001) and T2D (p =
0.026) linked to higher WMH versus 
controls; OGTT 2-h serum glucose (p <
0.001), but not fasting glucose (p = 0.389) 
or HbA1c (p = 0.050), correlated 
positively with WMH; adjusted for age, 
sex, hypertension, LDL-c, BMI, smoking, 
and alcohol consumption  

Functional MRI (fMRI) 
Zhang et al. 

201541 
T2D on brain functional 
connectivity upon 
intranasal insulin 

T2D (n = 14; m/f 8/6); controls (n =
14; m/f 4/10); USA; cross-sectional; 
NCT01206322 

Resting-state BOLD fMRI, MMSE, Hopkins 
Verbal Learning Test-Revised, Trail- 
Making Tests A & B, Digit Span, Brief 
Visuospatial Memory Test-Revised, Verbal 
Fluency Task, Delis-Kaplan Executive 
Function System 

Insulin increased connectivity between 
hippocampal regions and the medial 
frontal cortex (p = 0.03) and default mode 
network regions versus placebo in T2D 
participants; connectivity in T2D 
participants with versus without insulin 
was similar and lower than controls, 
respectively; connectivity correlated to 
cognition, which intranasal insulin 
enhanced in older T2D participants; 
adjusted for age, education, and race 

Yang et al. 
201640 

T2D with/without 
cognitive impairment on 
brain functional 
connectivity 

T2D with cognitive impairment (n =
19; m/f 5/14); T2D without cognitive 
impairment (n = 19; m/f 7/12); 
controls (n = 19; m/f 8/11); China; 
cross-sectional 

Resting-state fMRI, MoCA, MMSE, Activity 
of Daily Living 

T2D impaired brain integrity, network, 
and connectivity to a greater extent in 
participants with versus without cognitive 
impairment, centered on changes in 
bilateral posterior cerebellum, right 
insula, default mode network, and control 
network; HbA1c and diabetes duration 
affected functional connectivity strength 
of specific brain regions; adjusted for age, 
sex, and education 

Cheng et al. 
202139 

T2D (without cognitive 
impairment and 
microvascular 
complications) on brain 
functional connectivity 

T2D (n = 27; m/f 13/14); controls (n 
= 26; m/f 13/13); China; cross- 
sectional 

Resting-state BOLD fMRI, MoCA, MMSE T2D participants without cognitive 
impairment and microvascular 
complications had lower functional 
connectivity with posterior cingulate 
cortex (FC-PCC) in the anterior cingulate 
gyrus, right superior frontal gyrus, right 
medial frontal gyrus, and right angular 
gyrus, but higher FC-PCC in right superior 
temporal gyrus and calcarine fissure 
versus controls; FC in various regions 
correlated with HbA1c and diabetes 
duration; covariates were age, sex, 
education, and BMI 

Guo et al. 
202138 

T2D on brain functional 
connectivity 

T2D (n = 60; m/f 39/21); controls (n 
= 33; m/f 18/15); China; cross- 
sectional 

Resting-state BOLD fMRI, MoCA T2D participants had lower functional 
connectivity strength in the bilateral 
fusiform gyri, right superior frontal gyrus, 
and right postcentral gyrus, but higher 
functional connectivity strength in the 
right supplementary motor area versus 
controls; T2D changed effective 
connectivity directionality between the 
left fusiform gyrus and bilateral lingual 
gyri and right medial frontal gyrus, as 
well as between the right superior frontal 
gyrus and bilateral frontal regions; 
triglyceride, insulin, and plasma glucose 
levels linked to abnormal effective 
connectivity of the left fusiform gyrus, 
while disease duration and cognitive 
function linked to abnormal effective 
connectivity of the right superior frontal 
gyrus in T2D; adjusted for age, sex, and 
education 

Chen et al. 
201483 

T2D and activation of 
working memory areas 

Older participants with T2D without 
cognitive impairment (n = 30; m/f 13/ 
17); controls (n = 37; m/f 18/19); 
China; cross-sectional 

Task-based BOLD fMRI, visual n-back task T2D participants had poorer response 
time/accuracy measures (p = 0.007) in 
the 1-back task; in the 1-back vs 0-back 
condition, T2D participants had reduced 
activation in the left inferior frontal gyrus; 
in the 2-back vs 0-back condition, T2D 
participants had reduced activation in left 
middle frontal gyrus and left superior 
frontal gyrus 

Duarte et al. 
201542 

Hemodynamic response 
function and neurovascular 
coupling in T2D 

T2D without vascular lesions (n = 51; 
m/f 30/21); controls (n = 29; m/f 14/ 
15); Portugal; cross-sectional 

Task-based BOLD fMRI, block and event- 
related designs with deconvolution 
analysis 

T2D participants had an altered 
hemodynamic response function, which 

(continued on next page) 
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Table 1 (continued ) 

Reference Link investigated Study population Methods Main findings 

may impact interpretation of BOLD signal 
in future fMRI studies 

He et al. 
201584 

T2D and activation of 
working memory areas in 
newly diagnosed 
participants 

T2D, recent diagnosis in mid-life (n =
12; m/f 11/1); controls (n = 12; m/f 8/ 
4); China; cross-sectional 

Task-based BOLD fMRI, visual n-back task No difference in task performance 
between groups; T2D participants had 
higher activation in right dorsolateral 
prefrontal cortex, left middle/inferior 
frontal gyrus, and left parietal cortex 
during 2-back task; suggestion of 
“compensatory” activation to complete 
task 

Huang et al. 
201685 

Cognitive task 
performance and areas of 
activation on fMRI in T2D 

T2D (n = 18; m/f 6/12); controls (n =
18; m/f 6/12); China; cross-sectional 

Task-based BOLD fMRI, n-back task, MoCA 
(Chinese revised), Wechsler Memory Scale 
(Chinese revised) 

T2D participants had poorer performance 
on MoCA in visuospatial, attention, 
language, abstraction, and memory 
domains, as well as in total scores; T2D 
participants had poorer performance on 
Wechsler Memory Scale in a subset of 
mental control, visual recognition, visual 
reproduction, associative learning, touch 
test, understanding memory, numeric 
span, and memory quotient; T2D 
participants had poorer accuracy and 
reaction time in the 2-back task; control 
participants showed greater activation in 
bilateral dorsolateral prefrontal cortices 
and parietal cortex and supplementary 
motor area in the 1-back task, and 
additionally the premotor area and the 
precuneus in the 2-back task 

Wood et al. 
201686 

Cognitive task 
performance and areas of 
activation on fMRI in T2D 

Twin pairs discordant for T2D; T2D (n 
= 22; m/f 12/10); controls (n = 22; m/ 
f 8/14); Australia; cross-sectional 

Task-based BOLD fMRI and visual memory 
encoding task, National Adult Reading 
Test -Revised, Wechsler Memory Scale 3 
(mental control and digit span subtests), 
Wechsler Memory Scale 1 (paired 
associate learning subtest), Memory with 
Hopkins Verbal Learning Test-Revised, 5- 
minute recall for delayed Rey-Osterrieth 
Complex Figure, Cambridge 
Neuropsychological Automated Test 
Battery, visual paired associate learning 

No within-pair differences in cognitive 
tasks or in memory encoding during fMRI; 
reduced activation for T2D in left angular 
gyrus, left supramarginal gyrus, and left 
middle temporal gyrus across all pairs; 
greater activation in T2D in bilateral 
superior parietal lobules, bilateral 
precunei, right inferior parietal lobule, 
and left occipital/fusiform/cuneus  

PET 
Baker et al. 

201143 
Brain glucose metabolism 
in cognitively normal T2D 
and prediabetes 
participants 

T2D (n = 12); prediabetes (n = 11); 
controls (n = 6); USA; cross-sectional 

Resting and activation [18F]-FDG PET Higher peripheral HOMA-IR linked to AD- 
like lower brain glucose metabolism in 
frontal, temporal-parietal, and cingulate 
regions, independent of age, 2-h OGTT, or 
APOE4; glucose metabolism pattern 
across the brain differed during the 
memory encoding task in T2D and 
prediabetes versus controls; unsure about 
adjustment parameters 

Craft et al. 
201244 

Insulin on cognitive 
performance and brain 
glucose metabolism in AD 

AD high-dose insulin 40 IU (n = 38; m/ 
f 20/18); AD low-dose insulin 20 IU (n 
= 36; m/f 22/14); AD placebo (n = 30; 
m/f 17/13); USA; cross-sectional; 
NCT00438568 

[18F]-FDG PET, ADAS-ADL, ADAS-cog 20 IU insulin improved delayed memory 
(p < 0.05); 20 and 40 IU insulin preserved 
caregiver-rated functional ability (p <
0.01); 20 and 40 IU insulin preserved 
cognition assessed by ADAS-cog score for 
younger participants and functional 
abilities by ADCS-ADL scale for adults 
with AD (p < 0.05); placebo group had 
lower [18F]-FDG uptake in the 
parietotemporal, frontal, precuneus, and 
cuneus regions; adjusted for age and 
education 

Thambisetty 
et al. 201346 

Insulin resistance on 
amyloid-β burden in AD 

AD (n = 53; m/f 30/23); Baltimore 
Longitudinal Study of Aging; 
longitudinal 

[11C]-PiB PET No significant correlations between OGTT 
to brain [11C]-PiB amyloid-β 

Ekblad et al. 
201849 

Midlife insulin resistance 
on late-life brain amyloid 

Older participants without dementia 
(n = 60; m/f 27/33); Health2000; 
longitudinal 

[11C]-PiB PET Insulin resistance increases amyloid 
positivity (OR 11.1, 95%CI 1.9, 91.5; p =
0.007), independent of APOE4; higher 
midlife, but not late-life, continuous 
HOMA-IR increases brain amyloid at 
follow-up after multivariate adjustments 
for other cognitive and metabolic risk 
factors (β 0.11, 95%CI 0.002, 0.22; p =
0.04); adjusted for age, time from baseline 
to PiB scan, sex, education, APOE4, 

(continued on next page) 
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between genetic disposition for diabetes to cognitive impairment57 or 
Alzheimer's disease.58,59 One study found that type 2 diabetes, which 
was associated with some genetic risk, did predispose to cognitive 
impairment although it did not share genetic risk with dementia.57 

Negative findings employed a targeted panel of type 2 diabetes SNPs in 
participants with Alzheimer's disease versus genome-wide in-
vestigations, which may have missed less well-known SNP associa-
tions.58 Alternatively, a negative study used GWAS from participants 
defined as having cognitive impairment, rather than dementia, which 
may constitute a less strongly defined genetic entity.57 

However, overall, GWAS studies support the possibility that patients 
with type 2 diabetes may have some genetic risk for dementia. Diabetes 
could potentially prove a less modifiable risk for some individuals 
harboring genetic risk. 

6.2.2. Epigenome-wide association studies 
Epigenetic modifications, which are altered both by genetic and 

lifestyle factors, have also been investigated as contributors to patho-
logical mechanisms driving cognitive impairment in type 2 diabetes and 
components of the metabolic syndrome (Table 3).60,61 Indeed, aging 
alters methylation patterns62,63 and changes in methylation are pro-
posed as potential early biomarkers for Alzheimer's disease.63,64 In a 
group of Mexican Americans with a high burden of the metabolic syn-
drome, there were changes in DNA methylation at multiple sites in the 

buffy coat from blood in participants with versus without cognitive 
impairment.61 Pathway enrichment found that these differentially 
methylated sites were related to metabolic dysfunction and inflamma-
tion. Although the study did not investigate correlation between type 2 
diabetes and dementia, it did suggest possible epigenetic differences in 
mild cognitive impairment related to peripheral metabolism. A longi-
tudinal study in older participants with type 2 diabetes showed that over 
18 months, participants who developed presymptomatic dementia had 
changes at 10 methylation sites in blood similar to those seen in par-
ticipants with clinical Alzheimer's disease.60 Overall, epigenetic studies 
demonstrate some changes, although validation studies are needed, 
including correlations specifically between type 2 diabetes with cogni-
tive impairment and dementia. 

6.2.3. Transcriptomics 
There have been multiple studies investigating transcriptomic 

changes that are associated with cognitive impairment in type 2 diabetes 
and components of the metabolic syndrome (Table 3).65–68 Neurons 
isolated from autopsy brains from participants with type 2 diabetes 
exhibit transcriptomic signatures indicative of impaired insulin 
signaling and metabolism along with neurodegeneration, including 
enrichment of Alzheimer's disease pathways.65 When comparing tran-
scriptomic data from type 2 diabetes tissue (brain and endothelial pre-
cursor cells) versus Alzheimer's disease tissue (brain), many 

Table 1 (continued ) 

Reference Link investigated Study population Methods Main findings 

hypertension, BMI, HDL-c, and 
triglycerides 

Kemppainen 
et al. 201847 

Brain amyloid load link to 
cognition and vascular risk 
factors 

Participants at increased risk for 
dementia by CAIDE score (n = 48; m/f 
26/22); Finnish Geriatric Intervention 
Study to Prevent Cognitive 
Impairment and Disability 

MRI, [11C]-PiB PET, neuropsychological 
test battery 

PiB positivity linked to poorer executive 
functioning tests, APOE4, and slightly 
better glucose homeostasis; PiB positivity 
and negativity did not differ significantly 
in other cognitive domain scores or 
vascular risk factors; adjusted for age 

Pekkala et al. 
202048 

Peripheral insulin 
resistance and other T2D 
markers on brain amyloid 

Participants at increased risk for 
dementia by CAIDE score (n = 41; m/f 
20/21); Finnish Geriatric Intervention 
Study to Prevent Cognitive 
Impairment and Disability 

[11C]-PiB PET Lower insulin, HOMA-IR, C-peptide, and 
plasminogen activator linked to amyloid 
positivity, but not after adjusting for 
multiple testing; no model found evidence 
for a link between amyloid status to 
fasting glucose or HbA1c 

Frison et al. 
202150 

T2D and associated 
markers on cognition 

Total participants with mild or 
subjective cognitive complaints (n =
2288; m/f 875/1413); T2D (n = 254; 
m/f 143/111); MEMENTO Cohort 
Study Group 

MRI, [18F]-FDG PET, [18F]-florbetapir, 
neuropsychological test battery, MMSE, 
Free and Cued Selective Reminding Test, 
animal words, Rey-Osterrieth Complex 
Figure Test, Trail Making Test A & B 

T2D link with lower cognition 
significantly mediated by higher 
neurodegeneration (standardized indirect 
effect − 0.061, 95%CI − 0.089, − 0.032), 
but not by small vessel disease and AD 
markers; adjusted for age, sex, education, 
smoking, alcohol, hypertension, 
dyslipidemia, BMI, and APOE4 

Képes et al. 
202145 

Brain glucose metabolism 
in T2D versus non-T2D 
obesity 

T2D (n = 51); non-T2D obese (n = 45); 
Hungary; cross-sectional 

[18F]-FDG PET, NeuroQ T2D and non-T2D obese brain glucose 
metabolism did not differ by NeuroQ 
analysis; T2D had lower glucose 
metabolism in the precuneus and right 
superior frontal gyrus by voxel-based 
analysis versus non-T2D obese; correcting 
for pre-PET glucose level, 
hypometabolism only in the right superior 
frontal gyrus; in T2D, pre-PET correlated 
negatively with glucose metabolism in 
precuneus, left posterior orbital gyrus, 
right calcarine cortex, and right orbital 
part of inferior frontal gyrus; in non-T2D 
obesity, only the right rolandic 
(pericentral) operculum sensitive to pre- 
PET glucose level 

[11C]-PiB, Pittsburgh Compound B; [18F]-FDG, fluorodeoxyglucose; AD, Alzheimer's disease; ADCS-ADL, Alzheimer's Disease Cooperative Study–activities of daily 
living; ADAS-cog, Alzheimer's Disease Assessment Scale–cognitive subscale; APOE4, apolipoprotein E4; BMI, body mass index; BOLD, blood-oxygen level dependent; 
CI, confidence interval; CVD, cerebrovascular disease; f, female; HbA1c, glycated hemoglobin; HDL-c, high-density lipoprotein cholesterol; HOMA-IR, Homeostatic 
Model Assessment for insulin resistance; HR, hazard ratio; LDL-c, low-density lipoprotein cholesterol; m, male; MMSE, Mini-Mental State Examination; MoCA, 
Montreal Cognitive Assessment; MRI, magnetic resonance imaging; OGTT, oral glucose tolerance test; OR, odds ratio; PET, positron emission tomography; SES, so-
cioeconomic status; T2D, type 2 diabetes; TBTV, total brain tissue volume; TIV, total intracranial volume; WAIS-R, Wechsler Adult Intelligence Scale–Revised; WMV, 
white matter volume; WMH, white matter hyperintensity. 
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differentially expressed genes and related pathways overlapped, 
including those related to autophagy and the immune system.66–68 

However, it is important to note that these studies often combine 
datasets and/or have a limited number of samples. 

6.2.4. Proteomics & metabolomics 
Additional studies have focused on proteomic and metabolomic an-

alyses to understand type 2 diabetes in the context of cognitive 
impairment (Table 3).69 Many of these studies show changes in various 
apolipoproteins related to fat or cholesterol metabolism, as well as in 

proteins related to the immune system or inflammation, such as com-
plement C4.69 The recurrence of apolipoproteins as differential metab-
olites in Alzheimer's disease underscores APOE4 as a major risk gene.28 

Moreover, lipoproteins are defining metabolites in the metabolic syn-
drome.14 In Mexican Americans, proteomics signatures, which adopt an 
inflammatory component in patients with diabetes, are predictive for 
mild cognitive impairement.70 Additionally, when comparing prote-
omics signatures in type 2 diabetes participants with and without mild 
cognitive impairement,71 proteins involved in fat metabolism as well as 
mitophagy or autophagy were differentially regulated. Conversely, 

Table 2 
Genome-wide association studies (GWAS) of type 2 diabetes and dementia. 
Studies arranged chronologically, earliest to latest.  

Reference Link investigated Datasets/study population Methods Main findings 

Positive findings 
Hao et al. 

201552 
T2D with AD T2D: DIAGRAM; AD: IGAP Overlapping SNPs with p = 0.01, 

expression quantitative trait loci, 
functional and pathway 
enrichment analysis 

395 shared SNPs with the same risk 
allele for T2D and AD in pathways 
related to immune responses, cell 
signaling and neuronal plasticity, 
cellular processes; 532 shared SNPs with 
divergent risk alleles for T2D and AD 

Karki et al. 
202053 

T2D with AD GWAS Catalog, GWAS Central, dbSNP, 
DisGeNET 

Linkage disequilibrium analysis, 
variant prioritization, literature 
mining, coherently perturbed 
genes from gene expression meta- 
analysis 

Identified ABCG1, COMT, MMP9, SOD2 
as potential genes with dual roles in T2D 
and AD 

Pan et al. 
202051 

Glycemic traits with AD T2D: DIAGRAM and Meta-Analyses of 
Glucose and Insulin-related traits 
Consortium; AD: IGAP 

Mendelian randomization 1 SD higher fasting glucose (OR 1.33, 
95%CI 1.04, 1.68; p = 0.02) and lower 
HOMA-β-cell function (OR 1.92, 95%CI 
1.15, 3.21; p = 0.01) causally linked to 
higher AD risk; no other significant links 
found 

Georgakis 
et al. 
202155 

T2D and glycemic traits with CVD, ICH, 
ischemic stroke and subtypes: large 
artery, cardioembolic, small vessel 
stroke, imaging markers of cerebral 
white matter integrity, brain atrophy 

T2D: DIAGRAM; HbA1c: UK Biobank; 
FG: MAGIC; ischemic stroke: 
MEGASTROKE; ICH: International 
Stroke Genetics Consortium 

Mendelian randomization Genetic risk for T2D and higher HbA1c 
linked to higher risk of any ischemic 
stroke, large artery stroke, small vessel 
stroke; genetic risk for IR linked to 
higher risk of large artery and small 
vessel stroke; genetic risk for β-cell 
dysfunction linked to higher risk of 
small vessel stroke, ICH, lower gray 
matter, and total brain volume 

Taylor et al. 
202156 

Genetic basis of lacunar stroke UK DNA Lacunar Stroke studies 1 and 
2, collaborators within the 
International Stroke Genetics 
Consortium 

Mendelian randomization, 
transcriptome-wide association 
study, colocalization 

5 loci linked to lacunar stroke; 7 loci 
linked to cerebral white matter 
hyperintensity; 2 loci linked to 
monogenic lacunar stroke; expression of 
6 genes linked to lacunar stroke; 
Mendelian randomization found lacunar 
stroke linked to T2D, elevated blood 
pressure, and smoking 

Yu et al. 
202254 

Stroke, diabetes, atherosclerosis, 
cholesterol level, and alcohol 
consumption with dementia or AD 

UK Biobank, GWAS Catalog Multi-trait colocalization analysis T2D shared risk with dementia 
(NAALAD2) and AD (CDC42BPB)  

Negative findings 
Chung et al. 

201558 
T2D with AD and Parkinson's disease AD (n = 400); PD (n = 500); controls 

(n = 500); case-control study; 
genotyped 32 variants from 11 genes 
and intergenic regions linked to T2D 
from GWAS (Genome.gov) 

Mini-mental state examination 
(MMSE), Montreal Cognitive 
Assessment (MoCA), logistic 
regression models adjusted for 
age and sex 

KCNQ1 SNP linked to AD, but not after 
Bonferroni correction; CDC123 SNP 
modest link to MMSE <26, CDKN2B 
SNPs modest link to MoCA <26 in PD 
but, not after Bonferroni correction; no 
other associations 

Garfield 
et al. 
202159 

Glycemia, cognitive function, brain 
structure, incident dementia 

UK Biobank Bidirectional Mendelian 
randomization, inverse-variance- 
weighted Mendelian 
randomization 

No evidence of link between T2D and 
HbA1c genetic risk to measures of 
cognition (reaction time, visual 
memory, AD) and brain structure (white 
matter hyperintensity volume, 
hippocampal volume) in midlife 

Ware et al. 
202157 

T2D with cognitive impairment Health and Retirement Study Mendelian randomization T2D and cognitive impairment did not 
share genetic risk; T2D had genetic risk 
and predisposed to cognitive 
impairment 

AD, Alzheimer's disease; CI, confidence interval; CVD, cerebrovascular disease; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; FG, fasting glucose; 
HbA1c, glycated hemoglobin; ICH, intracerebral hemorrhage; IGAP, International Genomics of Alzheimer's Project; IR, insulin resistance; OR, odds ratio; SD, standard 
deviation; SNP, single-nucleotide variant; T2D, type 2 diabetes. 
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Table 3 
Omics studies of type 2 diabetes and dementia. 
Studies arranged chronologically, earliest to latest.  

Reference Link investigated Datasets/study population Methods used Main findings 

Epigenetics 
Lunnon et al. 

201460 
T2D progression to 
pre-symptomatic 
dementia 

T2D (n = 18); age-, sex-, education- 
matched controls (n = 18); Israel 
Diabetes and Cognitive Decline study; 
longitudinal 

Differentially methylated sites in blood 10 CpG sites in the vicinity of loci 
previously implicated in 
neurodegeneration linked to conversion 
to pre-symptomatic dementia at 18- 
month follow-up; differentially 
methylated sites linked to methylation 
changes in clinical AD 

Pathak et al. 
201961 

Methylation with 
MCI 

Mexican Americans with MCI (n = 45; 
m/f 14/31) and normal cognition (n =
45; m/f 13/32); Health & Aging Brains 
of Latino Elders; cross-sectional 

Differentially methylated sites in blood cells 
(buffy coat) with adjusted p = 0.05, expression 
quantitative trait loci, functional and pathway 
enrichment analysis, Bayes gene enrichment 

10 differentially methylated sites and 4 
differentially methylated regions in 
Mexican Americans with MCI versus 
normal cognition; pathway enrichment 
found pathways related to neuronal cell 
death, metabolic dysfunction, and 
inflammation  

Transcriptomics 
Caberlotto 

et al. 
201966 

T2D and AD T2D (n = 20), non-T2D (n = 12), T2D +
AD (n = 6), non-T2DM + AD (n = 19); 
Hisayama study GSE36980 

Gray matter from cortex (frontal and temporal) 
and hippocampi were used for microarray, DEGs 
identified by rank-based classification, network 
analysis, functional enrichment 

Significant overlap between T2D and AD 
in pathways related to autophagy 

Bury et al. 
202165 

T2D and neuronal 
dysfunction 

T2D (n = 6); age-, sex-matched controls 
(n = 6); Cognitive Function and Ageing 
Study neuropathology cohort, cross- 
sectional 

Immuno-laser captured neuron, astrocytes, and 
endothelial cells used for microarray to identify 
DEGs, which were enriched using weighted gene 
co-expression network analysis, validated by 
NanoString 

Changes to insulin signaling pathways 
were common across cell types in T2D; 
also, neurons were enriched in pathways 
related to aging and metabolism, 
including cell-cycle, cellular senescence, 
inflammation, and mitochondrial 
respiratory electron transport chain 

Huang et al. 
202168 

T2D and AD NCBI GEO 
T2D: GSE43950 (endothelial precursor 
cells) 
AD: GSE28146 (hippocampus) 

Microarray analysis, DEGs identified, functional 
enrichment analysis 

64 key DEGs (enriched for immune- 
related pathways) and 3 coDEGs 
(CACNA2D3, IER3, NUMB) between T2D 
and AD 

Shu et al. 
202267 

T2D and AD NCBI GEO, T2D: GSE161355 
AD: GSE122063, GSE118553, 
GSE109887, GSE132903 

Microarray analysis of temporal cortex from AD, 
T2D and matched controls, identified DEGs, 
pathway enrichment, functional enrichment 

16 shared DEGs between T2D and AD, 
enriched in pathways related to 
apoptosis, autophagy, inflammation, and 
hemostasis  

Proteomics and metabolomics 
Johnson et al. 

202070 
T2D and depression 
on proteomics in MCI 

Mexican Americans with T2D +
depression (n = 85; m/f 19/66); T2D (n 
= 127; m/f 95/32); depression (n =
118; m/f 93/25); controls (n = 184; m/f 
138/46); Health & Aging Brains of 
Latino Elders; cross-sectional 

Proteomics on blood based on an 
electrochemiluminescence assay 

T2D influences proteomic profile in MCI; 
profile has inflammatory component; T2D 
increases metabolic markers in the profile 

Mindikoglu 
et al. 
202072 

Intermittent fasting 
on metabolism and 
cognition 

Healthy participants (n = 14; m/f 13/1) 
fasted for 14 h daily for 30 consecutive 
days 

Proteomics on serum with/without depletion of 
abundant proteins, HPLC-MS/MS 

Fasting serum proteomic signature 
upregulated in key regulatory proteins of 
glucose and lipid metabolism, insulin 
signaling, cognitive function, immune 
system, circadian clock, DNA repair, and 
cytoskeleton remodeling; serum 
proteome protective against diabetes, 
obesity, metabolic syndrome, AD, 
inflammation cancer 

Yu et al. 
202171 

T2D and MCI T2D + MCI (n = 9; m/f 3/6); T2D (n =
10; m/f 4/6); NCT01830998 

Proteomics on lysed platelets, labeling followed 
by LC-MS/MS 

Differentially expressed proteins in T2D 
with and without MCI enriched for 
pathways related to fat metabolism and 
endocytosis; proteins linked to cognitive 
score involved in metabolic pathways and 
mitophagy/autophagy  

Data integration 
Darst et al. 

201973 
Genomics, 
longitudinal 
metabolomics, and 
AD risk factors 

Participants (n = 1111; m/f 345/766); 
CSF metabolomics subset (n = 155; m/f 
52/103); Wisconsin Registry for 
Alzheimer's Prevention; longitudinal 

17 AD risk factors, plasma and CSF 
metabolomics, CSF AD biomarkers, genomics 
microarray, integrative network analysis, 
targeted mediation and interaction analyses 

Multiple plasma and CSF metabolites 
clustered around AD risk factors; no gene 
directly clustered to an AD risk, indicating 
metabolites may mediate the AD risk 
factor-gene relationship; adjusted for 
several variables and multiple testing 

Nugent et al. 
202074 

T2D risk genes and 
glucose brain 
metabolism in aging 
and AD 

[18F]-FDG PET Alzheimer's Disease 
Neuroimaging Initiative (probable AD, 
n = 335; controls n = 386), Allen 
Human Brain Atlas gene expression 

Generated gene expression map from gene 
expression atlas, correlated to [18F]-FDG PET 
maps and T2D SNPs 

15 risk genes correlated to [18F]-FDG PET 
brain metabolism in controls versus 
probable AD participants after adjusting 
for multiple comparisons; 5 genes 
explained 72.5 % of glucose uptake 

(continued on next page) 
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intermittent fasting in healthy participants generated a proteomics 
signature indicative of protection against metabolic syndrome, inflam-
mation, and Alzheimer's disease.72 

6.3. Data integration approaches 

Powerful bioinformatics tools facilitate the integration of multiple 
Omics datasets, which may yield additional insight into the connection 
between type 2 diabetes and dementia. In an integrative study of ge-
nomics and longitudinal metabolomics with Alzheimer's disease risk 
factors, network analysis revealed that multiple plasma and cerebro-
spinal fluid metabolites clustered around Alzheimer's disease risk fac-
tors.73 Interestingly, no gene directly clustered to an Alzheimer's disease 
risk factor, suggesting that metabolites may mediate the Alzheimer's 
disease risk factor-gene relationship. Moreover, Omics datasets can be 
merged with spatial modalities, such as PET and MRI. A recent study of 
PET integrated with spatial gene expression and SNPs of Alzheimer's 
disease and type 2 diabetes yielded new mechanistic insights. The study 
found that 15 risk genes correlated to FDG-PET brain metabolism in 
controls versus probable Alzheimer's disease participants. Five genes 
explained 72.5 % of glucose uptake variance across the control group 
regions, whereas 4 genes accounted for 79.3 % across regions of the 
probable AD Alzheimer's disease. Changes were linked to expression of 
the TOMM40 gene (translocase of outer mitochondrial membrane 40 
homolog), implicating mitochondrial dysfunction as a potential driver of 
disease.74 

6.4. Other technologies 

Additional technologies that may shed some light on potential 
mechanisms of type 2 diabetes in dementia include single-cell RNA- 
sequencing,75 spatial transcriptomics,76 and metagenomics (i.e., 
microbiome).77 However, we did not find clinical studies or studies of 
human tissue using these methods in type 2 diabetes and dementia. 
Immunophenotyping may also be a relevant approach given the 
importance of “immunosenescence”, a drop in immune function with 
aging, and “inflammaging”, a low-grade chronic inflammation, in type 2 
diabetes (obesity)78,79 and dementia.80,81 

7. Final recommendations

The Lancet Commission on dementia prevention, intervention, and
care has posted its recommendations for all risk factors for dementia.6,7 

Here, we focus on recommendations specifically revolving around dia-
betes and components of the metabolic syndrome to mitigate personal 
risk. Moreover, we also post recommendations regarding future research 
directions to address the knowledge gaps involving diabetes and 
dementia. 

7.1. Population-wide 

Launch public health campaigns to raise awareness about the link 
between diabetes, obesity, hypertension, and sedentary lifestyle with 
dementia. Campaigns can encourage lifestyle changes linked to diet, 

exercise, and weight loss, which could mitigate dementia risk. 

7.2. Individual-specific 

Individuals can take precautions based on their personal lifestyle and 
health situation:  

• Individuals with diabetes can adopt a healthy diet and exercise;
presently, the Mediterranean diet is recommended, but there is no
recommendation regarding the optimal type of exercise.7 Evidence
regarding anti-diabetic drugs on dementia risk remains sparse.

• Individuals with obesity can also adopt a healthy diet and exercise.
Although short-term benefits of weight loss have been reported,
evidence regarding the long-term benefits of weight loss on dementia
risk remains sparse.7

• Individuals with hypertension can take prescribed anti-hypertensive
medications to maintain systolic (≥130 mmHg) or diastolic blood
pressure (≥85 mmHg) within healthy limits.7

• Prevention is better than treatment. Since anti-diabetic drugs may
not lower risk of dementia, it may be too late to reverse risk from
diabetes once the disease has progressed. Prevention strategies that
avoid diabetes onset may be the best risk-modifying approach.

• In addition to changes regarding metabolism, education, mental
activity and stimulation, and social engagement could enhance
cognitive resilience and reserve.6,7 

7.3. Research directions 

The goal of research is to fill the current knowledge gaps to improve 
prospects for patients. For diabetes patients at risk of dementia, it will be 
necessary to:  

• Conduct prospective, carefully-designed long-running studies to
generate the needed data.

• Identify early changes in brain biomarkers in prediabetes and dia-
betes patients who are at elevated risk of dementia. Identify the early
changes in the brain associated with imminent onset of dementia and
correlate these changes to clinical and/or genetic variables.

• Develop a polygenic risk score in diabetes for greater risk of de-
mentia to identify patients most predisposed to dementia onset and
development.

• Conduct clinical studies that target the metabolic syndrome more
broadly through diet, medical weight loss, bariatric surgery, and
exercise to determine whether this multi-pronged approach more
effectively prevents dementia onset than anti-diabetic drugs alone.

• Conduct clinical studies of early interventions against modifiable risk
factors to assess whether dementia may be preventable if addressed
early.

• Conduct research on shared molecular pathways to develop
mechanism-based, potentially disease-modifying therapies.
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Search criteria 

For the “Innovative methods to address the knowledge gaps” section, 
we searched PubMed for English language articles involving human 
studies in July 2022 mostly published within the 5 past years using the 
terms “diabetes, dementia” or “diabetes, Alzheimer's disease” with 
“functional MRI”, “PET”, “GWAS”, “EWAS”, “epigenome-wide associa-
tion studies”, “transcriptomics”, “proteomics”, “metabolomics”, “single- 
cell RNA-sequencing”, “spatial transcriptomics”, “metagenomics”. Ab-
stracts from the search results were assessed for their relevance to the 
review topic. Representative papers on “functional MRI”, “PET”, and 
“GWAS” were selected based on their overall quality and their relevance 
to the review topic; all relevant articles identified by the other search 
terms were included. Articles for the “Data integration approaches” 
subsection were obtained from reading abstracts from all other searches. 
For the “Type 2 diabetes and metabolic syndrome” section, which was 
not a comprehensive review of the literature, the authors used articles 
from their reference database. 
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Abstract
Diabetic retinopathy, neuropathy, and nephropathy occur in more than 50% of people with diabetes, contributing substan-
tially	 to	morbidity	and	mortality.	Patient	understanding	of	 these	microvascular	complications	is	essential	 to	ensure	early	
recognition and treatment of these sequalae as well as associated symptoms, yet little is known about patient knowledge of 
microvascular	sequalae.	In	this	comprehensive	literature	review,	we	provide	an	overview	of	existing	knowledge	regarding	
patient	knowledge	of	diabetes,	 retinopathy,	neuropathy,	and	nephropathy.	We	also	discuss	health	care	provider’s	knowl-
edge	of	 these	sequalae	given	 that	patients	and	providers	must	work	 together	 to	achieve	optimal	care.	We	evaluated	281	
articles	on	patient	and	provider	knowledge	of	diabetic	retinopathy,	neuropathy,	and	nephropathy	as	well	as	predictors	of	
improved	 knowledge	 and	 screening	 practices.	 Results	 demonstrated	 that	 patient	 and	 provider	 knowledge	 of	 microvas-
cular	 sequalae	 varied	widely	 between	 studies,	which	may	 reflect	 sociocultural	 or	methodologic	 differences.	Knowledge	
assessment	 instruments	varied	between	studies	with	 limited	validation	data	and	 few	studies	controlled	 for	confounding.	
Generally,	improved	patient	knowledge	was	associated	with	greater	formal	education,	longer	diabetes	duration,	and	higher	
socioeconomic	status.	Fewer	studies	examined	provider	knowledge	of	sequalae,	yet	these	studies	identified	multiple	mis-
conceptions	regarding	appropriate	screening	practices	for	microvascular	complications	and	the	need	to	screen	patients	who	
are	asymptomatic.	Further	investigations	are	needed	that	use	well	validated	measures,	control	for	confounding,	and	include	
diverse	populations.	Such	studies	will	allow	identification	of	patients	and	providers	who	would	benefit	from	interventions	
to	improve	knowledge	of	microvascular	complications	and,	ultimately,	improve	patient	outcomes.
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OR	 	odds	ratio.
PRISMA	 	preferred	reporting	items	for	systematic	

reviews	and	meta-analysis.
T1D  type 1 diabetes.
T2D  type 2 diabetes.
UK  United Kingdom.
US	 	United	States.

1 Introduction

The	 global	 prevalence	 of	 diabetes	 has	 reached	 epidemic	
proportions [1]. In 2019, 463 million people worldwide 
had either type 1 (T1D) or type 2 (T2D) diabetes [1], plac-
ing substantial socioeconomic burdens on health care sys-
tems globally. If trends persist, 700 million people will 
be	 affected	 by	 diabetes	 by	 2045	 [1]. The reasons for this 
growth are manifold. An increase in diabetes risk factors, 
such as obesity and a sedentary lifestyle, against the setting 
of	aging	conspire	to	increase	diabetes	onset	and	prevalence.	
Socioeconomic	 forces	 and	 demographic	 factors	 are	 also	
contributing to the rise in diabetes. Countries with growing 
economies,	 income	levels,	and	populations,	such	as	 in	 the	
Middle	East,	North	Africa,	and	Asia,	are	driving	an	increase	
in	T2D	prevalence	[1].	By	2045,	Pakistan	will	overtake	the	
United	States	as	the	third	largest	population	with	diabetes.

Diabetes	 causes	 several	 microvascular	 complications,	
including retinopathy, nephropathy, and neuropathy, which 
increase morbidity and mortality. Diabetic retinopathy is the 
leading	cause	of	moderate	and	severe	vision	impairment	in	
working age adults [2]. Neuropathy similarly can impact as 
many	 as	 half	 of	 individuals	with	 diabetes,	which	 impairs	
gait and stability and increases the risk of foot ulcers, ulti-
mately leading, if left untreated, to non-traumatic lower 
amputations [3]. Diabetic kidney disease (DKD), i.e., dia-
betic	nephropathy,	has	an	estimated	prevalence	of	25%	of	
T1D and 30 to 40% of T2D patients [4], and can lead, in 
the end-stages, to death. Indeed, in 2019, 4.2 million people 
worldwide died from diabetes-related complications [1].

Unfortunately,	the	growing	diabetes	prevalence	is	driving	
an	 increase	 in	 diabetes-related	 complications.	 Long-term	
diabetic complications can be present at the time of or occur 
shortly	 after	 diabetes	 diagnosis.	 Since	 early	 treatment	 of	
diabetes	is	essential	for	preventing	disability	and	death,	it	is	
important for patients to understand diabetes and its related 
complications. Knowledge can enhance self-management 
behaviors,	ultimately	 improving	outcomes	among	patients	
with diabetes [5].	However,	little	is	known	about	patients’	
knowledge	of	diabetes	sequalae,	particularly	microvascular	
complications.	Health	 care	 providers	 can	 educate	 patients	
and recommend screening and treatment options for micro-
vascular	complications,	helping	patients	with	their	medical	

care choices [6]. Yet, up to one-third of physicians do not 
recognize	the	signs	of	diabetic	peripheral	neuropathy,	even	
in symptomatic patients [7]. Thus, characterizing health 
care	provider	knowledge	of	diabetic	microvascular	compli-
cations, particularly in low- and middle-income countries 
where	diabetes	 prevalence	 is	 increasing	most	 rapidly,	 can	
identify	changes	needed	to	health	care	systems	to	improve	
patient outcomes.

The	aim	of	this	literature	review	is	to	summarize	knowl-
edge	of	diabetes	and	diabetic	microvascular	complications	
among	patients	with	diabetes	and	health	care	providers.	This	
includes	 recent	 studies	 examining	 predictors	 of	 improved	
patient	 and	 provider	 knowledge	 as	 well	 as	 predictors	 of	
improved	 diabetic	microvascular	 screening	 practices.	Our	
goal,	also,	is	to	identify	gaps	in	patient	and	provider	knowl-
edge to facilitate further studies of the relationship between 
patient	 and	provider	knowledge	of	diabetic	microvascular	
complications.

2 Methods

We searched three electronic databases, PubMed, Cochrane, 
and	CINAHL	for	articles	published	from	the	date	of	data-
base inception until the end of search period, 20 July 2021. 
The key terms and synonyms used alone or in combination 
were:	“patient”,	“caregiver”,	“individual”,	“provider”,	“doc-
tor”, “health care worker”, “understanding”, “knowledge”, 
“diabetes”, “neuropathy”, “retinopathy”, “nephropathy”, 
and “kidney disease”. Additional searches were conducted 
by scanning the references lists and citations of included 
articles	to	ensure	all	relevant	studies	were	identified.	Only	
peer-reviewed	 articles	 that	 investigated	 patient	 or	 health	
care	provider	knowledge	of	diabetic	neuropathy,	 retinopa-
thy,	or	nephropathy	were	included.	Studies	were	excluded	
if	the	patient	population	did	not	have	diabetes	(i.e.,	commu-
nity-wide sample), unless results from patients with diabe-
tes	could	be	separated	using	the	data	provided.

The	 search	 identified	 13,128	 potentially	 eligible	 stud-
ies	 once	 duplicates	 were	 removed.	After	 screening	 based	
on title, abstract, and keywords, the eligibility of 358 full 
text	articles	was	assessed,	of	which	102	were	excluded.	An	
additional	28	articles	were	identified	by	screening	reference	
lists,	resulting	in	a	final	literature	sample	of	284,	as	shown	
in	PRISMA	diagram	(Fig.	1).

3 Patient knowledge of diabetes

Diabetes	 knowledge	 is	 generally	 assessed	 via	 multiple	
choice	 surveys,	 either	 self-administered	 or	 interviewer-
administered,	covering	topics	ranging	from	metabolic	facts,	
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hypoglycemia and hyperglycemia symptoms, medication 
usage,	 diet	 and	 exercise,	 among	 others	 [8].	 Studies	 sug-
gest	 that	diabetes	knowledge	varies	widely	between	study	
populations.	In	an	early	Scottish	study,	only	27/182	patients	
(15%)	 answered	 11	 questions	 correctly	 that	 investigators	
deemed essential diabetes knowledge [8]. Participants gen-
erally scored better on medication management questions 
than general metabolic and diabetes facts. The opposite was 
shown	among	patients	with	diabetes	in	Mexico	who	had	a	
better knowledge of diabetes concepts than blood glucose 
self-monitoring and diabetes-related medication [9]. Diabe-
tes	knowledge	was	markedly	better	in	a	recent	US	study	of	
17	patients,	with	an	average	knowledge	score	of	60%	[10]. 
Of	 note,	 however,	 the	 study	was	 underpowered	 to	 assess	
predictors of diabetes knowledge.

A	 good	 body	 of	 evidence	 suggests	 that	 improved	
patient knowledge of diabetes is associated with better 

self-management of disease. This has been demonstrated 
using	 overall	 glucose	 control	 [11–13] and medication 
adherence [14] as surrogates of diabetes self-management. 
In	 a	US	 study	 of	 44	 patients,	 those	with	 better	 scores	 on	
a diabetes medication knowledge questionnaire had sig-
nificantly	lower	HbA1c	(p	< 0.0001) [12]. This relationship 
between diabetes knowledge and diabetes control may also 
be upheld in select populations, such as patients with diabe-
tes on dialysis [13]. Diabetes knowledge also aids in stricter 
adherence to medication, which is critical for disease man-
agement [14].	Overall,	indications	are	that	improved	patient	
knowledge of diabetes can translate to better glycemic con-
trol and medication adherence, which likely reduce disease 
progression. Therefore, raising awareness and knowledge of 
diabetes	could	exert	a	meaningful	and	beneficial	impact	on	
disease self-management.

Fig. 1	 Flow	diagram	of	study	inclusions.	PRISMA	criteria	were	adopted
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control could potentially also increase the risk of diabetic 
complications. Indeed, just as patient knowledge of diabetes 
is generally suboptimal, recognition of diabetic complica-
tions,	including	microvascular	complications,	was	less	than	
50% in some settings [23, 38].

In	addition,	and	compounding	the	issue,	providers	do	not	
universally	 address	 diabetic	 microvascular	 complications	
in patients [7, 39–42],	 even	 in	 patients	 clearly	 exhibiting	
symptoms e.g., neuropathy [7].	Since	provider	recommen-
dations	 significantly	 influence	patient	 care	 choices	 in	dia-
betic	microvascular	complications	[6, 43], it is important to 
understand	the	level	of	provider	knowledge	of	microvascu-
lar	complications.	However,	just	as	for	patients,	there	is	no	
comprehensive	 review	of	provider	knowledge	and	predic-
tors	of	provider	knowledge	of	these	diabetic	complications.	
Herein,	we	provide	our	findings	from	a	thorough	literature	
review	 of	 both	 patient	 and	 provider	 knowledge,	 covering	
retinopathy, neuropathy, and nephropathy.

4.1 Retinopathy

Diabetic	 retinopathy	 is	 a	 leading	global	 cause	of	prevent-
able	vision	impairment	and	blindness.	The	damaging	effects	
of	diabetes	on	the	eye	can	be	prevented	by	early	detection	
of retinopathy through screening and timely treatment of 
sight-threatening complications. Therefore, it is critical to 
identify	 approaches	 that	 improve	patient	 knowledge	 lead-
ing	to	better	health	choices	and	care	seeking	behavior.	We	
found literature regarding patient knowledge of retinopathy 
from many world regions, although the preponderance of 
data	was	from	Saudi	Arabia	and	India	[40] with some stud-
ies	from	the	US	[44]. They highlight critical gaps in patient 
knowledge.	Even	in	countries	with	provider	guidelines,	for	
instance by the American Diabetes Association (ADA) [45], 
to	ensure	retinopathy	is	evaluated	in	timely	manner,	patient	
adherence to screening is suboptimal [43], of which lack 
of knowledge of the potential harms of retinopathy may be 
a	contributing	cause.	In	a	nationwide	US	study	of	204,073	
patients with diabetes, only 71.1% adhered to the retinal 
screening recommendations during a median 4.8-year fol-
low-up [46]. Therefore, it is important to characterize the 
determinants leading to poor adherence, such as knowledge 
of retinopathy.

4.1.1 Instruments to assess retinopathy knowledge

Several	formal	Knowledge,	Attitudes,	and	Practices	(KAP)	
surveys	have	been	developed	 to	assess	patient	knowledge	
of	retinopathy.	A	KAP	survey	is	a	quantitative	or	qualitative	
method	 to	address	a	predefined	question,	what	are	patient	
and	 provider	 understanding	 of	 diabetic	 complications	 in	
this instance, through a standardized questionnaire. The 

To	identify	patients	with	diabetes	that	would	benefit	from	
diabetes	education,	and	hence	improved	disease	control,	it	
is essential to identify determinants of low diabetes knowl-
edge.	There	are	several	parameters	that	potentially	influence	
patients’	 knowledge	of	 diabetes.	Age	 is	 a	well-	 and	 long-
established predictor of diabetes knowledge. This relation-
ship between greater diabetes knowledge and younger age 
has	been	noted	in	various	populations,	including	in	Mexico	
[9],	 Costa	 Rica	 [15], Kuwait [16], United Arab Emirates 
[17],	and	Singapore	[18].

Additional	 clinical	 and/or	 demographic	 variables	 are	
linked	 to	diabetes	knowledge.	Longer	diabetes	duration	 is	
implicated in better knowledge scores by some studies [17, 
19], but not by others [16, 20], possibly due to confounding 
parameters.	There	is	also	discordance	in	studies	investigat-
ing	 the	 impact	 of	 sex;	 diabetes	 knowledge	was	greater	 in	
females [21] or males [17, 22–25] depending on the study, 
and	one	found	no	difference	[26].	However,	overall,	studies	
failed	 to	adjust	 for	education	 level	and	other	confounding	
variables,	which	may	have	varied	in	these	countries.	Race/
ethnicity	 is	 a	 possible	 contributor;	 studies	 to	date	 suggest	
that	patients	who	self-identify	as	White	are	likelier	to	have	
broader diabetes knowledge compared to some minori-
ties [20, 27–30].	While	this	may	indicate	areas	to	improve	
through outreach in these populations, it is important to 
emphasize that most of these studies do not adjust for con-
founding, particularly by socioeconomic status, which lim-
its	 interpretation	of	 this	association.	Further,	 some	studies	
categorized participants by nationality, rather than by eth-
nicity [16, 17].	Overall,	 there	 is	 a	 need	 for	 better	 quality	
studies	 that	 adjust	 for	 confounding	 to	 identify	 predictive	
factors	 affecting	 diabetes	 knowledge	 to	 launch	 education	
campaigns	likely	to	benefit	those	patients	at	highest	risk.

As might be anticipated, formal education [9, 15–17, 19, 
20, 23, 31], income [19], and health literacy [32, 33]	influ-
ence	 diabetes	 knowledge.	 Importantly,	 delivering	 focused	
diabetes education can raise diabetes knowledge [11],	pav-
ing a way forward for patients with lower knowledge on a 
trajectory for better disease control.

4 Knowledge of diabetic complications

Uncontrolled	 diabetes,	 i.e.,	 elevated	 HbA1c	 and	 fast-
ing	blood	glucose,	 is	a	significant	 risk	 factor	 for	develop-
ing	 microvascular	 complications,	 including	 retinopathy,	
nephropathy [34], and neuropathy [3].	 Several	 additional	
risks factors, such as obesity and dyslipidemia [35–37], 
which are frequent comorbidities in patients with diabetes, 
also	 raise	 the	 risk	 of	 microvascular	 complications,	 espe-
cially in patients with T2D. Therefore, lack of knowledge 
of diabetes leading to suboptimal self-care and poor disease 
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4.1.2 Patient knowledge of retinopathy

KAP	surveys	of	patient	knowledge	of	diabetic	complications	
suggest that retinopathy is the most recognized complica-
tion [31, 49, 63, 73]. Among Irish patients with diabetes, 
92% of those with T1D and 83% with T2D knew retinopa-
thy was a diabetes-related complication, compared to 71% 
of those with T1D and 53% of those with T2D for neuropa-
thy [73]. Despite this, some populations, such as American 
Indians	and	Alaskan	Natives,	were	unaware	of	the	connec-
tion between retinopathy and diabetes [44] whereas other 
populations held misconceptions regarding causes, e.g., 
watching	too	much	TV	[6] or bad luck [52] (Table 1). There 
is also a limited understanding by patients that retinopathy 
can be asymptomatic [48, 55, 74–76], including in select 
populations,	such	a	50%	of	females	surveyed	in	New	York	
City [77]. This belief may hold patients back from attending 
screening if they are unaware that they may be in the early 
asymptomatic	stages	of	retinopathy.	Indeed,	in	this	survey	
of 150 low-income diabetic females from New York City, 
a	fifth	were	unfamiliar	with	 the	 type	of	provider	 required	
for	 an	 eye	 exam	 and	 17%	were	 unaware	 that	 annual	 eye	
exams	 were	 recommended	 [77]. Of those aware of the 
annual	 screening	 recommendation,	 only	 approximately	 a	
quarter had knowledge regarding the need for dilation of the 
pupils	as	a	critical	component	of	the	eye	exam.	In	a	survey	
of patients with diabetes in rural India, less than a third were 
aware that eyes must be assessed on a regular basis [61].

In addition to knowledge gaps concerning causes and 
screening for retinopathy, there is a lack of knowledge 
regarding	treatment	options.	Early	surveys	of	urban	popula-
tions	suggest	a	significant	proportion	of	patients	with	diabe-
tes are unfamiliar with treatment options, with only around 
a	 fifth	 of	 respondents	 demonstrating	 correct	 knowledge	
[6].	This	proportion	was	even	lower,	5%,	in	a	recent	rural	
study in India [61].	It	is	unclear	from	our	literature	review	
whether	knowledge	has	 improved	 in	urban	populations	 in	
recent	 years.	 Furthermore,	 there	 is	 a	 low	 level	 of	 knowl-
edge	regarding	the	preventative,	rather	than	curative,	nature	
of treatments, such as laser and glucose control, which are 
erroneously	thought	to	be	curative	[76, 78].

Previous	studies	also	examined	predictors	of	retinopathy	
knowledge, spanning demographic, clinical, and socioeco-
nomic	 factors.	 Studies	 are	 discordant	 regarding	 age,	with	
findings	 of	 greater	 knowledge	 in	 younger	 [69, 79]	 versus	
older [47, 61]	patients	with	diabetes.	In	surveys	that	exam-
ined	sex,	being	female	was	associated	with	greater	knowl-
edge of retinopathy [50]. In addition, patients with a longer 
duration of disease were more likely to understand diabetic 
retinopathy,	and	this	was	confirmed	in	multiple	recent	sur-
veys	[48, 56, 58, 69, 80].	Further,	patients	with	a	prior	eye	
exam	 also	 had	 a	 greater	 knowledge	 of	 retinopathy	 [79]. 

goal	 of	KAP	 surveys	 is	 to	 reveal	misconceptions	 or	mis-
understandings,	which	pose	an	obstacle	to	desirable	activi-
ties	or	behaviors,	i.e.,	screening,	self-care,	and	appropriate	
management	of	diabetic	complications	in	this	review.	KAP	
surveys	 can	 be	 structured,	 e.g.,	 multiple	 choice,	 guided	
questions,	 or	 semi-structured,	 i.e.,	 relatively	 more	 open-
ended	 interviews.	The	KAP	 survey	may	 be	 conducted	 by	
the	investigator,	either	in-person	or	over	the	phone,	or	may	
be self-administered, online or by mail. To assess whether 
the	KAP	surveys	will	evaluate	the	intended	topic,	they	are	
tested	for	internal	consistency,	reliability,	and	face	validity	
and frequently pretested in a pilot group characteristic of the 
target	population.	Cronbach’s	alpha	coefficient	is	a	measure	
of test reliability or internal consistency for a set of scales 
or test items [60].	The	coefficient	 ranges	 from	0	 to	1;	 the	
coefficient	 is	0	when	 test	 items	are	 independent	 from	one	
another,	but	approaches	1	when	test	items	have	high	covari-
ances, i.e., they measure the same underlying concept, KAP 
in	these	instances.	A	Cronbach’s	alpha	coefficient	minimum	
of 0.65 and 0.8 is recommended.

KAP	surveys	for	 retinopathy	span	structured	and	semi-
structured	 self-	 and	 investigator-administered	 question-
naires [47–55]. The internal consistency of some KAP 
surveys	has	been	assessed	and	found	to	be	acceptable	with	
Cronbach’s	alpha	coefficients	ranging	from	0.6	to	0.8	[56–
59].	Some	studies	have	evaluated	face	validity	by	consult-
ing	an	expert	panel	[61, 62],	whereas	other	have	developed	
questionnaires	based	on	reviews	of	 the	 literature	 [62, 63]. 
Pretesting	 by	 leveraging	 a	 pilot	 group	 of	 volunteers	 out-
side	of	the	study	area	or	study	cohort	is	a	relatively	widely	
adopted	validation	method	[55, 58, 62]. Unfortunately, little 
information	using	the	same	retinopathy	KAP	survey	in	mul-
tiple	settings	or	in	multi-center	studies	is	available	therefore	
it	 is	 unclear	 how	 these	measures	 perform	 across	 different	
patient populations [43].

Far	less	literature	has	been	published	regarding	KAP	sur-
veys	of	retinopathy	knowledge	among	providers.	A	search	
of the literature yields both self- [64–66]	and	investigator-	
[40, 67] administered structured questionnaires, all pre-
tested	 in	 separate	participant	groups.	One	study	evaluated	
KAP	 survey	 internal	 consistency	 with	 a	 moderate	 Cron-
bach’s	alpha	coefficient	(0.64)	[65]. More commonly, infor-
mal	 surveys	 of	 provider	 knowledge	 of	 retinopathy	 using	
short one- or two-question queries are documented in the 
literature [68–70]. A couple of reports lack details regard-
ing the instrument used [71, 72].	Thus,	 overall,	 there	 are	
few	KAP	survey	instruments	developed	to	assess	provider	
knowledge of retinopathy.
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Study Country Study	Type	&	Population Measure Main	Findings
Patients with Diabetes
Addoor 2011 
[83]

Malaysia Cross-sectional
351 from 1 ophthalmology clinic

Study-created	
KAP	survey

87%	aware	diabetes	affects	eye.	Predictors	of	
knowledge: duration of diabetes (p < 0.01), eye 
exam	in	last	6	months	(p	< 0.04)

Adriono 2011 
[84]

Indonesia Cross-sectional
196 from 3 primary care clinics

Study-created	
KAP	survey

38%	aware	diabetes	causes	blindness.	Prior	exam	
linked to better knowledge (p = 0.002).

Ahmed 2017 
[51]

Bangladesh Cross-sectional
122 from 1 diabetes clinic

Study-created	
KAP	survey

24%	with	poor	knowledge	about	the	effect	of	
diabetes on the eye.

Al-Asbali 
2020 [79]

Saudi	Arabia Cross-sectional
200 from 1 endocrine and 1 ophthal-
mology clinic

Study-created	
KAP	survey

45%	excellent	knowledge.	Predictors	of	knowl-
edge: duration of diabetes (p = 0.03).

AlHargan 
2019 [82]

Saudi	Arabia Cross-sectional
280 from 2 primary care clinics

Adapted KAP 
survey	[148, 150]

88%	knew	diabetes	affects	the	retina.	Predictors	
of knowledge: formal education (p < 0.01), higher 
income (p < 0.05).

Almalki 2018 
[56]

Saudi	Arabia Cross-sectional
253 T2D from 1 endocrinology clinic

KAP	survey	
adapted from prior 
study [83]

64%	knew	diabetes	affects	the	eye.

Alsaidan 
2019 [70]

Saudi	Arabia Cross-sectional
174 T2D from 1 primary care clinic

Details not 
provided

82%	aware	diabetes	affects	eye.	Predictors	of	
knowledge: male gender (p = 0.045), well con-
trolled T2D (p = 0.021).

Alwazae 
2019 [57]

Saudi	Arabia Cross-sectional
404 from 4 clinics

Study-created	
KAP	survey

73.5% with adequate knowledge.

Al-Yahya 
2020 [151]

Saudi	Arabia Cross-sectional
313 from 52 primary care clinics

Validated	KAP	
survey	[53]

53%	knew	diabetes	affects	the	eye.	Predictors	of	
knowledge: higher income (p < 0.02).

Alzahrani 
2018 [61]

Saudi	Arabia Cross-sectional
377 from 38 primary care clinics

Study-created	
KAP	survey

82%	knew	diabetes	affects	the	eye.

Al Zarea 
2016 [150]

Saudi	Arabia Cross-sectional
439 from 5 clinics

Study-created	
KAP	survey

75% aware diabetes can cause eye disease.

Assem 2020 
[58]

Ethiopia Cross-sectional
230 from 1 diabetes clinic

Study-created	
KAP	survey

52% with poor knowledge. Predictors of knowl-
edge: urban residence (p < 0.05), income (p < 
0.05), diabetes (p < 0.05), duration (p < 0.01).

Bakkar 2017 
[148]

Jordan Cross-sectional
237 T2D randomly selected from 3 
cities

Study-created	
KAP	survey

88%	aware	diabetes	can	affect	the	eyes.	Predictors	
of eye knowledge: more than high school educa-
tion (p < 0.01).

Balasubra-
manian 2016 
[60]

India Cross-sectional
105 from 1 clinic

Details not 
provided

76%	aware	diabetes	affects	the	eye.	Predictors	of	
knowledge: education (p < 0.05)

Çetin 2013 
[48]

Turkey Cross-sectional
437 seen at 1 ophthalmology and 1 
endocrinology clinic

Study-created	
questionnaire

88%	knew	diabetes	affects	eyes.	25%	thought	eye	
exams	only	necessary	if	having	troubled	vision	or	
poorly controlled diabetes.

Das 2016 [49] India Cross-sectional
240 from 1 ophthalmology clinic

Study-created	
KAP	survey

65%	knew	diabetic	retinopathy	affects	the	eyes.	
42%	disagreed	that	eyes	could	be	affected,	even	if	
blood	sugar	was	controlled.	No	significant	predic-
tors of knowledge.

Duan 2020 
[68]

China Cross-sectional
1972 in 1 community health system

Study-created	
KAP	survey

62%	knew	diabetes	affects	eyes.	Predictors	of	
knowledge:	younger	age,	male	sex,	higher	educa-
tion, longer diabetes duration (all p < 0.01).

Fallatah	2918	
[54]

Saudi	Arabia Cross-sectional
380 from 1 ophthalmology clinic

Study-created	
KAP	survey

92%	aware	diabetes	affects	eyes.	Predictors	of	
knowledge: formal education (p < 0.05), urban 
residence (p  < 0.05).

Gillibrand 
2000 [67]

UK Cross-sectional
2,815 community patients not engaged 
in eye care

One knowledge 
question

18.3%	did	not	know	diabetes	affects	eyes.

Khandekar 
2010 [47]

Oman Cross-sectional
750 in 1 region

Study-created	
KAP	survey

61%	aware	diabetes	affects	eyes.

Konstantini-
dis 2017 [52]

Switzerland Cross-sectional
323 recruited from community 
pharmacies

Study-created	
questionnaire

96% aware diabetes can cause eye disease. 98% 
knew	good	glycemic	control	could	prevent	occur-
rence or deterioration of eyes.

Table 1	 Summary	of	studies	that	investigated	retinopathy	knowledge	among	patients	with	diabetes	and	health	care	providers.	Studies	arranged	
alphabetically.	Abbreviations:	CI,	confidence	interval;	GP	general	practitioner;	KAP	knowledge	attitudes	and	practices;	OR,	odds	ratio;	T1D,	type	
1	diabetes;	T2D,	type	2	diabetes

1 3
1142022 Feldman Laboratory Publications



Reviews in Endocrine and Metabolic Disorders

Study Country Study	Type	&	Population Measure Main	Findings
Lian	2018	
[74]

Hong Kong Cross-sectional
2,593 at 2 clinics

Study-created	
questionnaire

11.5% knew retinopathy could be asymptomatic.

Livingston	
1998 [78]

Australia Cross-sectional
205 urban, 240 rural

Study-created	
knowledge score

37% aware eye problems can occur. Predictors 
of	increased	awareness:	younger	age:	rural	OR	
2.89	[95%	CI	1.36–6.06]	urban	OR	2.32	[95%	
CI	1.24–4.22];	eye	exam	in	last	2	years:	rural	OR	
1.89	[95%	CI	1.04–3.42]	urban	OR	2.43	[95%	CI	
1.29–4.57].

Manu 2018 
[75]

India Cross-sectional
150 T2D from 1 hospital

Details not 
provided

58%	aware	diabetes	affects	the	eye.	No	significant	
predictors of knowledge.

Mueke 2008 
[89]

Myanmar Cross-sectional
480	cared	for	by	surveyed	GPs

Study-created	
questionnaire

80.6%	knew	diabetes	affects	eyes.	90.4%	agreed	
patients with diabetes should see an eye specialist.

Mumba 2007 
[69]

Tanzania Cross-sectional
316 at 1 diabetes clinic

One knowledge 
question

34% knew diabetes can damage eye.

Nathaniel 
2015 [81]

Nigeria Cross-sectional
225 at 1 endocrinology clinic

Study-created	
questionnaire

57%	knew	diabetes	can	affect	eye.

Ovenseri-
Ogbomo 
2013 [152]

Ghana Cross-sectional
360 at 1 diabetes clinic

Study-created	
questionnaire

49%	knew	diabetes	can	affect	eye.	No	significant	
predictors of knowledge.

Pasagian-
Macaulay 
1997 [76]

US Cross-sectional
150 women from 1 medical center

Study-created	
knowledge and 
belief score

17% did not know required frequency of eye 
exams.	40%	knew	controlling	glucose	was	impor-
tant.	Formal	education	linked	to	greater	knowl-
edge (p < 0.05).

Rizwan	2004	
[55]

Pakistan Cross-sectional
132 from 1 ophthalmology clinic

Details not 
provided

57%	knew	diabetes	affects	the	eye.	22%	reported	
eye	exams	should	occur	once	vision	was	affected.

Saikumar	
2007 [153]

India Cross-sectional
1,000 at 1 clinic

Study-created	
awareness score

84%	aware	diabetes	can	affect	the	eye.	46.9%	
knew related to glucose control. 50% thought 
routine	eye	exams	not	necessary.

Schmid	2003	
[149]

Australia Cross-sectional
68 T1D, 187 T2D in Diabetes Australia

Study-created	
questionnaire

96.2% knew diabetes causes eye problems.

Schoenfeld	
2001 [86]

US Cross-sectional
2,308 in 1 county

Study-created	
questionnaire

47%	knew	eye	examinations	were	needed	for	
people with diabetes.

Srinivasan	
2017 [53]

India Cross-sectional
288 from 1 ophthalmology clinic

Study	created	
questionnaire

58% had poor knowledge.

Tajunisah 
2011 [62]

Malaysia Cross-sectional
137 from 1 ophthalmology clinic

Details not 
provided

86%	aware	diabetes	can	affect	the	eye.	Predictors	
of knowledge: formal education (p < 0.05).

Vanugopal	
2020 [59]

India Cross-sectional
350 from 1 hospital

Study-created	
questionnaire

34% had adequate knowledge of diabetic retinopa-
thy. Predictors of knowledge: formal education 
(p < 0.001).

Walker 1997 
[6]

US Cross-sectional
67 Black Americans with diabetes in 
New York

Study-created	
questionnaire

87%	believed	diabetic	eye	problems	were	
symptomatic.	21%	thought	there	were	effective	
treatments.

Wang 2010 
[85]

China Cross-sectional
53 T1D 836 T2D from 1 endocrine and 
1 general clinic

Study-created	
KAP	survey

77%	aware	diabetes	affects	eyes.	Prior	exam	
linked to better knowledge (p < 0.001).

Whiting 1998 
[77]

Australia Cross-sectional
121 patients with retinopathy from 1 
ophthalmology clinic

Study-created	
questionnaire

95%	knew	diabetes	affects	the	eyes.

Zou 2017 
[73]

China Cross-sectional
519 with diabetes in 1 community

Study-created	
questionnaire

95%	aware	diabetes	affects	the	eye,	12%	aware	it	
can be asymptomatic.

Health	Care	Providers
Abdulsalam 
2018[64]

Nigeria Cross-sectional
105 physicians from 4 hospitals

Study-created	
KAP	survey

36%	perform	eye	exams,	90%	do	not	use	dilating	
eye drops

Abu-Amara 
2019 [40]

Saudi	Arabia Cross-sectional
182 GPs, 115 internists

Study-created	
KAP	survey

45% with poor knowledge.

Table 1 (continued) 
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Moreover,	surveys	have	examined	predictors	of	engaging	
in	 retinopathy	screening	behavior,	which	were	multifacto-
rial.	From	the	literature	we	identified	the	main	determinants	
for	attending	screening	were	younger	age,	female	sex,	and	
White	race/ethnicity	[88]. Diabetes characteristics also play 
a role in whether patients seek screening, such as more 
severe	 diabetes	 and	 comorbidities	 such	 as	 hypertension	
and hyperlipidemia, [85]	and,	overwhelmingly,	longer	dis-
ease duration [48, 74, 85, 89], although one study noted the 
opposite [90].	As	might	 be	 expected,	 previous	 attendance	
for	an	eye	exam	[87],	 receiving	a	physician	recommenda-
tion to attend for screening [43, 62, 75, 76, 85], and better 
knowledge of diabetes [53, 85, 91] and retinopathy [43, 51, 
53, 57, 91, 92]	also	increase	screening	adherence.	Lastly,	as	
for determinants of retinopathy knowledge, greater formal 
education [48, 89, 90], urban residency [88], higher income 

Examination	of	socioeconomic	factors	reveals	some	antici-
pated correlations with greater retinopathy knowledge, such 
as higher formal education [48, 56, 59, 61, 69, 77, 81–83], 
literacy [63], urban residency [58, 81], and income [58, 
69, 83]. Additionally, speaking English, were English was 
not	 the	person’s	first	 language,	was	 also	 linked	 to	greater	
knowledge of retinopathy [59, 79]. Only ten studies con-
trolled for confounding. Among those that did, the following 
predictors	 of	 retinopathy	knowledge	 remained	 significant:	
younger age [79], duration of diabetes [58, 84], a prior eye 
exam	[79, 84–86], higher income [58], urban residency [58, 
79], and greater formal education [61].	Six	studies	found	no	
significant	demographic	or	clinical	predictors	of	 increased	
retinopathy after controlling for confounding [47–49, 70, 
74, 87].

Study Country Study	Type	&	Population Measure Main	Findings
Al	Rasheed	
2017 [63]

Saudi	Arabia Cross-sectional
142 family, 10 pediatric, 8 internists, 
56 GPs

Study-created	
questionnaire

Knowledge linked to: family medicine subspecial-
ity training (p < 0.01), years of practice (p < 0.01).

Al-Rashidi	
2020 [71]

Saudi	Arabia Cross-sectional
76	GPs	in	1	province

Previously	used	
KAP	survey	[63]

37%	performed	dilated	fundus	exams.

Alhejji 2020 
[97]

Saudi	Arabia Cross-sectional
141 GPs from 63 centers

Study-created	
questionnaire

56% with good knowledge.

Al-Wadaani 
2012 [98]

Saudi	Arabia Cross-sectional
73 medical students

Study-created	
KAP	survey

Moderate	overall	KAP	score,	linked	to	male	
sex	(p	= 0.02). 66% knew correct timing for eye 
exams.

Daly 2014 
[92]

New 
Zealand

Cross sectional
287 nurses

Study-created	
survey

89%	identified	retinopathy	as	a	diabetes	complica-
tion.	Predictors	of	knowledge:	level	of	training	
(p = 0.006).

Delorme 
1998 [65]

Canada Cross-sectional
648 GPs, 96 trainees

Study-created	
questionnaire

Correct	timing	for	screening	in	T1D:	74%	vs.	
T2D: 82%.
33% knew macular edema could be asymptomatic.

Foster	1996	
[95]

US Cross-sectional
23 optometrists

Study-created	
survey

Low	level	of	knowledge	regarding	need	for	
dilated	fundus	exams.

Ghosh 2007 
[154]

India Cross-sectional
36 optometrists, 241 GPs

Study-created	
questionnaire

< 23% optometrists and < 33% GPs had acceptable 
knowledge regarding risk factors and management 
of diabetic retinopathy.

Goodman 
1997 [39]

South	Africa Cross-sectional
12 doctors, 23 nurses

Study-created	
survey

100%	knew	diabetes	affected	the	eye.

Khandekar 
2008 [94]

Oman Cross-sectional
42	ophthalmologists,	33	mid-levels,	
12 GPs

Study-created	
questionnaire

Acceptable knowledge: 71% ophthalmologists, 
54%	mid-levels,	33%	GPs.

Mueke 2008 
[89]

Myanmar Cross-sectional
100 GPs

Study-created	
questionnaire

Correct	timing	for	screening	in	T1D:	2%	vs.	T2D:	
93%.

Namperum-
alsamy 2004 
[155]

India Cross-sectional
199 paramedical personnel

Study-created	
questionnaire

88.5%	knew	diabetes	could	affect	eyes.	20%	
knew uncontrolled diabetes is a risk factor. 75.9% 
unaware of treatments for retinopathy.

Raman	2006	
[156]

India Cross-sectional
159 GPs

Study-created	
questionnaire

54%	aware	patients	with	diabetes	should	have	
annual	dilated	eye	exams.

Wright 2001 
[157]

Australia Cohort
310 optometrists

Study-created	
questionnaire

74.5%	perform	dilated	exams	on	new	patients	
with known diabetes.

Yan 2012 [96] China Focus	groups
22	physicians,	25	village	health	workers

Study-created	inter-
view	guide

Good	overall	knowledge,	physicians	did	not	dilate	
pupils to detect asymptomatic disease.

Table 1 (continued) 
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small	 KAP	 survey	 also	 found	 lack	 of	 knowledge	 among	
providers	regarding	the	existence	of	asymptomatic	disease.	
This was noted by a small study of physicians (n = 22) and 
village	health	workers	(n	= 25) in rural China, which found 
most	providers	did	not	conduct	a	pupil	dilation	exam	if	the	
patient had no symptoms [97].	Similarly,	a	KAP	survey	of	
primary	 care	 physicians	 in	 Saudi	Arabia	 (n	= 216) found 
that	only	46%	were	aware	that	patients	initially	exhibit	no	
symptoms in the early stages of retinopathy [64]. An early 
investigation	 of	 KAP	 among	 Canadian	 general	 practitio-
ners (n =	1,038)	found	that	27%	overestimated	the	benefits	
of treatment, i.e., a false belief that laser photocoagulation 
improved	 rather	 than	 stabilize	 disease	 progression	 [66]. 
Lastly,	we	identified	provider	gaps	in	knowledge	regarding	
gestational	 diabetes.	 Family-practice	 physicians	 (n	= 224) 
were	more	likely	to	examine	the	eyes	of	patients	with	gesta-
tional	diabetes	for	retinopathy	compared	to	obstetrics/gyne-
cology physicians (n =	184),	as	surveyed	by	mail	[98, 99]. 

We found only scant information regarding predictors 
of	greater	provider	knowledge	of	retinopathy.	As	might	be	
anticipated, specialist training correlates with greater knowl-
edge or ability to detect retinopathy, e.g., retinal specialists 
versus	internists,	diabetologists,	and	medical	residents	[94] 
or additional subspeciality training [64].	Longer	duration	of	
practice was also a determinant of greater knowledge [64]. 
Patient	characteristics	also	contributed,	with	providers	dem-
onstrating better knowledge regarding the connection of 
retinopathy	and	T2D	versus	T1D	and,	as	a	result,	providers	
more	frequently	referred	patients	with	T2D	versus	T1D	to	
ophthalmology [100].	In	a	KAP	survey	of	medical	students	
in	 Saudi	Arabia,	 males	 scored	 higher	 on	 knowledge	 and	
practices whereas females scored better on attitudes [101].

Cumulatively,	our	search	of	the	literature	revealed	some	
investigation	of	provider	KAP,	although	recent	studies	were	
limited	 in	scope	and	geographic	 location.	Moreover,	care-
fully adjusted studies for confounding factors are scarce.

4.2 Neuropathy

Peripheral	neuropathy	is	an	injury	of	the	nerves,	generally	
in	a	symmetric	distal	to	proximal	fashion,	initiating	in	the	
feet	 and	progressing	 to	 the	 calves	 [3]. In the later stages, 
the	 hands	 may	 also	 be	 affected.	 Neuropathy	 can	 impair	
gait and stability, increasing susceptibility to falls and sec-
ondary	 injury.	 Moreover,	 peripheral	 neuropathy	 can	 lead	
to non-healing foot ulcers, which may ultimately require 
lower	 limb	amputation.	Thus,	 it	 can	 significantly	 increase	
disability and lower quality of life, making it essential for 
patients to understand neuropathy. We searched the litera-
ture	 for	 studies	 that	 examined	 patient	 knowledge	 of	 neu-
ropathy. Most studies were conducted in India and China, 
although studies were conducted across multiple other 

[92],	and	linkage	into	care/health	insurance	[92] was associ-
ated with an increased likelihood of screening attendance. 
Again, few studies adjusted for potential confounding.

Overall,	 our	 literature	 review	 identifies	 crucial	 gaps	 in	
patients’	diabetic	 retinopathy	knowledge.	These	 span	 lack	
of awareness of the relationship of retinopathy to diabetes, 
occurrence of early asymptomatic disease, misconceptions 
regarding causes, and paucity of knowledge regarding ther-
apies.	 Surveys	 have	 revealed	 several	 determinants	 of	 low	
retinopathy knowledge and screening, such as demograph-
ics	 (age,	 sex,	 ethnicity),	diabetes	duration,	prior	behavior,	
physician	 recommendations,	 and	 various	 socioeconomic	
factors. This could help identify patient populations, which 
would	benefit	from	retinopathy	education	and	outreach.	Of	
note,	 several	studies	 identified	from	urban,	Western	coun-
tries	were	conducted	over	 two	decades	ago,	and	we	could	
not	 ascertain	whether	 patient	KAP	have	 since	 changed	 in	
the	intervening	years.

4.1.3 Provider knowledge of retinopathy

Provider	knowledge	of	 retinopathy	 is	 crucial	 for	 ensuring	
patients’	optimal	eye	care	because	multiple	studies	support	
that physician recommendations are strong determinants 
of	patients’	adherence	to	screening	guidelines	[43, 62, 75, 
76, 85].	Sixty	to	100%	of	physicians	[39, 66] and 50-75% 
of	 nurses	 and	midlevel	 providers	 [67, 93] know diabetes 
can	 adversely	 affect	 the	 eyes.	 However,	 overall	 retinopa-
thy	knowledge	can	be	poor	among	providers	in	some	geo-
graphic	 areas.	A	 survey	 of	 private	 sector	 non-ophthalmic	
providers	 (n	=	355)	 in	Saudi	Arabia	 found	a	good	 level	of	
diabetic retinopathy knowledge was only present in 54.3% 
of	interviewees,	along	with	a	positive	attitude	among	31.3%	
and	 excellent	 practice	 among	only	40.8%	of	 interviewees	
[40]. We did not identify any studies that compared pro-
vider	knowledge	globally.	We	did,	however,	find	evidence	
that ophthalmic specialists outperform non-specialists for 
detecting	 proliferative	 retinopathy	 from	 seven-view	 ste-
reo	fundus	photographs	and	review	of	medical	charts	[94];	
therefore, suboptimal retinopathy knowledge may be more 
of	an	issue	among	general	doctors	than	eye	experts.	Since	
most	patients	receive	their	medical	care	first	from	their	pri-
mary care physician, they must be knowledgeable of reti-
nopathy to determine when a referral to an ophthalmologist 
is necessary.

Our	 search	of	 the	 literature	 identified	 several	 points	 of	
provider	 knowledge	 limitations.	These	 included	 a	 lack	 of	
awareness	concerning	what	part	of	the	eye	diabetes	affects	
[95], uncertainty regarding the tests used to diagnose reti-
nopathy [64, 65, 72], as well as misconceptions regard-
ing	 contraindications	 to	 diabetic	 fundoscopic	 exams,	 e.g.,	
hypertension [96, 97].	As	we	had	identified	for	patients,	a	
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investigator-	 [39, 93] administered. We noted some sur-
veys	 were	 pretested	 [39],	 were	 assessed	 for	 face	 valid-
ity	 by	 experts,	 and	 evaluated	 for	 internal	 consistency	 by	
Cronbach’s	alpha	coefficients	(0.72	for	junior	doctors,	0.81	
for nurses) [127].	 Additionally,	 studies	 used	 previously	
validated	 instruments	 about	 KAP	 towards	 diabetes	 more	
broadly,	 e.g.,	 Diabetes	 Self-Report	 Tool,	 Diabetes	 Basic	
Knowledge Tool [42, 128, 129].

4.2.2 Patient knowledge of neuropathy

Overall,	evidence	suggests	patient	knowledge	of	neuropa-
thy ranges from 10 to 60% compared to 60–92% for reti-
nopathy [73, 130],	which	may	also	be	the	case	in	providers,	
e.g., nurses [93]. Of the papers we assessed, we found a
broad	 range	 of	 patient	 knowledge	 and	 practice	 behaviors
in neuropathy, i.e., diabetic foot (Table 2). Many reported
less	than	adequate	foot	care	behavior	in	diverse	populations
worldwide, urban and rural [104, 110, 122].	Moreover,	some
studies highlighted a disconnect in knowledge and practice.
In	 a	 Saudi	Arabian	 study	 of	 patients	with	T2D	 (n	= 360), 
although 70% had knowledge of diabetic foot care, only
41.7%	examined	their	feet,	41.4%	washed	them	with	warm
water, 31.4% carefully dried them between the toes, and
33.1% used moisturizer [131]. We also noted some miscon-
ceptions	regarding	foot	care;	for	example,	qualitative	inter-
views	with	people	with	diabetes	in	Jordan	revealed	the	belief
that	there	is	no	need	to	examine	the	feet	if	participants	had
no ulcers [132]. Appropriate education on diabetic neuropa-
thy	can	have	tangible	effects	on	care	adherence.	A	study	of
T2D patients with diabetic neuropathy (n = 104) found that
foot care education enhanced attendance at yearly check-
ups, as well as moisturizer use and appropriate shoe wear
(all p < 0.05) [133].	Another	study	in	Saudi	Arabia	similarly
found that foot care practice was superior in T2D patients
that	received	physician	recommendations	to	examine	their
feet [131]. Therefore, it is essential for patients to under-
stand	neuropathy	to	adopt	practices	that	improve	foot	care.

Across	 the	 studies,	we	 identified	multiple	predictors	of	
patient knowledge, which included demographic, clinical, 
and	socioeconomic	factors.	The	literature	findings	regarding	
sex	were	mixed.	We	found	reports	that	neuropathy	knowl-
edge was greater in females [113]	and,	conversely,	in	males	
[117],	and	one	study	that	did	not	find	a	relationship	between	
neuropathy	knowledge	and	sex	[134]. Older age also associ-
ated with deeper knowledge of diabetic foot and neuropathy 
[108, 114]. Additionally, in a large Chinese study of patients 
with T2D (n =	5,961),	disease	characteristics	had	an	 influ-
ence	on	patient	knowledge,	including	positive	correlations	
with diabetes duration and regular diabetes care following 
multiple regression analysis [114]. Prior foot complica-
tions may impact neuropathy knowledge. In a Thai study, 

countries [102–104]. Patient populations comprised both 
inpatients with diabetic ulcers as well as outpatients with 
diabetes	lacking	neuropathy	symptoms.	One	2000	US	study	
of patients who were ADA members in an urban setting 
found that 27% of respondents reported they had not been 
advised	or	educated	on	diabetic	neuropathy	and	foot	com-
plication	by	their	health	care	provider	[102]. Thus, gaps in 
patient	knowledge	of	neuropathy	may	be	substantial,	even	
in	patients	belonging	to	an	organization	advocating	and	sup-
porting diabetes research.

4.2.1 Instruments to assess neuropathy knowledge

We	 identified	 several	 instruments	 assessing	 neuropathy	
knowledge	in	the	literature.	The	majority	were	KAP	surveys	
focused on foot care and foot ulcer knowledge and practice, 
rather	 than	 neuropathy	 more	 broadly.	 KAP	 surveys	 were	
both in structured [105–107]	 and	 interview	 format	 ques-
tionnaires [108],	 either	 self-	 or	 investigator-administered	
[109].	 In	 one	 study,	 the	 questionnaire	 was	 investigator-
administered when the respondent was illiterate or physi-
cally	 unable	 to	 complete	 the	 survey	but	 self-administered	
by the remainder of participants [110]. A few administered 
KAP	surveys	were	adapted	from	prior	surveys	[111, 112], 
whereas a few were utilized in multiple studies [105, 113] 
or used prior instruments [106, 114].	Moreover,	we	found	a	
KAP	instrument	that	split	the	survey	into	basic	and	extended	
foot care practices [115]. The Patient Interpretation of Neu-
ropathy	(PIN)	questionnaire	evaluated	both	misperceptions	
about foot complications, patient knowledge of neuropathy 
and	 its	 link	 to	 complications,	 and	 foot	 self-care	 efficacy	
beliefs, among other concepts related to patient understand-
ing of neuropathy [116].

A	few	studies	evaluated	parameters	of	KAP	surveys	for	
capturing	patient	knowledge.	Several	KAP	surveys	we	iden-
tified	were	pretested	[105, 106, 108, 112, 117], although one 
study was pretested in medical students instead of a popu-
lation meeting the criteria of the study population [109]. 
Regarding,	 internal	consistency	of	KAP	surveys,	 they	had	
Cronbach’s	 alpha	 coefficients	 ranging	 from	 0.72	 to	 0.86,	
which is rated as acceptable [115, 118, 119]. A couple of 
studies	assessed	face	validity	of	the	utilized	KAP	survey	by	
a	panel	of	medical	experts	[107, 108]. In addition to KAP 
surveys,	we	also	found	papers	that	leveraged	scoring	and/or	
scaling instruments to assess patient knowledge of diabetic 
foot care. These included diabetic knowledge [120] and foot 
care scores [103, 113, 120–124].	Finally,	one	study	report	
provided	no	information	regarding	the	employed	instrument	
[125].

We found far fewer neuropathy KAP instruments for 
providers;	 however,	 they	 spanned	 structured	 and	 semi-
structured questionnaires, which were self- [126–128] or 
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Study Country Study	Type	&	Population Measure Main	Findings
Patients with Diabetes
Abu-Qamar 2014 
[104]

Jordan Qualitative	interviews
7 patients with burn injuries

Study-created	inter-
view	guide

Participants	did	not	believe	they	needed	
regular	food	exams	in	the	absence	of	ulcers.

Bohorquez	Robles	
2017 [114]

Mexico Cross-sectional
200 T2D from 1 primary care clinic

Foot	Care	Knowledge	
and Practice Question-
naire [158]

52% had poor knowledge of foot self-care.

Chellan 2012 
[107]

India Cross-sectional
203 from 1 podiatry clinic

Previously	validated	
KAP	survey

Patients with foot ulcers were more likely 
to	have	poor	knowledge	(p	= 0.001).

Corbett 2003 
[119]

US Randomized	control	trial
40 T2D with home care

Foot	Care	Knowledge	
Questionnaire [159]

Moderate baseline foot care knowledge. 
Educational	intervention	improved	knowl-
edge (p < 0.01).

De	Sá	Pilocarpo	
2014 [113]

Brazil Cross-sectional study
85 T2D from 2 primary care clinics

Previously	used	KAP	
questionnaire [159]

49.5% with limited foot care knowledge.

Desalu 2011 [102] Nigeria Cross-sectional
352 from 3 tertiary hospitals

Pre-tested 
questionnaire

46% with poor knowledge of diabetic foot 
care.

Foolchand	2013	
[111]

Mauritius Qualitative	interviews
120 from 5 hospitals

Study-created	inter-
view	guide

75% unaware of need for annual foot 
screening.

Hanley 2020 
[131]

St.	Kitts	
and	Nevis

Cross sectional
210 from multiple health care settings

Adapted KAP ques-
tionnaire [107]

Average	knowledge	reported.	No	difference	
in knowledge based on amputation status.

Hasnain 2009 
[101]

Pakistan Cross-sectional
150 from 1 diabetic clinic

Study-created	
questionnaire

29.3% with good knowledge. Predictors of 
knowledge: formal education (p < 0.01).

Jain 2012 [106] India Cross-sectional
251 from multiple hospitals

Study-created	
questionnaire

62% had poor foot care knowledge.

Jinadasa 2011 
[105]

Sri	Lanka Cross-sectional
110 with diabetic foot ulcers

Study-created	
questionnaire

52.7% with good footcare knowledge.

Khamseh 2007 
[103]

Iran Cross-sectional
148 T2D from 1 diabetes clinic

Study-created	
questionnaire

Predictors of knowledge: higher formal 
education (p < 0.01).

Lamchahab	2011	
[121]

Morocco Cross-sectional
91 hospitalized patients

Details	not	provided 85% did not pay attention to “warning 
signs” of foot injuries. Predictors of knowl-
edge: formal education, socioeconomic 
status (both p < 0.01).

Li	2014	[110] China Cross-sectional
5,961 T2D from 144 hospitals

Summary	of	Diabetes	
Self-Care	Activities

Overall	medium	level	of	foot	care	knowl-
edge.	Multivariate	predictors	of	knowledge:	
female	sex,	older	age,	formal	education,	
diabetes duration, regular diabetes care, 
prior education regarding diabetes compli-
cations (all p < 0.001).

Muhammad-Lutfi	
2014 [130]

Malaysia Cross-sectional
157 admitted with foot infections.

Previously	used	ques-
tionnaire [101]

58% with poor foot knowledge.

Naicker 2009 
[120]

Malaysia Cross-sectional
100 from 1 hospital

Preventative	Measure	
Scale	[160]

Poor	overall	foot	knowledge.

Pollock 2004 
[109]

UK Cross-sectional
365 from a population-based diabetes 
register

Study-created	
questionnaire

Moderate	overall	knowledge.	Predictors	of	
knowledge: female gender (p = 0.04).

Pourkazemi 2020 
[132]

Iran Cross-sectional
375 T2D from 1 clinic

Study-created	
questionnaire

15% with good knowledge. Predictors of 
knowledge: female gender, duration of 
diabetes, urban residents, formal education, 
prior diabetic foot ulcer, prior amputation 
(all p < 0.05).

Rheeder	2008	
[162]

South	
Africa

Cross-sectional
120 from 1 diabetes clinic

Modified	questionnaire	
[109]

Participants with ulcer at-risk feet were less 
likely to inspect their feet daily (p = 0.025).

Sulistyo	2017	
[115]

Thailand Cross-sectional
81 from 1 clinic

Modified	Diabetic	
Foot	Care	Knowledge	
Questionnaire [159]

58% with moderate, 39.5% poor 
knowledge.

Tuha 2021 [134] Ethiopia Cross-sectional
344 from 1 hospital

Details	not	provided 72.7% knew to inspect their feet for ulcers.

Health	Care	Providers

Table 2	 Summary	of	studies	that	investigated	neuropathy	knowledge	among	patients	with	diabetes	and	health	care	providers.	Studies	arranged	
alphabetically.	Abbreviations:	ADA	American	Diabetes	Association;	KAP,	Knowledge,	Attitudes,	and	Practices;	T2D,	type	2	diabetes
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amputation independently predicted more meticulous foot 
care [103].	Several	studies	highlighted	 that	better	diabetic	
foot education [103, 133, 137] and attention from a foot 
care professional [103, 137]	also	 improved	self-care	prac-
tices.	 Finally,	 socioeconomic	 forces	 played	 a	 role	 in	 self-
care	 behavior,	 including	 a	 higher	 formal	 education	 [106], 
urban residency [79, 136, 138], and income [141].	Factors	
may	 modify	 these	 relationships.	 For	 instance,	 in	 the	 US	
veteran	study,	years	of	schooling	did	not	remain	significant	
after multiple regression analysis [103], although it did in 
a Chinese study [114]. This emphasizes the importance of 
correcting	for	confounding	factors	in	KAP	surveys,	as	well	
the presence of additional potential contributors that may 
explain	study	differences.

4.2.3 Provider knowledge of neuropathy

Our	 comprehensive	 literature	 review	 found	 there	 were	
far	 fewer	KAP	studies	of	provider	neuropathy	knowledge	
versus	of	patients,	and	some	studies	were	relatively	small.	
Overall,	 the	 studies	 revealed	 significant	 knowledge	 gaps	
and	misconceptions.	A	nationwide	US	study	of	health	care	
professionals, which included general doctors (n = 250), 
specialists (n =	150),	 and	 nurses	 and/or	 physician	 assis-
tants (n =	100),	 found	53%	of	 survey	participants	held	 the	
belief	 that	 adequate	glucose	 control	 could	 reverse	periph-
eral neuropathy [126],	despite	the	progressive	nature	of	the	
disease and the presence of additional risk factors, such as 
central obesity [37].	Encouragingly,	however,	over	half	of	
providers	expressed	a	desire	for	more	 information	regard-
ing	 several	 aspects	of	neuropathy,	 including	 its	 cause	and	
how it induces pain or numbness. In a UK study, junior 
doctors and nurses scored poorly with regards to foot care, 
although they scored well on general diabetes knowledge 
[127], indicating a potential disconnect in understanding the 
link	between	diabetes	and	neuropathy.	Moreover,	neuropa-
thy was the least recognized diabetes complication out of 
several	micro-	and	macrovascular	complications,	including	
retinopathy and nephropathy, by nurses in Australia [93]. 
Conversely,	a	 study	of	nurses	 in	Saudi	Arabia	 found	neu-
ropathy was recognized by 76% of participants, and most by 
nurses belonging to critical care units [42].

knowledge was lower among T2D patients with (n = 55) 
versus	without	ulcers	(n	= 110), which did not correlate with 
either foot care score or diabetes duration [120].	Conversely,	
a	UK	study	of	amputees	at	a	foot	clinic	found	a	high	level	of	
foot	care	knowledge,	which	did	not	differ	between	patients	
with unilateral (n = 121) or bilateral (n = 22) amputations 
[121].	No	differences	were	noted	in	KAP	between	patients	
with (n =	89)	 versus	without	 (n	=	121)	 amputation	 in	 a	 St.	
Kitts	and	Nevis	[135].	We	also	identified	that	prior	educa-
tion on foot care [113, 114]	and	prior	physician	advice	[131] 
was associated with greater neuropathy knowledge. As 
might be anticipated, multiple studies also found that higher 
levels	of	formal	education	enhanced	knowledge	of	diabetic	
foot disease [105–108, 114, 125].	Lastly,	higher	socioeco-
nomic status was linked to a greater knowledge [106, 125].

Although knowledge scores can correlate with practice 
behavior	 [136],	 as	noted	 above,	 better	neuropathy	knowl-
edge does not always lead to better foot care [131]. Thus, 
we also combed the literature for determinants of good 
foot	self-care.	Female	sex	was	associated	with	greater	foot	
self-care (p < 0.035) [137], an association that persists after 
controlling	for	confounders	in	the	US,	China,	and	Ethiopia	
[114, 137, 138]. Younger age is also a predictor of better 
care [103, 139],	 though	 one	 study	 noted	 no	 effect	 of	 age	
based	on	a	50-year-old	cutoff	[106].	Studies	that	identified	
predictors of greater knowledge through multiple regression 
analysis indicated a weak association of age with knowl-
edge	in	a	US	study	[103], but a strong association in other 
studies [114, 138].	A	 few	 studies	 examined	 the	 influence	
of	race/ethnicity;	analysis	of	T2D	US	participants	from	the	
Diabetes Attitudes, Wishes and Needs 2 study found that 
Black	Americans	 spent	 more	 time	 on	 foot	 self-exam	 per	
week	 versus	White	 or	 Chinese	Americans,	 after	 control-
ling for income, age, education and diabetes type (p < 0.05) 
[140].	A	US	study	of	veterans	with	diabetes	confirmed	this	
association, with higher adherence to foot care among Black 
Americans as well as Hispanic patients when compared to 
White patients, in multiple regression analysis [103], as did 
a UK study across the general T2D population [30].

As	 with	 neuropathy	 knowledge,	 previous	 experiences	
with	 foot	 ulcers	 or	 amputations	 may	 also	 influence	 self-
care practice [141].	 In	 the	study	of	US	veterans,	neuropa-
thy	symptoms,	a	foot	ulcer	in	the	previous	year,	or	a	prior	

Study Country Study	Type	&	Population Measure Main	Findings
Alotaibi 2017 [42] Saudi	

Arabia
Cross-sectional
423 nurses at 1 hospital

Diabetes Basic Knowl-
edge Test [161]

52.3% questions correct regarding diabetic 
foot care.

El Hajj 2018 [124] Qatar Cross-sectional
126 pharmacists

Michigan Diabetes 
Research	and	Training	
Center Diabetes Knowl-
edge Test [162]

25% with moderately poor knowledge.

Table 2 (continued) 
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4.3.2 Patient knowledge of nephropathy

Among	 the	 sparse	 studies	 we	 found,	 evidence	 suggests	
patient knowledge of nephropathy is less than that of reti-
nopathy [73].	Moreover,	there	was	a	lack	of	studies	regard-
ing KAP in patients with diabetes and none adjusted for 
potential confounding (Table 3). A study in Malaysia of 
patients diagnosed with diseases at risk of chronic kidney 
disease (diabetes, hypertension, heart diseases, obesity, 
n = 103), nephropathy knowledge was associated with being 
male, younger, formally educated, married, and of higher 
income (all p <	0.05),	 although	 none	 except	marital	 status	
remained	significant	for	practice	behavior	[147].	However,	
it	was	unclear	from	that	study	what	the	level	of	nephropa-
thy	knowledge	and	practice	was	specifically	among	patients	
with	 diabetes.	A	 Fiji	 study	 of	 T2D	 patients	 with	 chronic	
kidney disease (n =	225)	 found	KAP	 to	be	 relatively	good	
among participants, with high knowledge, attitude, and 
practice	scores	in	61.8%,	63.6%,	and	88.4%	survey	respon-
dents,	 respectively	 [143]. It is possible KAP scores were 
high	 due	 to	 the	 selected	 nature	 of	 participants,	 involving	
those with known T2D and nephropathy recruited from 
study	 site	 providing	 care	 for	 these	 specific	 conditions.	 In	
fact,	patient	KAP	overall	may	be	 low.	A	study	in	India	of	
only T2D patients (n = 323) found nephropathy knowledge 
was	poor	in	79%	of	survey	respondents,	and	was	associated	
with poor literacy, low socioeconomic status, and limited 
family income [144]. An Ethiopian study of patients with 
diabetes and hypertension (n = 208) found nephropathy 
knowledge to be low in 63.5% of participants [148].	Finally,	
one Australian study of patients with T1D (9%) and T2D 
(88%) and chronic kidney disease (n =	316)	investigated	the	
barriers to seeking appropriate care, which included inad-
equate knowledge of diabetes and nephropathy [149].

4.3.3 Provider knowledge of nephropathy

Nephropathy	 is	 relatively	 well	 recognized	 as	 a	 diabetes	
complication	by	Australian	nurses	(75%	of	survey	partici-
pants), nearing their knowledge of retinopathy (89%) and 
far outpacing that of neuropathy (48%) and foot ulcers 
(43%) [93].	A	KAP	 survey	 of	 Ethiopian	 health	 care	 pro-
fessionals (n = 326) indicated 91% were aware of the asso-
ciation of diabetes and hypertension with chronic kidney 
disease, although there were some gaps, such as only 59% 
were	aware	that	assessment	of	enhanced	glomerular	filtra-
tion rate was superior to serum creatinine alone for assessing 
nephropathy	severity	[150].	However,	the	KAP	instrument	
used	by	this	study	only	had	a	Cronbach’s	alpha	coefficient	of	
>	0.62;	therefore,	it	may	not	have	accurately	captured	KAP.
The association between diabetes and nephropathy was also
recognized by 88% of general practitioners in a Pakistani

Our	survey	of	the	literature	also	uncovered	a	few	trends	
in practice. A small 1997 study in Cape Town found that 
doctors and primary health care nurses (n = 22) did not usu-
ally assess for peripheral neuropathy (insensate foot, ulcers), 
unless	 the	patient	voiced	a	complaint	 [39]. A more recent 
KAP	survey	of	pharmacists	in	Qatar	found	most	counselled	
patients	on	foot	exams	and	screening	for	neuropathic	pain	
[128]. In a study that showed footage of a “patient” display-
ing signs of emerging peripheral neuropathy, only 42.2% of 
participating	US	primary	care	physicians	(n	= 192) indicated 
they	would	perform	all	essential	components	of	a	foot	exam-
ination, whereas 21.9% stated they would perform none [7]. 
Additionally,	providers	were	more	likely	to	recommend	all	
parts	 of	 a	 foot	 exam	 in	male	 versus	 female,	 older	 versus	
younger,	higher	versus	lower	socioeconomic	status	patients,	
and in patients with signs of neuropathy compared to those 
without signs of neuropathy. We could not ascertain more 
current	practices	overall	due	to	a	lack	of	studies.

4.3 Nephropathy

Objectively,	 nephropathy,	 otherwise	 known	 as	 diabetic	
kidney disease (DKD), may be considered the most seri-
ous	 of	 diabetic	microvascular	 complications.	 DKD	 is	 the	
progressive	 loss	of	kidney	function	secondary	to	diabetes,	
which	manifests	as	microalbuminuria	and	renal	inflamma-
tion [142].	In	very	advanced	disease,	the	so-called	end-stage	
renal disease, it can require renal replacement therapy, and, 
in the cases of failure, lead to death. Therefore, it is essen-
tial for patients with diabetes to be aware of DKD and take 
measures	to	prevent	onset	and/or	slow	progression.	Unfor-
tunately, our literature search did not yield many studies 
of	 nephropathy	KAP,	 either	 among	 patients	 or	 providers.	
Therefore,	this	is	a	significant	knowledge	gap	that	requires	
addressing.

4.3.1 Instruments to assess nephropathy knowledge

Since	we	 identified	 a	 few	KAP	 studies	of	 nephropathy	 in	
patients with diabetes in the literature, there were only a 
few	instruments,	some	of	which	had	been	previously	used	
to assess knowledge regarding kidney disease not necessar-
ily related to diabetes [143, 144]. Only one mentioned face 
and	content	validity	and	internal	consistency	[143]. The sce-
nario	was	similar	for	provider	KAP	instruments;	some	noted	
pretesting and assessment of internal consistency [145] and 
employed	a	previously	published	tool	[146], but there was 
little	 data	 available	 overall.	 The	 lack	 of	 validated	 instru-
ments hinders our ability to accurately assess KAP related 
to DKD and compare across populations.
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DKD	KAP	in	providers	and	only	one	adjusted	for	potential	
confounders using logistic regression [144].

With regards to DKD practices, in a small Cape Town 
study, 82% of doctors and primary health care nurses 
assessed nephropathy by urine protein, whereas only 27% 
assessed serum creatinine [39].	Moreover,	 providers	were	
unaware	that	controlling	hypertensive	nephropathy	is	essen-
tial	for	reducing	the	risk	of	DKD.	A	1999	US	study	of	pri-
mary care physicians recruited from the American Medical 
Association database (n = 211) found nearly 98% of physi-
cians assessed proteinuria and microalbuminuria at least as 
frequently or more frequently as the recommended guide-
lines at the time of the study, yet 39% chose an inappropri-
ate test for monitoring [145].In addition, an Australian study 
found	patients	with	DKD	did	not	always	receive	the	guide-
line recommended care, with nearly 40% of patients with a 
blood pressure >	140/90	mmHg	despite	strict	blood	pressure	
recommendations among patients with DKD [149]. How-
ever,	further	investigation	into	the	reasons	for	this,	includ-
ing patient compliance with physician recommendations, 
was	not	provided.

5 Conclusion

Microvascular	complications	contribute	to	substantial	mor-
bidity and mortality among patients with diabetes, yet our 
comprehensive	 literature	 review	 found	 that	 studies	 exam-
ining	patient	and	health	care	provider	knowledge	of	 these	
complications	 varies	 widely	 between	microvascular	 com-
plication	and	settings.	Retinopathy	had	the	largest	number	
of studies and appears to be the most widely studied diabetic 
microvascular	 complication,	 yet	 nephropathy,	 which	 is	 a	
significant	driver	of	diabetes-related	mortality,	 is	 the	topic	
of substantially fewer studies. Addressing this knowledge 
gap is essential to reduce mortality among patients with 
diabetes.

The	 current	 literature	 does	 offer	 insight	 into	 possible	
interventions	 for	 this	 patient	 population.	 Our	 literature	
review	found	that	patients	and	providers	often	did	not	see	
the	need	to	seek	healthcare	or	screen	for	microvascular	com-
plications unless there are symptoms clearly consistent with 
diabetic sequalae [7, 64, 74]. This is a clear missed oppor-
tunity to reduce morbidity among patients with diabetes. As 
patients	frequently	cite	health	care	providers	as	sources	of	
information [85, 151],	 improving	 provider	 knowledge	 of	
diabetic	microvascular	 complications	 and	 addressing	 bar-
riers	to	patient	education	and	risk	factor	modification	may	
provide	one	avenue	for	improving	patient	outcomes.

Yet,	 it	 is	 challenging	 to	 know	whether	 these	 interven-
tions	would	be	effective	as	our	literature	review	noted	sig-
nificant	discordance	 in	findings	across	 studies.	This	could	

study [146].	Overall,	there	is	a	lack	of	studies	investigating	

Table 3	 Summary	 of	 studies	 that	 investigated	 nephropathy	 knowl-
edge	among	patients	with	diabetes	and	health	care	providers.	Studies	
arranged	alphabetically.	Abbreviations:	CKD,	chronic	kidney	disease;	
GP,	general	practitioner;	T2D,	type	2	diabetes
Study Country Study	

Type	&	
Population

Measure Main 
Findings

Patients with Diabetes
Alvis	
Zibran 
2019 
[139]

Fiji Cross-
sectional
225 with 
T2D and 
CKD from 
1 hospital

Previously	used	
KAP question-
naire [163]

61.8% 
with high 
knowledge.

Hussain 
2019 
[140]

India Cross-
sectional
323 T2D 
from 1 
endocrinol-
ogy clinic

Adapted CKD 
awareness ques-
tionnaire 164

21.4% 
had good 
knowledge. 
Predictors of 
knowledge: 
literacy, 
income, 
socioeco-
nomic status 
(all p < 0.05).

Kumela 
Goro 
2019 
[144]

Ethiopia Cross-
sectional
208 with 
hyperten-
sion and 
diabetes 
from 1 
hospital

Study-created	
questionnaire

63.5% 
with poor 
knowledge.

Lo	
2017 
[145]

Australia Cross-
sectional
308 patients 
with CKD 
and diabe-
tes from 4 
hospitals

Study-created	
questionnaire

43.5% cited 
inadequate 
knowledge 
of CKD and 
poor educa-
tion about 
CKD as a 
barrier to 
care.

Health	Care	Providers
Wolide 
2020 
[146]

Ethiopia Cross-
sectional
325	provid-
ers at 1 
hospital and 
3	private	
clinics

Study-	created	
questionnaire

Predictors of 
knowledge: 
subspecial-
ist	provider	
(p < 0.05).

Wong 
1999 
[141]

US Cross-
sectional
216 GPs

Study-	created	
questionnaire

91.4% 
with good 
risk factor 
knowledge.

Yaqub 
2013 
[142]

Pakistan Cross-sec-
tional
232 GPs in 
1 city

Study-created	
questionnaire

80% knew 
risk factors 
for CKD, 41% 
were unsure 
when to refer 
to nephrology
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temporal	 changes	 in	 patient	 and	 provider	 knowledge.	 To	
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A B S T R A C T

Diabetic neuropathy (DN) remains arguably the most prevalent chronic complication in people with both type 1 
and type 2 diabetes, including in youth, despite changes in the current standards of clinical care. Additionally, 
emerging evidence demonstrates that neuropathy affects a large proportion of people with undiagnosed diabetes 
and/or prediabetes, as well as those with obesity. Here we summarize the latest epidemiology of DN, recent 
findings regarding the pathophysiology of the disease, as well as current outcome measures for screening and 
diagnosis, in research and clinical settings. The authors discuss novel perspectives on the impact of social de-
terminants of health in DN development and management, and the latest evidence on effective therapies, 
including pharmacological and nonpharmacological therapies for neuropathic pain. Throughout the publication, 
we identify knowledge gaps and the need for future funding to address these gaps, as well as needs to advocate 
for a personalized care approach to reduce the burden of DN and optimize quality of life for all affected 
individuals.   

1. Introduction

Diabetic neuropathy (DN) affects people in a myriad of ways
including loss of sensation, loss of balance, severe pain, foot ulcers and 
amputations. Individuals with DN experience depression and anxiety, 
with poor quality of life and poor daily function. DN also affects the 
autonomic nervous system, with corresponding heart failure and even 
sudden cardiac death. More than $10 billion of annual healthcare costs 
are attributed to DN1, underscoring the magnitude of this highly morbid 
disorder and the associated socioeconomic problems. 

Among the various forms of DN, distal symmetric polyneuropathy 
(DPN) and diabetic autonomic neuropathies, particularly cardiovascular 
autonomic neuropathy, are by far the most studied, although emerging 
data highlight the impact of other forms of autonomic neuropathies such 
as gastrointestinal and urogenital autonomic neuropathies, on health-
care and patients' reported outcomes. The urogenital autonomic neu-
ropathies are amply covered in a different manuscript in this same issue, 
to which the reader is referred to. 

2. Epidemiology and risk factors

2.1. Distal symmetric polyneuropathy

DPN remains arguably the most prevalent chronic complication in 
people with both type 1 diabetes (T1D) and type 2 diabetes (T2D), 
including in youth. The estimated lifetime prevalence exceeds 50 % 
despite changes in the current standards of clinical care over time2–5 

with different rates of DPN progression depending on disease duration, 
population studied, and the DPN definition.2,3,5,6 There are also epide-
miological differences between DPN in T1D versus T2D, despite no 
major structural differences in nerve pathology, highlighting an area 
that deserves further targeted research.5 

The Diabetes Control and Complications Trial (DCCT) and its 
observational follow-up, the Epidemiology of Diabetes Interventions 
and Complications (EDIC) study, the largest and best phenotyped TID 
cohort followed for ~40 years, demonstrated that despite a low DPN 
prevalence in early T1D, the prevalence increases steadily over time to 
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~34 % after 25 years.7 Similarly, a large cohort of randomly selected 
individuals with T1D from 16 European countries, the European Insulin- 
Dependent Diabetes Mellitus Prospective Complications Study (EURO-
DIAB IDDM), reported similar mean DPN prevalence, but with signifi-
cant DPN trends associated with age, diabetes duration, and hemoglobin 
A1c, as well as with hypertension and hyperlipidemia.8 

Some may argue that neither the EURODIAB nor the DCCT cohorts 
are representative of contemporary populations, even though the vast 
majority of EDIC follow-up was performed after the DCCT lessons were 
implemented into clinical care.9 More recent data reported from 2 large 
contemporary cohorts of ~6000 people with T1D each, the T1D Ex-
change in USA and the Scottish Register, demonstrated a prevalence of 
11–13 % for symptomatic DPN based on the Michigan Neuropathy 
Screening Instrument (MNSI) questionnaire. These findings however 
must be considered in the context of solely using symptom as a diag-
nostic tool, compared to EURODIAB and DCCT, where clinical exami-
nations were also performed.10,11 

DPN prevalence is even higher in people with T2D. Data from several 
contemporary cohorts report DPN in ~20 % of individuals with newly 
diagnosed diabetes, despite progress in the standards of care, that 
increased to ~50 % after 10 or more years.2–6 For instance in a large 
cohort of >1500 individuals with screen-detected T2D enrolled in the 
ADDITION-Denmark Study, DPN prevalence was ~13 % at baseline with 
cumulative incidence rates of 10 % over 13 years of follow-up.12 Simi-
larly, among a contemporary cohort of 5047 people with newly diag-
nosed T2D (mean duration of only four years) participating in the 
Glycemia Reduction Approaches in Diabetes - A Comparative Effec-
tiveness (GRADE) trial, ~ 21 % of participants presented with DPN at 
baseline.13 Conversely, a DPN prevalence rate as high as 50 % was re-
ported in the Bypass Angioplasty Revascularization Intervention 2 Dia-
betes (BARI 2D) cohort that included ~2400 T2D participants with a 
mean diabetes duration of ~10 years.14 Furthermore, unexpectedly high 
DN prevalence (both DPN and autonomic neuropathy) was reported in 
youth with T1D and especially T2D.2,15,16 

The burden of DPN in both youth and adults is particularly alarming 
given the continuous rise in diabetes prevalence in USA and worldwide, 
including the disproportionately higher rates in minorities.17,18 Up to 
350 million people may develop DN and related comorbidities by 
2045.18 The true prevalence is likely higher when asymptomatic DPN is 
included as only 30 % of cases endorse typical DPN symptoms, including 
pain.5 Therefore, timely identifying and addressing risk factors for DPN 
are imperative steps to reduce the burden of this devastating 
complication. 

Traditional risk factors for DPN in T1D and T2D include glycemic 
control, age, diabetes duration, and height.2,5,7,12 Additionally, cardio-
vascular risk factors (e.g., obesity, hyperlipidemia, hypertension, and 
smoking) are reported risk factors in several cohorts of both T1D and 
T2D.2,5,10,19 These findings agree with several clinical studies in the 
United States, Europe, and Asia demonstrating the metabolic syndrome 
is a risk factor for DPN.5,12,20,21 Obese individuals with normoglycemia 
have a higher prevalence of neuropathy versus non-obese individuals, 
suggesting that obesity alone may be sufficient to induce neuropathy, 
while glucose variability is also emerging as a potential risk factor for 
the development of DPN, particularly painful DPN.22 

Social determinants of health (SDOH) are emerging as important 
diabetes complications risk factors, likely due to both the increased risk 
of diabetes mellitus as well as inadequate glycemic control.23 However, 
in the USA, data regarding the association between DPN prevalence and 
sociodemographic characteristics, are limited. Data from the NHANES 
and the Atherosclerosis Risk in Communities (ARIC) cohorts show that 
non-Hispanic Blacks were more likely to have DPN on monofilament 
testing than non-Hispanic Whites, even after controlling for traditional 
risk factors, suggesting that race may also impact DPN development.24 

Yet data examining DPN prevalence and risk factors among racial/ 
ethnic minorities, particularly Black Americans, are limited. Preliminary 
data from an ongoing study in Flint, Michigan with a predominantly 

Black, low-income patient population suggests that DPN is common but 
often underrecognized.25 High prevalence of DPN has also been reported 
among native populations, including a cohort of Pima Indians in Ari-
zona.26 Although this increased burden among racial/ethnic minorities 
is likely due to an increased T2D and metabolic syndrome preva-
lence23,27, these findings warrant further investigation. Additionally, U. 
S. racial/ethnic minority populations with DPN have worse diabetic foot
ulcer outcomes and higher rates of amputation than non-Hispanic White
Americans.28–30 A recent modeling analysis using longitudinal data from
the SEARCH for Diabetes in Youth suggested that unmeasured race and
ethnicity-associated factors account for predicted DPN disparities in
non-White versus White youth and young adults with diabetes, high-
lighting the need for further research in this area.31 Teasing apart the
association between DPN outcomes and race/ethnicity is challenging as
it is likely confounded by socioeconomic status.23 Yet, characterizing
these relationships are essential to design interventions targeting patient
outcomes.

More recently, the T1D Exchange cohort that collected data on 
several SDOH reported that both lower education and higher rates of 
public insurance options were associated with DPN in adults with T1D.10 

The role of SDOH was confirmed in a Scottish T1D cohort, which found 
that social deprivation led to a 2.17 higher odds of DPN.11 In terms of 
psychological factors, both depression and anxiety have been found to 
be associated with DPN, particularly painful DPN.32,33 

2.2. Epidemiology of pain in DPN 

Up to 30 % of individuals with diabetes experience painful DPN and 
neuropathic pain may be the first symptom that prompts people to seek 
medical care.2,4,34,35 A large community-based study in the U.K reported 
higher prevalence of painful symptoms (35 % vs 23 %) and painful DPN 
(22 % vs 13 %) in T2D compared to T1D respectively, using the neu-
ropathy symptom and neuropathy disability scores.36 In a recent cross- 
sectional, hospital-based, multicenter study including ~800 individuals 
with both T1D and T2D, the reported prevalence of painful DPN was 13 
% using the grading system of the Neuropathic Pain Special Interest 
Group of the International Association for the Study of Pain.37 Another 
recent large cross-sectional study in the Danish Centre for Strategic 
Research in Type 2 Diabetes cohort reported prevalence rates of DPN 
and painful DPN of 18 % and 10 %, respectively, using the MNSI 
questionnaire and the Douleur Neuropathique en 4 (DN-4) 
questionnaire. 

Risk factors include female sex, age, duration of diabetes, and 
obesity.38 Additionally, significant associations between painful DPN 
and psychosocial factors such as smoking, depression, and anxiety are 
emerging although the directionality is unclear.39 

2.2.1. Knowledge gaps 

• Understand what drives the high prevalence of DPN despite contin-
uous refinements in the standards of diabetes care, and the progress
in diabetes medications and diabetes technologies

• Recognize the relative contributions of various risk factors including
SDOH, and the effects of modifying risk factors

• Understand differences between T1D and T2D DPN
• Identify gaps in the implementation of the current best practices
• Identify reasons for the high prevalence of DPN in youth

2.3. Diabetic autonomic neuropathy 

The autonomic nervous system regulates many systems and organs 
through small C-fibers. Thus, diabetic autonomic neuropathy may 
manifest with a broad spectrum of signs and symptoms depending on the 
affected target system including cardiovascular autonomic neuropathy 
(CAN), gastrointestinal neuropathy, urogenital neuropathy, and others.2 
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2.3.1. Cardiovascular autonomic neuropathy 
CAN is by far the most studied form of autonomic neuropathy.2,3,40 

The reported prevalence of CAN over time varies, and is contingent upon 
several factors including the definition of CAN, the population studied 
(e.g. observational cohorts vs interventional trials; T1D vs T2D vs pre-
diabetes) and the study design (longitudinal vs cross-sectional).2,40 

For instance, prevalence is very low in individuals with newly 
diagnosed T1D. This is documented by the primary prevention arm of 
the DCCT cohort, which similar to DPN, is arguably the best phenotyped 
cohort for CAN with cardiovascular autonomic reflex tests (CARTs), 
validated symptoms instruments, and electrocardiogram recordings 
obtained repeatedly during follow-up.7,41 In DCCT/EDIC, the prevalence 
of CAN increased steadily over time to 44 % over 23 years of mean 
follow-up.7 Similarly high prevalence was reported in other T1D cohorts 
including the EURODIAB IDDM, the Pittsburgh Epidemiology of Dia-
betes Complications Study, and the STENO T1D study.2,40 While the 
argument may be made that these cohorts preceded the changes in 
standards of diabetes care, studies utilizing the T1D exchange network 
evaluated the contemporary prevalence of autonomic neuropathy based 
on the Survey of Autonomic Symptoms (SAS) in T1D adults with >5 
years of diabetes duration. Autonomic symptoms were present in 17 % 
of participants who responded to the surveys and >70 % of those par-
ticipants experienced moderate to severe symptoms.42 

Prevalence as high as 60 % has been reported in earlier cohorts of 
individuals with long-standing T2D.2,40 Additionally, recent data from 
the GRADE cohort13 in the United States and the Anglo-Danish-Dutch 
Study of Intensive Treatment in People With Screen-Detected Diabetes 
in Primary Care (ADDITION) cohort43 from Denmark demonstrated that 
up to 13 % of individuals with either short duration or newly diagnosed 
diabetes already have evidence of CAN. CAN was also reported in pre-
diabetes in individuals with impaired glucose tolerance, insulin resis-
tance, and/or the metabolic syndrome.40,44 Moreover, an unexpectedly 
high prevalence of CAN was identified among youth with diabetes 
participating in the SEARCH for Diabetes in youth study.16 

As with DPN, there are several traditional risk factors that are 
associated with CAN in diabetes including older age, longer diabetes 
duration, poor glucose control, diabetic kidney disease, hypertension, 
elevated triglycerides, and smoking. However, more recently, glucose 
variability, psychological factors (depression), and SDOH (lower income 
and education) are also emerging as less traditional risk factors for CAN 
in diabetes.42 

2.3.2. Gastrointestinal autonomic neuropathy 
Autonomic dysfunction in the gastrointestinal system may manifest 

as esophageal dysmotility, gastroparesis, constipation, diarrhea, and 
fecal incontinence.2,3 Among gastrointestinal neuropathies, gastro-
paresis is by far most frequently encountered in clinical practice. 

Earlier prevalence data on gastroparesis are sparse.2 The reported 
cumulative incidence and prevalence of gastroparesis was 9.8 in women 
and 2.4 in men per 100,000 person-years and 37.8 for women and 9.6 
for men per 100,000 person-years respectively in the only large 
community-based study in the United States.45 The contemporary 
prevalence rates of confirmed gastroparesis due to T1D or T2D are low2 

but likely increasing based on the growing number of gastroparesis- 
related hospitalizations in the United States. However, given the 
increased use of many medications that may directly impact the 
gastrointestinal system motility, such as glucagon like peptide 1 receptor 
analogs (GLP1-RA), as well as opioids and more recently recreational 
marijuana, no well-designed studies have evaluated whether these cases 
are iatrogenic or due to diabetes. 

2.3.3. Knowledge gaps 

• Identify risk factors driving the heterogeneity in autonomic neu-
ropathy risk, and of various forms of autonomic neuropathy between
T1D and T2D

• Evaluate the impact of glucose variability on autonomic neuropathy,
particularly CAN risk

• Understand the current epidemiology of diabetic gastroparesis and
determine the percentage attributable to medication use

3. Pathophysiology/mechanisms for diabetic neuropathy

Diabetes can damage various components of the peripheral nerve,
which comprises the cell body (dorsal root ganglion or anterior horn that 
originate in the spinal cord), its myelinated cell projections, as well as 
axonal extensions, innervating the periphery. The most common form of 
nerve injury is a progressive distal-to-proximal peripheral nerve loss that 
typically presents as sensory predominant.34 Particularly, small unmy-
elinated nerve fibers, known as C-fibers or “small fibers”, which relay 
information related to heat discrimination and chemical pain are an 
early and frequent target of DPN.5 Small, thinly myelinated Aδ fibers 
that carry signals related to touch, pressure, and cold are also commonly 
affected.5 Only much later in the course of the disease is there evidence 
of large myelinated Aβ fiber (“large fiber”) dysfunction, responsible for 
vibratory and position perception.5 Progressive sensory loss coupled 
with motor weakness at later disease stages leads to loss of sensation in 
the feet and predisposes to impaired balance and falls. 2 

The mechanisms promoting the onset and progression of DN are 
complex (Fig. 1). Fully understanding these mechanisms is essential for 
the successful development of disease modifying therapies, a goal that 
has been elusive so far. 

In the last three decades, DN research, including our own, has 
focused on glucose and the streptozotocin (STZ)-induced T1D rat as the 
pre-clinical model of choice. These studies, amply discussed else-
where,46,47 provided insights into the molecular mechanisms that drive 
glucose pathogenesis in DPN which include: 1) the polyol pathway 
through its key enzyme, the aldose reductase, which results in a series of 
downstream reactions that decrease sodium–potassium adenosine tri-
phosphatase (ATP) activity, deplete nicotinamide adenine dinucleotide 
phosphate, and produce reactive oxygen species (ROS); 2) the hexos-
amine pathway and protein kinase C (PKC) secondary activation 
generating inflammatory by-products, with subsequent insulin resis-
tance, impairment in growth factor biology, and vasoconstriction of 
nerve blood vessels; 3) advanced glycation end products (AGEs) that 
bind the receptors for AGEs (RAGEs), leading to downstream inflam-
mation, ROS accumulation, and decreased nerve blood flow; 4) cyclo-
oxygenase (COX) mainly COX2, with downstream increased ROS 
leading to reduced nerve blood flow and neuronal dysfunction. More-
over, low-grade inflammation and its downstream impact on several of 
the pathways described above has emerged as a critical mechanism in 
the development of DN and painful DPN in several experimental and 
clinical studies.48–54 

Promising results were achieved using aldose reductase inhibitors, 
PKC inhibitors, or RAGE inhibitors in animal studies, especially in the 
STZ-induced T1D rat. Unfortunately, singularly targeting each of these 
pathways either failed to reverse nerve damage in human DPN trials or 
was too toxic during therapeutic development.2,5 Additionally, meta- 
analyses and systematic reviews of large T1D and T2D human trials 
that included DN outcomes reported that while tight glycemic control 
reduces DN incidence in T1D, it does not result in complete protection or 
reversal of disease, and it has a lesser effect in those with T2D.2,5,6,55 Our 
recent clinical studies support these observations, implicating the 
metabolic syndrome, including dyslipidemia as major drivers of DPN in 
prediabetes and T2D, independent of glycemic status.56,57 All these led 
to a paradigm shift in the DN field away from models based solely on 
glucose metabolism and the STZ-induced T1D rodent model towards 
understanding metabolic drivers in T1D versus T2D and global whole 
nerve metabolism.21,55 

In a bedside-to-bench approach, recent studies employed non- 
genetic mouse models of prediabetes and obesity that when placed on 
a high saturated fat diet, develop features of prediabetes and the 
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metabolic syndrome with dyslipidemia, impaired glucose tolerance, 
insulin resistance, and neuropathy.58–61 Using integrated lipidomic and 
transcriptomic profiling, we demonstrated that nerve triglyceride 
accumulation and triglyceride synthesis are key players in the patho-
genesis of neuropathy, and a dietary reversal paradigm, aimed at cor-
recting the lipid profile may be a promising non-pharmacological 
approach to improve nerve function in prediabetes and T2D.59 Other 
studies using the same mouse model and in vitro DPN models unveiled 
the role played by mitochondria function. Under normal conditions, 
mitochondria use both glucose and lipids to produce ATP. However, in 
the diabetic environment, excess glucose and lipids disrupt the normal 
pathways used for their own breakdown, producing excess electron 
donors that overwhelm mitochondrial capacity, resulting in bio-
energetic failure with mitochondrial depolarization, decreased ATP 
production, impaired mitochondrial trafficking, and accumulation of 
ROS, leading to inflammation, endoplasmic reticulum stress, apoptosis 
of neurons, and axonal failure.5,62 With fewer functional mitochondria 
in the cell body and along the axons, energy-starved small and large 
nerve fibers lose their ability to function and undergo degeneration with 
the axons farthest from the cell body (i.e., those in the feet) and the 
smallest fibers that regulate pain and dysesthesia being most vulner-
able.5,46,63 Interestingly, switching saturated fatty acid-rich diets with 
diets rich in unsaturated fats from plant sources or fish oil improves 
nerve function63,64 and prevents axonal mitochondrial dysfunction,63,65 

supporting a beneficial role for unsaturated fats as targeted therapy 

development for DPN. 
Other emerging areas of interest are understanding the changes that 

occur in whole nerve metabolism, cell-specific changes in the nerve 
microenvironment during DPN, and how Schwann cell injury may 
impair energy substrate transfer66 and/or extracellular vesicle secre-
tion.67 An improved understanding of axoglial cross-talk and nerve 
function will help inform development of future DPN therapies. 

Overall, the DN field is moving from a nerve-centric focus on glucose 
alone to a new era of research centered on understanding the role of 
additional metabolic and inflammatory factors in DN pathophysiology, 
which could be instrumental to help develop mechanism-based 
therapies. 

3.1. Knowledge gaps  

• Develop experimental models that translate well to human disease
• Apply a precision approach to identify optimal therapeutic targets
• Understand how metabolic factors, other than hyperglycemia alone

contribute to DN
• Interrogate the direct contribution of Schwann cells, and other

cellular components of the nerve, including macrophages to DPN
• Understand differences in cellular and molecular mechanisms be-

tween DPN and autonomic neuropathies

Fig. 1. Diabetic neuropathy pathogenesis. Hyperglycaemia and dyslipidaemia, together with altered insulin signalling, lead to several pathological alterations in 
neurons, glia and vascular cells that can lead to nerve dysfunction and ultimately, neuropathy, including DNA damage, endoplasmic reticulum stress, mitochondrial 
dysfunction, neurodegeneration and loss of neurotrophic signalling, and can trigger macrophage activation. The importance of these pathways in the development of 
neuropathy varies with cell type, disease profile and time, as distinct cell types are more or less susceptible to injury depending on the metabolic impairments. AGE, 
advanced glycation end-product; FFAs, free fatty acids; Glucosamine-6-P, glucosamine 6-phosphate; LDL, low-density lipoprotein; LOX1, oxidized LDL receptor 1; 
RAGE, AGE-specific receptor; ROS, reactive oxygen species; TLR4, Toll-like receptor 4; UDP-GlcNAc, uridine diphosphate N-acetylglucosamine. 
Reproduced from: Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V. Diabetic neuropathy. Nat Rev. 
Dis Primers. 2019 Jun 13;5(1):42. doi: https://doi.org/10.1038/s41572-019-0097-9. PMID: 31197183; PMCID: PMC7096070. 
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4. Diagnosis and outcomes measures

4.1. Distal Symmetric Polyneuropathy

4.1.1. Diagnosis in clinical care
The hallmark symptoms and signs associated with DPN are the 

consequence of the progressive damage and loss of the various pop-
ulations of nerve fibers, each with distinct roles and functions.2,3 As 
highlighted in the recent American Diabetes Association Monograph on 
Diabetic Neuropathy, in diabetes, this process occurs in a specific sym-
metrical, distal-to-proximal pattern, starting at the tip of the toes and 
eventually progressing proximally.5 The symptoms and clinical signs 
associated with DPN follow the same pattern, creating the typical 
“stocking-and-glove” clinical presentation, an important diagnostic 
feature.5 A targeted history will unveil specific symptoms that include: 
a) neuropathic pain, a feature of small fiber damage; b) numbness and
tingling without pain, features of small or large fibers damage; c)
insensate, numb feet usually associated with more advanced mixed fiber
damage.2,3,5 In more advanced DPN, individuals present with reduced
daily function with poor balance, falls or fractures, and an increased risk
for painless injuries that lead to ulcers, infections, and amputations.2,5 

Neuropathic pain in DPN is typically experienced as burning, shooting,
electric shock–like or lancinating, usually worse at night, and may be
accompanied by dysesthesias such as an exaggerated response to painful
stimuli (hyperalgesia) and/or pain evoked by contact with ordinarily
unpainful stimuli such as socks, shoes, and bedclothes (allodynia).2,5 

A large fraction of individuals with DPN may be asymptomatic and 
unaware or reluctant to report their condition.2,5 Asking specific ques-
tions and performing a targeted examination are recommended. A 
focused examination effectively evaluates small and large fiber function. 
Small fiber testing includes assessment of pinprick sensation using a 
sharp object such as a safety pin and temperature threshold sensation 
with a cold metal object such as a tuning fork in the feet. Large fiber 
function is assessed using a 128-Hz tuning fork for vibratory sensation 
and a 10-g monofilament for light-touch pressure on the dorsal aspect of 
the great toe, and bilateral ankle reflexes (for predominantly large fi-
bers).2,5 Importantly, the 10-g monofilament alone should not be used to 
diagnose or exclude DPN as it detects only advanced neuropathy and 
individuals at increased risk of diabetic foot ulcerations.2,3 Relying 
solely on the 10-g monofilament could miss the early stage of the disease 
which is most amenable to the therapeutic intervention to prevent 
progression of the disease.2,3,5 The clinicians should combine at least 
two examinations of both small and large fiber nerve function to detect 
DPN in the clinical practice.2 A comprehensive differential diagnosis is 
always needed, and readers are referred to published algorithms.5 

4.1.2. Knowledge gaps/challenges in clinical care implementation  

• Understand the barriers preventing the appropriate implementation
of DPN screening and diagnosis in clinical care despite readily
available recommended simple tests

• Understand why 10-g monofilament testing remains the most used
screening test for DPN in primary care despite its low sensitivity and
specificity for earlier stages of disease2,3

• Develop innovative educational methods and tools for implementing
appropriate DPN diagnosis in the clinical practice.

4.1.3. Outcome measures in clinical research 
As recommended by the Toronto Consensus on Diabetic Neuropathy, 

an outcome of confirmed DPN requires a combination of symptoms, 
signs and an abnormality of objective tests.2,68 While clinical in-
struments that include any given combination of patient reported 
symptoms and clinical signs may perform well in large population 
studies assessing prevalence and incidence rates, different measures are 
needed for interventional trials. In fact, one of the most critical com-
ponents for a successful path towards developing effective disease 

modifying therapies are having access to sensitive and specific outcome 
measures that correctly capture the natural history of the disease and 
detect repair in specific nerve fiber populations. This is particularly 
relevant given that there are currently no approved disease-modifying 
therapies for any forms of DN, and a very large number of clinical tri-
als evaluating promising experimental targets for these conditions have 
failed.2,5 

The MNSI, the modified Toronto Clinical Neuropathy Scale, the 
Neuropathy Disability Score, and the Utah Early Neuropathy Scale are 
validated clinical instruments that have been used in both observational 
and interventional studies. Among these, the MNSI has been most 
consistently used in large cohorts of people with T1D, T2D, the meta-
bolic syndrome and in youth.2 In addition, the Quality of Life in 
Neurological Disorders (NeuroQOL) and the Norfolk neuropathy in-
strument, are validated instruments that capture measures of quality of 
life specific to peripheral neuropathy in several domains including pain, 
lost/reduced feeling, diffuse sensory-motor symptoms, restrictions in 
activities of daily living, disruptions in social relationships and 
emotional distress.2 

More objective measures include abnormalities in nerve conduction 
studies (NCS) and validated measures of small nerve fibers.2 Mild DPN, 
may be characterized by decrease in sural nerve amplitude or mild 
reduction in sensory nerve conduction velocity,34 while severe DPN 
includes NCS motor abnormalities or nonrecordable sensory NCS. NCS 
may be completely normal in those with primarily small fiber neurop-
athy and loss of small fibers typically precedes loss of large nerve fi-
bers.34 The gold standard for small fiber neuropathy is assessment of 
intra-epidermal nerve fiber density (IENFD) measurements by skin 
punch biopsy, while other measures include quantitative sensory testing 
for thermal thresholds for either elevated cooling or heat detection 
thresholds, and emerging corneal confocal microscopy.34 

4.1.3.1. Painful DPN. Painful DPN is associated with depression, 
insomnia, and poor quality of life.33,69 Visual analog scale (VAS), Likert 
scales, and the McGill Pain Questionnaire are used in many clinical 
studies and are considered as sensitive and validated tools for painful 
DPN.70 

4.1.4. Knowledge gaps in clinical research  

• Validate sensitive and specific outcome measures that may correctly
capture the natural history of the disease and may detect timely
repair in specific nerve fiber populations

• Reach consensus among the stake holders in the field to utilize uni-
form and adequate outcome measures across all interventional and/
or observational studies

• Incorporate patient reported outcomes including psychological out-
comes in DPN studies

• Develop reliable biomarkers to be implemented at the point of care

4.2. Diabetic autonomic neuropathy 

4.2.1. Cardiovascular autonomic neuropathy 

4.2.1.1. Screening and diagnosis in clinical care. Unlike DPN, individuals 
presenting with the earliest stages of CAN may be completely asymp-
tomatic, making its early detection challenging. In more advanced 
stages, people may present with palpitations, or with dizziness, un-
steadiness, fainting or syncopal episodes with sudden changes from 
supine to standing.2 The earliest sign of CAN is reduced heart rate 
variability (HRV).2,40 Later people may also present with resting fixed- 
rate tachycardia, changes in blood pressure (BP) regulation overnight 
(reverse/non dipping BP), orthostatic hypotension, and sudden prema-
ture death.2,40 CARTs are considered the gold standard which evaluate 
changes in the heart rate and BP during clinical maneuvers such as deep 
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breathing, standing, and Valsalva.40,68,71 Although CARTs could be or-
dered as part of clinical care, they are seldom used in practice due to 
inconsistent availability, costs, and perhaps lack of knowledge and un-
derstanding by most providers on how to best utilize the information. 
With the continuous development of several technologies including 
continuous glucose monitoring (CGM), the detection of CAN may enable 
their use to prevent hypoglycemia and glucose fluctuations in larger 
groups of people with diabetes,40 thus reducing arrhythmia risk and 
other adverse clinical consequences (Fig. 2). Additionally, CAN is an 
important risk for heart failure, now the most prevalent cardiovascular 
complication in diabetes,72 thus testing for CAN could allow imple-
mentation of more aggressive therapy in those most at risk of future 
complications.72 

4.2.1.2. Knowledge gaps in clinical care.  

• Implement successful providers' education on how to diagnose and
effectively use CAN as a risk stratification tool to promote a
personalized medicine approach towards the use of technologies and
guideline-directed therapies

• Develop reliable CAN biomarkers to be used at the point of care

4.2.1.3. Outcomes measures in clinical research. The CARTs performed 
under deep breathing remain the gold standard outcome measure for 
CAN in research settings, given their refined standardized protocols that 
can be administered by technicians, as well as their easy scalability in 
larger cohorts.2,40 CARTs are the most common CAN outcome measure 
in both interventional trials, including the DCCT, and observational 
cohorts such as EDIC. CARTs also allow for CAN staging, with one 
abnormal test indicative for early/subclinical CAN, while two or more 
abnormal tests indicative of definite CAN2,40 although the evidence 
behind these recommendations is less clear. Recently, a plethora of 
recording devices including software operating with a “black-box” 
approach (output of data without reporting the algorithm that calcu-
lated the result) have emerged making it difficult to compare data sets 
and reproducibility across studies, particularly when few age-related 
normative data sets are available. 

Indices of HRV, either in time (e.g. the standard deviation of normal 
RR intervals -SDNN, the root-mean square of the difference of successive 
RR intervals -rMSSD), or frequency domain (e.g. low, very low and high 
frequency power) indices, are emerging as sensitive and specific alter-
native CAN outcome measures,2,73 including the HRV indices derived 
from standard 10-s 12‑lead ECG recordings, that are much more feasible 
and easier to implement in larger and/or longitudinal cohorts.2,13,73 

Cardiac sympathetic imaging using I-123 MIBG scintigraphy or 11C- 
HED PET, 24-h BP profiles, muscle sympathetic nerve activity, or bar-
oreflex sensitivity testing to assess cardiac vagal and sympathetic bar-
oreflex function may have higher degrees of sensitivity or specificity 
based on the hypotheses being tested, and may be used in some research 
protocols, although these require sophisticated infrastructure, highly 
trained personnel, and are quite expensive and time-consuming.2,40 

Similar to DPN, the value of patient reported outcomes has emerged 
for autonomic neuropathy, and several surveys were developed and 
validated over time. While the Autonomic Symptom Profile (ASP), the 
Composite Autonomic Symptom Scale (COMPASS), or the abbreviated 
COMPASS-31 are non-invasive and have high sensitivity and specificity, 
they are quite time-consuming or require complex scoring algo-
rithms.2,42 More recently, SAS was validated as a brief, specific, and 
sensitive measurement of symptomatic autonomic neuropathy in dia-
betes and used in several cohorts including the T1D Exchange.42 

4.2.1.4. Knowledge gaps clinical research.  

• Validate sensitive and specific outcome measures, with reliable
intrasubject variability, that may correctly capture the natural his-
tory of the disease and may detect timely damage reversal

• Reach consensus among the stake holders in the field to utilize uni-
form and adequate outcome measures across all interventional and/
or observational studies, as well as uniform technologies that make
the testing algorithms readily available

• Incorporate patient reported outcomes including psychological
outcomes

Fig. 2. Mechanisms and clinical consequences of cardiovascular autonomic neuropathy (CAN) in diabetes.  
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4.2.2. Gastroparesis 

4.2.2.1. Diagnosis in clinical care. The clinical symptoms of gastro-
paresis may include early satiety, fullness, bloating, nausea, vomiting, 
dyspepsia, and abdominal pain. These symptoms are nonspecific and 
also poorly correlated with severity of gastroparesis and gastric 
emptying studies.2 Among the clinical signs, individuals with gastro-
paresis may present with wide glucose fluctuations and frequent unex-
plained hypoglycemia after meals. Gastric emptying with scintigraphy 
of digestible solids at 15-min intervals for four hours after food intake is 
still considered the gold standard for diagnosis of gastroparesis. Opti-
mization of glucose levels is utmost important before the test to avoid 
false positives2 as both hypoglycemia and hyperglycemia have direct 
effects on gastric emptying.74,75 Scintigraphic gastric emptying studies 
can be burdensome, time consuming, not readily available, and costly. 
Recently the use of 13C octanoic acid or an acetate breath test has been 
FDA approved, providing simpler alternatives.2 

4.2.2.2. Outcomes measures for research. The scintigraphic gastric 
emptying study and 13C octanoic acid or acetate breath test have been 
widely used in the research setting with the latter being more feasible 
and available. In addition, collection of full thickness gastric tissue for 
detecting specific cellular changes associated with diabetic gastroparesis 
was developed by the National Institute of Diabetes and Digestive and 
Kidney Diseases (NIDDK) Gastroparesis Clinical Research Consortium, 
although these studies are invasive, require specialized infrastructure 
and thus may be applicable only in selected situations. Validated ques-
tionnaires such as the Patient Assessment of Upper Gastrointestinal 
Disorders-Symptoms, the Gastroparesis Cardinal Symptom Index-Daily 
Diary, and the specific gastroparesis questions in the SAS, are widely 
used to assess the severity of gastroparesis symptoms in clinical research 
setting.76 

5. DN management

5.1. Management of DPN

There is strong evidence that targeting near normal glucose prevents 
the onset and progression of DPN in T1D.2,5 However, intensive glucose 
control does not reverse DPN even in T1D, and the effects of glucose 
control are less conclusive for DPN in T2D, as highlighted in several 
cohorts.6 Likely reasons are the presence of several other risk factors and 
co-morbidities, as well as the complex mechanisms leading to DPN in 
T2D amply outlined above. 

Besides glucose control, lifestyle and behavioral interventions have 
emerged as promising treatments for DPN prevention or even reversal.5 

For instance, Singleton and colleagues reported improvement in small 
nerve fiber function and reinnervation as assessed by IENFD with a 
lifestyle intervention comprised of diet and moderate intensity exercise 
similar to the intervention used in the diabetes prevention program.77 A 
recent study from the Canadian Study of Longevity in T1D reported that 
individuals with diabetes who engaged in ≥150 min physical activity/ 
week had a 12 % lower DPN incidence78 providing additional insight on 
the potential role of lifestyle in the prevention of DPN. Moderate- 
intensity physical activity delays the onset and progression of DPN in 
individuals with T2D or prediabetic metabolic syndrome.79 Multimodal 
aerobic training [moderate-intensity (50 % heart rate reserve) or 
vigorous (75 % heart rate reserve) exercise] in a controlled trial im-
proves mobility, balance, and gait outcomes in DPN.80 Additionally, 
dietary weight loss may help improve symptomatic DPN.81 

Painful DPN management includes pharmacological, nutraceuticals, 
and non-pharmacological options. 

Gabapentinoids, serotonin and norepinephrine reuptake inhibitors 
(SNRIs), tricyclic antidepressants (TCAs), and sodium channel blockers 
are all effective medication classes for the treatment of painful DPN. Few 

randomized controlled clinical trials report efficacy for opioids 
including tramadol or tapentadol. These trials were flawed by very high 
attrition rates and questionable study design.2,5 Thus, given the evi-
dence of the high risks of addiction, abuse and severe complications 
including death, compared to the low potential benefits, none of the 
opioids should be used in the treatment of painful DPN.2,3 Yet despite 
these recommendations, the rates of opioid prescriptions for painful 
DPN remain unacceptably high, and interventions are needed to 
improve current clinical practice. 

Among the nonpharmacological approaches, besides lifestyle in-
terventions discussed above6, a recent large randomized-controlled trial 
reported substantial pain relief and improvement in quality of life with 
high-frequency spinal cord stimulation in individuals with refractory 
painful DPN sustained over 12 months5,82 that led to FDA approval. 
However, the lack of a sham arm means that this was an unblinded pain 
study with a high probability of a large placebo effect. Future more 
rigorous studies are needed to determine the role of spinal cord stimu-
lation and other devices in the treatment of painful DPN. 

5.2. CAN management 

The conclusive data obtained by the DCCT and later during EDIC, as 
well as evidence from several smaller trials strongly support that tight 
control of blood glucose implemented early in the disease course is very 
effective for preventing CAN and slowing its progression in individuals 
with T1D.2,7 The evidence for people with T2D continues to 
evolve.2,3,6,40 Glucose control as part of a multifactorial intervention 
that targeted hyperglycemia, hypertension, dyslipidemia, and lifestyle, 
demonstrated a 63 % reduction in the rate of progression to CAN in a 
small T2D cohort participating in the STENO-2 trial.83 Additionally, 
most recent analyses from the ACCORD trial, reported that after 
adjusting for multiple other risk factors, intensive glucose treatment 
reduced CAN risk by 16 % and the intensive BP intervention decreased 
CAN risk by 25 % as compared with the standard intervention group.84 

Considering that CAN was shown conclusively to predict cardiovascular 
mortality and cardiovascular events, reducing CAN incidence, would 
thus have a beneficial effect on the cardiovascular outcomes as well. 
Lifestyle intervention alone may also be beneficial as suggested by a 
recent pilot study from Germany that reported that high-intensity ex-
ercise training can improve indices of CAN over 12 weeks in overweight 
individuals with T2D.85 These data are promising, however, we are still 
in need of larger studies on types and duration of exercise that demon-
strate whether improvement in these measures can be sustainable over 
longer periods time. 

Management of orthostatic hypotension involves both behavioral 
and pharmacological interventions.2,3,40 Behavioral supportive mea-
sures include avoiding abrupt changes in body position, actions that 
elevate intra-abdominal and intra-thoracic pressures, or medications 
that would exacerbate hypotension, as well as raising the head of the bed 
during sleep, small and frequent meals to minimize postprandial hypo-
tension or physical counter-pressure maneuvers such as leg crossing and 
squatting. Pharmacological therapy includes midodrine and droxidopa, 
both FDA approved for the management of orthostatic hypotension, or 
low dose fludrocortisone for use in individuals who fail non- 
pharmacological interventions but are limited by side effects.2,3,40 

5.3. Gastroparesis management 

Dietary changes and optimizing glucose control with reducing 
glucose variability may be effective in gastroparesis management.2 

Currently available diabetes technologies including sensor-augmented 
insulin pumps and/or semi closed-loop insulin pumps to improve 
glucose fluctuations and hypoglycemia, ultimately enhancing the gastric 
motility.74,75 Withdrawal of medications that can slow down the gastric 
emptying, particularly opioids and marijuana, is also important.2 To 
date, metoclopramide, a prokinetic agent, is the only medication 
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approved by the FDA for the treatment of gastroparesis. However given 
common extrapyramidal side effects, its use for more than five days is 
not recommended.2 

5.4. Knowledge gaps 

• Identify personalized prevention strategies using innovative tech-
nologies and artificial intelligence methods

• Understand why many if not most people are unable or unwilling to
engage in lifestyle interventions  

• Validate the cellular and molecular mechanisms by which lifestyle
interventions improve nerve function could accelerate development
of novel DPN treatments, beyond diet and exercise

• Develop effective disease modifying therapies for DPN, painful DPN,
and CAN

• Identify sensitive biomarkers for DPN and pain phenotypes in DPN
• Implement effective providers' education on optimal pain manage-

ment strategies
• Build quality improvement initiatives to avoid opioids in people with

diabetes and DPN
• Build better infrastructure to enable implementation of lifestyle

modifications for DPN or CAN
• Find adherence mechanisms to lifestyle strategies
• Understand the role of psychological factors
• Find effective and better tolerated treatments for postural hypoten-

sion or true gastroparesis
• Engage Pharma interest to develop new therapeutic agents for DN
• Develop cost-effective and scientifically sound large-scale pragmatic

trials for DN in a real-world setting

Summary 

We present here the most up-to-date facts on prevalence and inci-
dence of various forms of DN, on potential mechanisms behind the 
development of DN as well as current management options. We also 
highlight knowledge gaps, current barriers in clinical practice for 
optimal DN management, including the need for development of disease 
modifying agents for management of all DN forms. 
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Emerging insights into the complex genetics and 
pathophysiology of amyotrophic lateral sclerosis
Stephen A Goutman, Orla Hardiman, Ammar Al-Chalabi, Adriano Chió, Masha G Savelieff, Matthew C Kiernan, Eva L Feldman

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease. The discovery of genes associated with amyotrophic 
lateral sclerosis, commencing with SOD1 in 1993, started fairly gradually. Recent advances in genetic technology have 
led to the rapid identification of multiple new genes associated with the disease, and to a new understanding of 
oligogenic and polygenic disease risk. The overlap of genes associated with amyotrophic lateral sclerosis with those of 
other neurodegenerative diseases is shedding light on the phenotypic spectrum of neurodegeneration, leading to a 
better understanding of genotype–phenotype correlations. A deepening knowledge of the genetic architecture is 
allowing the characterisation of the molecular steps caused by various mutations that converge on recurrent 
dysregulated pathways. Of crucial relevance, mutations associated with amyotrophic lateral sclerosis are amenable to 
novel gene-based therapeutic options, an approach in use for other neurological illnesses. Lastly, the exposome—the 
summation of lifetime environmental exposures—has emerged as an influential component for amyotrophic lateral 
sclerosis through the gene–time–environment hypothesis. Our improved understanding of all these aspects will lead 
to long-awaited therapies and the identification of modifiable risks factors.

Introduction
Amyotrophic lateral sclerosis is a fatal neurodegenerative 
disease affecting motor neurons in the brain, brainstem, 
and spinal cord.1 The name derives from the muscle loss 
(amyotrophy) and axonal loss in the lateral spinal cord 
columns (lateral sclerosis) characteristic of the disease. 
Amyotrophic lateral sclerosis presents with progressive 
voluntary muscles weakness, which spreads to neighbour
ing body segments, typically leading to death from 
respiratory failure within 2–4 years from diagnosis. In 
addition to motor neuron loss, the major neuro
pathological findings are intracellular cytoplasmic 
inclusions of eosinophilic Bunina bodies and 
ubiquitinated TDP43. There is also considerable pheno
typic heterogeneity in disease presentation, involving 
cognitive and behavioural changes in up to 60% of 
patients and frontotemporal dementia in about 15% of 
patients.

Although there are several known genetic risks for 
amyotrophic lateral sclerosis, about 85% of cases do not 
have a single genetic cause;2 thus, the pathophysiology of 
the disease remains incompletely understood, which is 
responsible, in part, for the absence of diseasemodifying 
therapies. Currently, there are only two approved drugs of 
varying efficacy: riluzole and edara vone. Nonpharma
cological multidisciplinary care can, in some cases, 
improve patient outcomes, including early noninvasive 
ventilation use and feeding tube insertion before 
substantial weight loss.1

The scarcity of treatments has spurred intense research 
into the complex genetics of amyotrophic lateral sclerosis 
and the pathomechanisms linked to known mutations. 
Improved knowledge of the genetic architecture could 
unlock the potential of genetic therapies. Additionally, an 
understanding of the effect of environmental exposures, 

diet, and lifestyle factors—cumulatively known as the 
exposome—on the risk of amyotrophic lateral sclerosis is 
needed to identify modifiable risk factors. This Series 
paper will highlight the latest advances from the past 
5 years pertaining to the complex genetics, patho
physiology, therapeutic development, and exposome 
science of amyotrophic lateral sclerosis. It is accompanied 
by a second, more clinically focused, paper on clinical 
presentation, diagnosis, and prognosis.1

Genetic architecture
Amyotrophic lateral sclerosis is conventionally classified 
as familial or sporadic (panel 1). However, this simple 
subdivision ignores the complex genetic architecture of 
the disease (figure 1A–C), which is characterised by 
monogenic, oligogenic, and poly genic inheritance, gene 
penetrance, and heritability. Mendelian familial 
amyotrophic lateral sclerosis accounts for 10–15% of 
individuals with the disease, albeit with incomplete 
penetrance in most kindreds.2,3 In the remaining 85%, 
large genomewide association studies (GWAS) might be 
able to identify rare variants and socalled private 
mutations—ie, mutations found in a single family that 
might modulate disease risk and phenotypic 
presentation.4

The proportion of patients with disease that is familial 
is probably underreported,5 because of variation in the 
definition of familial amyotrophic lateral sclerosis.6 
Consensus criteria for familial amyotrophic lateral 
sclerosis were introduced nearly a decade ago, and are 
based on the likelihood that two or more family members 
carry the same diseasecausing variant. Family size is key 
to this definition; in families with more than 17 members, 
there is about a 5% chance that two members will be 
affected, based on the overall lifetime risk of developing 
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amyotrophic lateral sclerosis (ie, one in 350).5 Conversely, 
in a small family, if one parent carries a penetrant 
mendelian risk gene, the chance that other family 
members carry the allele is low, leading to an apparent 
sporadic case of disease.7 Moreover, some genes for 
amyotrophic lateral sclerosis also cause frontotemporal 
dementia or other pheno types; thus, there is an argument 
for including the identification of frontotemporal 
dementia in a kindred in the definition of familial 
amyotrophic lateral sclerosis, which would bring the 
percentage of amyotrophic lateral scletrosis cases due to 
familial disease closer to 20%.5 Additionally, population 
studies on the family aggregation of neuropsychiatric 
conditions within kindreds of people with amyotrophic 
lateral sclerosis suggest that schizophrenia indicates 
familial amyo trophic lateral sclerosis, bringing the 
percentage closer to 30%.5,8 Validation studies are needed 
to establish whether to include schizophrenia in kindreds 
in the familial definition of amyotrophic lateral sclerosis.

Genes associated with amyotrophic lateral sclerosis
Our current knowledge of validated genes for amyotrophic 
lateral sclerosis derives primarily from ancestral 
European (ie, Europe, the USA, Canada, and Australia) 

and Asian populations.9 Although at least 
40 genes have been associated with the disease, four genes 
account for about 48% of familial and about 5% of 
sporadic cases within populations of European origin.10 
These genes are C9orf72, SOD1, TARDBP (coding for 
TDP43), and FUS, and they have lent important insights 
into the pathophysiology of amyotrophic lateral sclerosis.11 
New genes for amyotrophic lateral sclerosis have been 
identified in the past 5 years, including TBK1, NEK1, 
CCNF, C21orf2 (also known as CFAP410), ANXA11, TIA1, 
KIF5A, GLT8D1, LGALSL, and DNAJC7 (table),2,12 which 
have highlighted important recurrent pathways and new 
avenues of research.

Importantly, the genes associated with amyotrophic 
lateral sclerosis vary in pathogenicity and their 
susceptibility risk; highly penetrant mutations generally 
lead to disease (eg, in TARDBP, SOD1, and FUS), whereas 
some variants associated with amyotrophic lateral 
sclerosis do not necessarily cause the disease but rather 
pose a risk of developing the disease (eg, ANG, ATXN2, 
and DCTN1; table). However, even causative mutations 
are not fully penetrant, and interactions with the 
environment modify the risk of developing the disease. 
Thus, genetic risk represents a continuum from high 

Panel 1: Glossary of terms

Familial amyotrophic lateral sclerosis: classically, an inherited case 
of amyotrophic lateral sclerosis. Clinically defined on the basis 
of the likelihood that two or more family members carry the 
same disease-causing mutations.

Sporadic amyotrophic lateral sclerosis: classically, amyotrophic 
lateral sclerosis occurring in a patient without evidence that the 
disease was inherited. Nevertheless, shares several risk genes 
with familial amyotrophic lateral sclerosis.

Monogenic (mendelian) inheritance: the inheritance of a trait (or 
disease) defined by one gene. Inheritance might be autosomal 
or sex-linked; dominant (only one mutant allele must be 
inherited) or recessive (two mutant alleles must be inherited).

Oligogenic inheritance: the inheritance of a trait (or disease) 
defined by a few genes. This term is frequently used as an 
intermediate between monogenic and polygenic inheritance.

Polygenic inheritance: the inheritance of a trait (or disease) 
defined by the cumulative effect of many genes.

Gene penetrance: the proportion of individuals harbouring a 
mutant gene or gene variant that manifests a trait (or disease). 
High penetrance means that many individuals carrying the 
mutation will develop the trait (or disease); low penetrance 
means that few individuals will develop the trait (or disease).

Lifetime risk: the probability that a specific disease will occur in 
an individual or population within their lifetime.

Pathogenicity: a characteristic of a genetic variant that increases 
disease risk in an individual.

Heritability: measures the extent that variation in a trait 
(or disease) can be attributed to genetic versus environmental 
variation.

Gene–time–environment hypothesis of amyotrophic lateral 
sclerosis: posits that genetic predisposition interacts with 
environmental exposures over time leading to amyotrophic 
lateral sclerosis.

Multistep model of amyotrophic lateral sclerosis: posits that a 
series of steps—some genetic, some possibly environmental—
leads to amyotrophic lateral sclerosis.

Genetic pleiotropy: the influence of one gene on two or more 
traits (or diseases).

Phenocopy: a trait (or disease) that has a similar phenotype to 
that associated with a specific genotype, but without 
harbouring that genotype.

Endophenotype: a neurobehavioural heritable trait that can be 
measured to assess genetic susceptibility for psychiatric 
illnesses.

Proband: an individual in a family with a heritable trait (or 
disease); generally, the proband is the first individual to seek 
medical attention for a genetic disease, although kindreds or 
ancestors might also manifest the disease.
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(rare mutations) to low (common variants). Even the 
largest genomics projects might not accurately identify 
rare intermediatepenetrance variants for amyotrophic 
lateral sclerosis due to the high lifetime risk and low 
frequency of pathogenic alleles.

Because precision treatments against specific disease
causing mutations are gaining importance as a 
therapeutic framework, distinguishing truly pathogenic 
versus benign variations is essential. Guidelines for 

interpreting the pathogenicity of variants exist (eg, the 
criteria by the American College of Medical Genetics and 
Genomics13), and resources such as ClinGen are 
available.14 Establishing the pathogenicity of recently or 
newly identified genes for amyotrophic lateral sclerosis 
will pivot on segregation analysis, neuropathological 
signatures (eg, aggregates), or functional investigations 
in experimental models.13 Largescale analyses support a 
reoriented view of several genes and variants confined 

Figure 1: The genetic architecture of amyotrophic lateral sclerosis
The genetics of amyotrophic lateral sclerosis is characterised by (A) monogenic, (B) oligogenic, and (C) polygenic risk. Only three representative chromosomes are shown. 
(D) Genes for amyotrophic lateral sclerosis are not fully penetrant and the pathogenicity of some variants remains uncertain, complicating the full picture. (E) Overlaid 
over the genetic aspects are environmental factors, because heritability is incomplete. Thus, a multistep model for amyotrophic lateral sclerosis has emerged, which 
advocates that multiple steps are necessary for onset of the disease. The model posits that mutations with a larger effect require fewer steps for disease onset. Future work
is needed to precisely define a step and establish when one has occurred (eg, genetic or environmental factors). (F) Several genetic therapies are under development 
(ie, in an umbrella trial stratified by molecular profile) and tailored precision treatments are future goals; thus, molecular profiling of patients with amyotrophic lateral 
sclerosis could become standard clinical practice. The figure was created in BioRender.
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heavily to a single domain. A study of published data 
identified about 1% as pathogenic or probably pathogenic 
(111 mutations in 23 genes), 10% as benign or probably 
benign, and more than 89% as of uncertain significance. 
Of the pathogenic or probably pathogenic variants, 
10% exhibited geographical heterogeneity underlining 
the populationspecific and environmental interactions 
of variants for amyotrophic lateral sclerosis.

Oligogenic and polygenic models
Because mendelian inheritance only accounts for a 
proportion of cases, an oligogenic model of amyotrophic 
lateral sclerosis has emerged (ie, comprising a few risk 
genes).15 Although oligogenic inheritance is reported in 
different populations, further studies are necessary. For 
example, a UK study of 100 participants with amyotrophic 
lateral sclerosis found that 13% harboured two pathogenic 
or probably pathogenic variants, which was associated 
with earlier disease onset (by 4 years) than in participants 
with only one pathogenic variant.16 An Australian 
multicentre study of individuals with sporadic 
amyotrophic lateral sclerosis (n=616) found that 7% of 
participants had two or more variants, which was 
similarly associated with earlier disease onset than that 
in participants with no known variants.15 By contrast, in 
an Irish populationbased cohort study of both familial 
(n=50) and sporadic (n=394) cases, only 2% of patients 
harboured two or more known or potential variants for 
amyotrophic lateral sclerosis.17

Polygenic risk is assessed by linkage disequilibrium 
score testing and mendelian random isation, which test 
associations between a particular disease or clinical 

phenotype with genetic variants. Analysis of GWAS data 
from 20 806 cases versus 59 804 controls found that 
amyotrophic lateral sclerosis shared polygenic risk with 
several traits: positive associations with smoking and 
moderate physical activity, and negative associations with 
cognitive performance and education.18 Mendelian 
randomisation additionally identified a causal link 
between hyperlipidaemia and risk for amyotrophic lateral 
sclerosis. Indeed, a multiethnic GWAS identified 
variants in ACSL5, which encodes an enzyme involved in 
fatty acid βoxidation and lipid biosynthesis, as a risk 
factor for amyotrophic lateral sclerosis.19 Mendelian 
randomisation also suggested a causal association 
between genetically determined higher leukocyte count 
with lower risk of amyotrophic lateral sclerosis.20

Heritability
Strong evidence exists of an interplay between inherited 
and environmental factors, including for patients that 
carry a highly penetrant mutation.21 Thus, heritability—
ie, the extent that variation in disease risk is attributable 
to genetic variation—is an important concept in amyo
trophic lateral sclerosis. Heritability estimates are 
populationspecific, reflecting the underlying genetic 
substructure and gene–environment interactions. 
Assess ment of heritability has relied on twin studies 
(38–78%),22 large GWAS datasets (18%),23 and population 
registers (53%).3 In the Irish amyotrophic lateral sclerosis 
registry, the lifetime risk for a firstdegree relative of a 
patient with amyotrophic lateral sclerosis, without known 
gene mutations associated with the disease, is 0·7% 
(and 1·4% if the genetic status is unknown).3 This 

Year of discovery Inheritance pattern Familial 
ALS (%)*

Sporadic ALS (%)* Function Associated pathophysiology

ALS genes discovered since 2015

ANXA11 2017 Autosomal dominant ~1% ~1·7% Calcium-dependent phospholipid-
binding protein; vesicle trafficking

Annexin A11 inclusions; impaired 
binding to calcyclin; putative LLPS

C21orf2 (also known 
as CFAP410)

2016 Not established <1% <1% DNA damage repair (putative); actin 
structure

Cytoskeletal defects

CCNF 2016 Autosomal dominant ~1–3·3% <1% Component of an E3 ubiquitin ligase 
complex; cell-cycle regulation

Proteostasis defects

DNAJC7 2019 Not established <1% <1% Heat shock protein co-chaperone Not established

GLT8D1 2019 Autosomal dominant <1% <1% Glycosyltransferase; unknown cellular 
function, widely expressed

Not established; localised to Golgi 
body, suggested role in impaired 
ganglioside synthesis and addition of 
O-linked β-N-acetylglucosamine

KIF5A 2018 Autosomal dominant ~0·5–3% <1% Kinesin microtubule motor protein Cytoskeletal or trafficking defects

LGALSL 2015 Not established <1% <1% Not established Not established

NEK1 2015 Not established ~1–2% <1% Serine–threonine kinase; cell-cycle 
regulation; axonal development or 
guidance; axonal polarity; DNA 
damage repair

Putative DNA damage accumulation; 
protein aggregation

TBK1 2015 Autosomal dominant ~3% <1% Serine–threonine kinase; regulates 
innate immunity, autophagy, and cell-
cycle

Autophagy; inflammation

TIA1 2017 Autosomal dominant ~2·2% <1% RNA-binding protein Impaired RNA metabolism; LLPS

(Table continues on next page)

For data on genetic screening 
for patients with amyotrophic 

lateral sclerosis see 
http://rshiny.tchpc.tcd.ie/users/

dohertm7/journALS/App/
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Year of discovery Inheritance pattern Familial 
ALS (%)*

Sporadic ALS (%)* Function Associated pathophysiology

(Continued from previous page)

ALS genes discovered before 2015

ALS2 2001 Autosomal recessive <1% <1% GEF Vesicular trafficking defects

ANG 2006 Risk factor <1% <1% Ribonuclease Angiogenesis

ATXN2 2010 Autosomal dominant; 
risk factor

<1% <1% RNA-binding protein Ribostasis defects; putative LLPS

C9orf72 2011 Autosomal dominant 40% 7% Putative GEF, endosome trafficking, 
and autophagy regulation; DNA repair

Impaired RNA metabolism; impaired 
proteostasis or autophagy; 
intracellular trafficking; 
nucleocytoplasmic transport defects; 
LLPS; inflammation

CHCHD10 2014 Autosomal dominant <1% <1% Mitochondrial protein localised to 
cristae junctions in the intermembrane 
space

Mitochondrial and bioenergetics 
dysfunction

CHMP2B 2006 Autosomal dominant <1% <1% ESCRT-III complex component Impaired proteostasis; vesicular 
trafficking defects

DCTN1 2003 Autosomal dominant; 
risk factor

<1% <1% Dynactin microtubule motor protein 
subunit

Axon trafficking defects

ELP3 2009 Not established <1% <1% Histone acetyltransferase subunit of 
RNA polymerase II elongator complex

Ribostasis defects; cytoskeletal defects

FUS 2009 Autosomal dominant; 
autosomal recessive

4% 1% RNA-binding protein; transcription 
regulation; splicing; RNA localisation 
and degradation; DNA repair

Ribostasis defects, nucleocytoplasmic 
transport defects, LLPS

HNRNPA1 2013 Autosomal dominant; 
risk factor

<1% <1% RNA-binding protein Ribostasis defects, LLPS

HNRNPA2B1 2013 Autosomal dominant; 
risk factor

<1% <1% RNA-binding protein Ribostasis defects, LLPS

MATR3 2014 Autosomal dominant <1% <1% RNA-binding protein localised to 
nuclear matrix

Ribostasis defects

NEFH 1994 Autosomal dominant; 
risk factor

<1% <1% Neurofilament protein Axon trafficking defects

OPTN 2010 Autosomal dominant; 
autosomal recessive

<1% <1% Coiled-coil containing protein 
regulating membrane trafficking, 
vesicle trafficking, and transcription 
activation

Autophagy; inflammation

PFN1 2012 Autosomal dominant <1% <1% Actin-binding protein regulating actin 
polymerisation

Cytoskeletal or trafficking defects; 
impaired axon growth

SETX 1998 Autosomal dominant <1% <1% Helicase Ribostasis defects

SPG11 2010 Autosomal recessive <1% <1% Putative transmembrane protein 
phosphorylated upon DNA damage

DNA damage

SOD1 1993 Autosomal dominant; 
autosomal recessive

12% 1–2% Superoxide anion detoxifying enzyme Proteostasis defects; oxidative stress; 
prion-like transmission; inflammation

SQSTM1 2011 Autosomal dominant ~1% <1% Ubiquitin-binding autophagy adaptor 
protein (regulates NF-κB)

Autophagy; inflammation

TARDBP 2008 Autosomal dominant; 
autosomal recessive

4% 1% RNA-binding protein; transcription 
regulation; splicing, RNA localisation 
and degradation

Ribostasis, proteostasis, and nucleo-
cytoplasmic transport defects; LLPS; 
prion-like transmission; inflammation

TUBA4A 2014 Autosomal dominant <1% <1% Microtubule protein Cytoskeletal or trafficking defects

UBQLN2 2011 X-linked, autosomal 
dominant

<1% <1% Ubiquitin-like protein (associates with 
proteasome and ubiquitin ligases)

Proteostasis defects; LLPS

VAPB 2004 Autosomal dominant <1% <1% Plasma and intracellular vesicle 
membrane protein

Proteostasis defects

VCP 2010 Autosomal dominant 1% 1% ATPase enzyme regulating protein 
degradation, intracellular membrane 
fusion, DNA repair and replication, 
NF-kB activation, and cell-cycle

Proteostasis defects; inflammation

Genes are listed alphabetically. Adapted from Chia et al.2 ALS=amyotrophic lateral sclerosis. FTD=frontotemporal dementia. GEF=guanine nucleotide exchange factor. LLPS=liquid-to-liquid phase separation. 
*Percentage of familial or sporadic ALS caused by mutations in the particular gene.

Table: ALS mutations and associated pathophysiology
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lifetime risk equates to a heritability of 36·9% in the non
C9orf72 population and 52·3% in the overall population. 
The missing heritability in these populations promotes a 
focus on epigenomics and environmental contributions. 
Several studies report changes to the epigenome that are 
linked to amyotrophic lateral sclerosis (eg, noncoding 
promoter and enhancer elements, and microRNAs).24,25 
Additionally, the epi genome, as an entity that is 
reprogrammable through environ mental pressures, 
opens an avenue into expo some science. The gene–time–
environment hypothesis of amyotrophic lateral sclerosis 
proposes a multistep model to account for the 
environmental effect on disease onset and progression.21 
In European and east Asian populations, the gene–
environment interaction promotes disease in up to 
six steps, with fewer steps in patients harbouring known 
monogenic, penetrant mutations (eg, C9orf72, SOD1, 
TARDBP).26,27 Future work is needed to precisely define a 
step and establish when one has occurred.28

Overall, on the basis of recent progress, we anticipate 
that genetic testing will become standard practice for 
profiling patients with amyotrophic lateral sclerosis and 
will identify known pathogenic mutations in up to 70% 
of familial and 15% of sporadic cases.2 This practice will 
also lead to the discovery of novel mutations. Ultimately, 
case classification will shift to using mutation status 
rather than the concepts of familial and sporadic disease. 
However, genetic testing will require establishing the 
optimal approach, which will have to contend with the 
growing number of genes for amyotrophic lateral 
sclerosis, dealing with polygenic risk, and deciding 
whether to adopt wholegenome sequencing to address 
intronic variants that might contribute to the disease.

Genetic overlap with other neurodegenerative 
diseases
Amyotrophic lateral sclerosis is a clinically heterogeneous 
disease that extends beyond corticospinal structures.29,30 
Imaging shows thalamic and amygdala involvement as 
well as disrupted cortical functional networks in motor 
and extramotor domains (primarily involved in executive 
function and language),31–33 whereas spatial domains are 
relatively preserved. Additionally, social, cognitive, and 
behavioural changes are common and mirror the 
behavioural variant of frontotemporal dementia.34

Clinical phenotypes of amyotrophic lateral sclerosis are 
modulated by some genetic variants;2,35 SOD1 variants 
primarily cause motor degeneration, whereas FUS 
mutations are associated with younger age of onset.2 
Additionally, some variants affect progression rate 
(eg, rapidly progressive SOD1A5V, previously known as 
A4V). C9orf72 repeat expansions are most strongly linked 
with cognitive and behavioural changes;36 FUS and 
TARDBP mutations are also associated with dementia, as 
can some of the rarer mendelian mutations associated 
with amyotrophic lateral sclerosis. However, most 
affected patients with cognitive changes do not carry a 

known genetic variant. Moreover, several mutations that 
are risk factors for amyotrophic lateral sclerosis are 
genetically pleiotropic, and extramotor features of the 
disease overlap with those of other neurodegenerative 
diseases (panel 1).8,37 C9orf72 repeat expansions are the 
most common mutations occurring in Huntington’s 
disease phenocopies—patients presenting with 
Huntington’s disease without carrying the most 
characteristic Huntington’s diseaseassociated mutation: 
HTT repeat expansions.38 Conversely, in rare instances, 
patients with frontotemporal dementia or amyotrophic 
lateral sclerosis can harbour HTT repeat expansions 
concurrent with TDP43 inclusions (the histopathological 
hallmark of amyotrophic lateral sclerosis), without 
defining Huntington’s disease characteristics such as 
neostriatal atrophy.39

Although of uncertain clinical significance (because of 
the presence in individual patients in case reports), 
mutations in risk genes for amyotrophic lateral sclerosis 
(ie, TIA1, TBK1, SQSTM1, and GRN) are detected in 
patients with dementia with Lewy bodies, a clinically 
heterogeneous neurodegenerative disease.40 A 32CAG 
repeat expansion to ATXN2 has been reported in a patient 
with both amyotrophic lateral sclerosis and 
spinocerebellar ataxia type 2;41 intermediate 32CAG 
repeats correlate with amyotrophic lateral sclerosis42 but 
reside below the cutoff for spinocerebellar ataxia type 2,43 
suggesting a potential overlap between the two diseases. 
Additionally, pathogenic mutations to KIF5A, known to 
cause hereditary spastic paraplegia and CharcotMarie
Tooth disease type 2, are also described in individuals 
with amyotrophic lateral sclerosis4 and primary 
progressive multiple sclerosis,44 although mutations 
occur in different KIF5A domains in those with 
hereditary spastic paraplegia compared with those with 
amyotrophic lateral sclerosis. Thus, the genotype–
phenotype relationship among genetic mutations that 
cause neurodegenerative disease is highly complex. 
Research is needed to establish how the same genetic 
mutations diverge on distinct phenotypes and, on the 
other hand, how mutations to different genes converge 
on similar phenotypes—eg, mutations to distinct gene 
domains or overlap in the number of diseasecausing 
repeats. Polygenic risk18 and environmental influence21 
are possible factors, which are highly relevant to 
amyotrophic lateral sclerosis.

There is also emerging evidence of disease endo
phenotypes among family members of those with 
amyotrophic lateral sclerosis. Cohort studies describe 
family aggregation of neuro psychiatric disease, primarily 
psychosis and suicide, in kindreds of probands with 
amyotrophic lateral sclerosis.45,46 Although C9orf72 repeat 
expansions account for a proportion of aggregation, they 
are not overrepresented in individuals with typical 
schizophrenia.47 Detailed family studies show a non
uniform distribution of neuropsychiatric conditions, 
which instead cluster in up to 30% of kindreds of patients 

1432022 Feldman Laboratory Publications



www.thelancet.com/neurology   Vol 21   May 2022 471

Series

with amyotrophic lateral sclerosis,8 suggesting genetic 
pleiotropy or oligogenic inheritance. There is also 
evidence of overlapping polygenic risk between amyo
trophic lateral sclerosis and neuropsychiatric disease. 
Analysis of GWAS datasets from the Project MinE and the 
Psychiatric Genomics Consortium found 14% polygenic 
overlap between amyotrophic lateral sclerosis and 
schizophrenia.48 Indeed, GLT8D1, a recently identified risk 
gene for amyotrophic lateral sclerosis, is also a schizo
phrenia risk gene.49 These observations suggest that the 
pathogenic process underpinning some forms of amyo
trophic lateral sclerosis disrupt specific brain network 
patterns.50 This disruption might be mediated by 
developmental processes that render some brain networks 
more vulnerable, which manifests in various family 
members as neuropsychiatric phenotypes or lateronset 
neurodegeneration; however, further study is required to 
clarify any potential overlap of amyotrophic lateral 
sclerosis with neuropsychiatric disease.

Gene-based treatment strategies
The rising number of risk genes for amyotrophic 
lateral sclerosis, comprising gainoffunction and lossof
function missense and nonsense mutations and repeat 
expansions, advocates for genebased approaches for 
treatment. Rapid advances have been made in genebased 
therapies, which comprise several techniques such as 
antisense oligonucleotides, RNA interference, gene 
replace ment therapy, and genome editing (panel 2).52 The 
optimal approach depends on the mutation and the 
distribution and amount of the encoded protein. 
Pathogenic gainoffunction mutations can be targeted by 
antisense oligonucleotides or RNA interference, but this 
strategy might be difficult in practice because many genes 
for amyotrophic lateral sclerosis are widely expressed and 
the wildtype protein performs essential functions. 
However, if the mutant protein is overexpressed, this 
approach could be feasible (eg, targeting mutant SOD1 
protein aggregates). Lossoffunction mutations can be 
addressed by gene replacement therapy, which delivers a 
functional wildtype copy of the mutant gene. Finally, 
genome editing, although currently only in experimental 
stages, could potentially be leveraged to correct both gain
offunction and lossoffunction mutations and offer the 
ability to specifically target the mutant allele, overcoming 
the weakness of antisense oligonucleotides and RNA 
interference. Trial designs, such as umbrella trials, can 
leverage molecular phenotyping to select trial participants 
harbouring specific mutations targeted by a candidate 
gene therapy (figure 1F).

Antisense oligonucleotides
Antisense oligonucleotides are short, synthetic, single 
strands of oligonucleotides of around 20 chemically 
modified nucleotides with known invivo stability.58 
Because antisense oligonucleotides do not cross the 
blood–brain barrier, treating neurodegenerative disorders 

requires CSF delivery (eg, intrathecal or intracerebro
ventricular). Antisense oligonucleotides bind to target pre
mRNA or mRNA to reduce protein expression through 
two main mechanisms.58 Duplex formation marks the 
target premRNA or mRNA for degradation by endogenous 
ribonuclease H; alternatively, antisense oligonucleotides 
interfere with target premRNA or mRNA translation or 
splicing, or both.58 In individuals with amyotrophic lateral 
sclerosis, antisense oligonucleotides can potentially target 
C9orf72, TARDBP, SOD1, or FUS RNA foci. Several 
clinical trials of antisense oligonu cleotides are underway 
in patients with amyotrophic lateral sclerosis (panel 2).52,58 
The SOD1targeting tofersen (also known as BIIB067) was 
shown to be safe and to lower CSF SOD1 concentrations in 
a phase 1/2 trial, particularly in the highdose group;59 
unfortunately, tofersen did not meet its primary endpoint 
in a phase 3 trial (NCT02623699). Another phase 3 trial of 
tofersen is also recruiting presymptomatic carriers of 
rapidly progressive SOD1 mutations with bloodbased 
biomarker evidence of disease through elevated 
neurofilament light chain concentrations (NCT04856982). 
This trial is following a framework of preventive therapy 
for highly penetrant SOD1 mutation carriers. Phase 1 trials 
of antisense oligonucleotides designed to target C9orf72 
(BIIB078, NCT03626012; IWVE004, NCT04931862) and 
ATXN2 (BIIB105, NCT04494256) expansion repeats are 
also in the pipeline. Finally, a phase 1–3 trial targeting FUS 
is also ongoing (ION363, jacifusen, NCT04768972).

Pathophysiology
Despite tremendous progress, the pathophysiology of 
amyotrophic lateral sclerosis remains incompletely 
understood. However, as our knowledge of the genetic 
architecture deepens, we are discovering the molecular 
steps that various mutations take to converge on recurrent 
dysregulated nervous system pathways. The major shared 
pathological pathways in individuals with amyotrophic 
lateral sclerosis include impaired RNA metabolism, 
altered proteostasis or autophagy, cytoskeletal or trafficking 
defects, mitochondrial dysfunction, and compromised 
DNA repair (table; figure 2).60,61 Among the most common 
genes for amyotrophic lateral sclerosis, mutant C9orf72, 
TARDBP, and FUS impair RNA metabolism; C9orf72 
repeat expansions, TARDBP, and SOD1 also induce 
defects in protein homoeostasis. Mutant SOD1 also triggers 
mito chondrial dysfunction and oxidative stress.60

Repeat expansions in C9orf72 lead to mutant protein 
and haploinsufficiency from the wildtype allele; 
additionally, RNA transcripts of C9orf72 expansions 
aggregate into toxic RNA foci, sequestering RNAbinding 
proteins and altering RNA metabolism.60 Aberrant 
translation of C9orf72 transcript expansions generates 
proteotoxic dipeptide repeats—eg, poly proline (P)–
arginine (R) repeats (poly[PR]) and poly glycine (G)–
arginine (R) repeats (poly[GR]).60 TDP43 cytoplasmic 
inclusions are an almost universal feature of amyotrophic 
lateral sclerosis, present in about 97% of cases.62 Although 
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Figure 2: The pathophysiology of amyotrophic lateral sclerosis
Pathological pathways centre on impaired RNA metabolism, altered proteostasis or autophagy, cytoskeletal or trafficking defects, mitochondrial dysfunction, and 
compromised DNA repair. Numbering from top left downwards: (1) Mutant RNA-binding proteins (eg, FUS and TDP-43) disrupt RNA transcription and splicing. 
C9orf72 repeat expansion RNAs aggregate into RNA foci, sequestering RNA-binding proteins and impairing RNA metabolism. Additionally, haplo-insufficiency from 
the single remaining wild-type C9orf72 allele leads to loss-of-function of native C9orf72 protein function, related to multiple mechanisms such as trafficking, 
autophagy, and DNA repair. (2) Mutant C9orf72, FUS, and TARDBP functionally impair nucleocytoplasmic transport and induce nuclear envelope morphology defects 
and cytoplasmic inclusions of nucleocytoplasmic transport components (eg, nucleoporins, importins, and RANs). (3) Repeat-associated non-AUG translation of 
C9orf72 repeat expansions yields dipeptide repeats, which are toxic through several pathways, including protein aggregation, chromatin alterations, and DNA 
damage; impaired nucleocytoplasmic transport; and component sequestration. Additional cytoplasmic protein aggregation (eg, TDP-43 and SOD1) induces 
proteostasis and autophagy defects. Protein aggregates block the ERAD response and UPS, preventing aggregate clearance. Mutations to ubiquitination proteins 
(eg, CCNF and UBQLN2) additionally dysregulate the UPS. Protein aggregates and RNA-binding proteins also accumulate into stress granules, which become 
persistent in individuals with amyotrophic lateral sclerosis. Mutations to vesicle-forming proteins (eg, OPTN, VAPB, and VCP) disrupt vesicular transport and 
distribution, leading to dysfunctional autophagy and proteostasis. (4) Mutations to the tubulin transport machinery (eg, DCTN1, KIF5A, and TUBA4A) and actin 
(eg, PFN1) induce cytoskeletal or trafficking defects, which impair distribution of vital organelles throughout cells (eg, mitochondria and cargo-laden vesicles). 
(5) Protein aggregates (eg, TDP-43 and SOD1) and mutations to mitochondrial protein components (eg, CHCHD10) trigger mitochondrial and bioenergetics 
dysfunction and raise oxidative stress. (6) Liquid-to-liquid phase separation of aggregation-prone proteins (eg, FUS and TDP-43) drives formation of stress granules. 
This figure was created in BioRender. ERAD=endoplasmic reticulum-associated protein degradation. RAN=GTPase Ras-related nuclear protein. UPS=ubiquitin 
proteasome system.
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principally nuclear, TDP43 is mislocalised to the 
cytoplasm in patients with amyotrophic lateral sclerosis, 
and is heavily posttranslationally modified or truncated, 
or both.63 Mislocalised TDP43 impairs RNA splicing, for 
instance, of stathmin2, a protein required for microtubule 
stability.64 Diminished stathmin2 concentrations lead to 
impaired axonal growth and motor neuron function.64 
Patients with amyotrophic lateral sclerosis and TDP43 
inclusions do not have FUS and SOD1 aggregates;65 
although both TDP43 and FUS are RNAbinding proteins, 
which regulate transcription and RNA splicing, locali
sation, and degradation, there is little overlap between 
their binding targets.66

Of genes discovered in the past 5 years, research 
suggests involvement in RNA metabolism (TIA1), proteo
stasis or autophagy (CCNF, NEK1, TBK1), and cytoskeletal 
or trafficking defects (ANXA11, C21orf2, KIF5A).12,60 
The DNAJC7mediated, GLT8D1mediated, and LGALSL
mediated mechanisms of neurodegeneration are 

uncertain. DNAJC7 is a heat shock protein cochaperone, 
which could possibly be linked to proteostasis or 
autophagy.12 It is hypothesised that GLT8D1, a glycosyl
transferase, might impair ganglioside biosynthesis and 
Olinked βNacetylglucosamine modification.67 The cel
lular role of galectinrelated protein (encoded by LGALSL)
is completely unknown; however, galectins are galacto
sidebinding proteins. Therefore, the discovery of novel
genes for amyotrophic lateral sclerosis might unlock as yet 
unknown research avenues and pathological processes.

Nucleocytoplasmic transport defects
Nucleocytoplasmic transport is a highly regulated process, 
which conveys RNA and protein cargo between the 
nucleus and cytoplasm.68 This process is mediated by 
large, multisubunit nuclear pore complexes consisting of 
nucleoporins, which act in concert with cytoplasmic 
importins (importing protein cargo from cytoplasm to 
nucleoplasm) and nuclear exportins (exporting protein 

Panel 2: Gene-based treatment strategies for amyotrophic lateral sclerosis

RNA interference
Comprises two approaches: small interfering RNA (siRNA) and 
short hairpin RNA (shRNA).51 siRNAs are generally duplexes of 
two strands of about 20 modified nucleotide base pairs long, 
that can be internalised into cells.51 The strand of the siRNA 
complementary to the gene target binds to endoribonuclease 
Dicer protein and recruits argonaute proteins and target mRNA, 
generating an RNA-induced silencing complex (RISC). RISC 
cleaves the target gene mRNA, leading to gene knockdown.51 
shRNAs are hairpin structures of either natural or modified 
nucleotide bases, which can be delivered by viral vectors.51 After 
internalisation into cells, shRNAs are first cleaved by 
endoribonuclease Dicer protein to remove the hairpin, and then 
follow the same pathway as siRNAs through RISC.51

RNA interference is approved by the US Food and Drug 
Administration (FDA) to treat hereditary transthyretin 
amyloidosis.51 Strategies are being tested in experimental 
models of amyotrophic lateral sclerosis,52 but have not yet 
entered clinical trials.

Gene replacement therapy
This approach uses viruses as vectors to provide patients 
harbouring loss-of-function mutations a functional copy of a 
gene.52 Viruses can cross the brain–blood barrier and might 
consequently be administered intravenously, which is a 
considerable advantage. Currently, two vectors are employed, 
lentivirus, which delivers the replacement gene by mRNA, 
and adeno-associated virus (AAV), which delivers the 
replacement gene by cDNA.

Onasemnogene abeparvovec, an AAV9-mediated gene 
replacement therapy for SMN1, is approved by the US FDA. 
A phase 1, open-label, dose-escalation, clinical trial assessed a 
single intravenous injection of onasemnogene abeparvovec in 
children with the SMN1 mutation (n=15; NCT02122952).53 

The treatment was safe and significantly improved motor 
function and survival (100% vs 8%) compared with historical 
cohorts. The extremely promising results warranted Fast Track, 
Breakthrough Therapy, and Priority Review designation by the 
FDA, culminating in approval for treating patients younger 
than 2 years and showing the feasibility of this approach for 
treating neuromuscular disease.

The most common mutations for amyotrophic lateral sclerosis 
(ie, C9orf72, SOD1, TARDBP, and FUS) result in toxic gain-of-
function, and are therefore not amenable to gene replacement 
therapy. However, gene delivery of neurotrophic factors is 
being investigated in experimental models.52 Moreover, less 
frequent but penetrant loss-of-function mutations might 
become viable candidates as research advances.

Genome-editing technologies
These technologies aim to correct a disease-causing genetic 
mutation in a patient; several technologies exist, but 
RNA-guided CRISPR-Cas9 is prominent due to its numerous 
advantages.54 The CRISPR RNA guide targets the locus of 
interest by simple base pairing, which means that a guide can 
be designed to target any gene of interest.54 Gene editing can 
modify chromosomal DNA, but that can have unintended 
consequences, such as unwanted deletions or chromosomal 
rearrangements.55 CRISPR can do more targeted changes than 
other technologies can (eg, single-base editing),54 which do not 
require a double-stranded DNA break. Additionally, CRISPR 
technology can modulate transcription and edit RNA, 
expanding its potential applications.54

There are no clinical applications of such technologies to date, 
but they are being tested in experimental models of 
amyotrophic lateral sclerosis against SOD1 mutations and 
C9orf72 repeat expansions.52,56,57
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cargo from cytoplasm to nucleoplasm).68 Transport 
directionality for protein cargo is governed by small GTP
binding nuclear Ran proteins by binding to importins and 
exportins. Studies report both morphological and 
functional defects in nucleo cytoplasmic transport in 
animal and cell models of amyotrophic lateral sclerosis, 
also present in tissue from patients with sporadic or 
familial disease.68 Specifically, nucleocytoplasmic transport 
and nuclear envelope morphology are impaired by C9orf72 
repeat expansions,69,70 insoluble TDP43 aggregates,71 and 
mutant FUS.72 In patients with amyotrophic lateral 
sclerosis with mutant TARDBP or sporadic disease, 
abnormal immunoreactivity against nucleoporins, 
importins, and GTPbinding nuclear Ran proteins is 
detected in motor cortex and spinal motor neurons, even 
independent of C9orf72 repeat expansions.71–73 Impaired 
nucleocyto plasmic transport might represent a universal 
pathology in neurodegenerative diseases, because it is also 
present in patients with Alzheimer’s disease74 and in those 
with Huntington’s disease.75

C9orf72 dipeptide repeat proteins and neurotoxicity
Research is also uncovering the mechanism of toxicity of 
C9orf72 repeat expansionderived dipeptide repeats, 
which, in addition to impairing nucleocytoplasmic 
transport, alter chromatin structure.76 Poly(PR) expression 
in mouse models produces neuronal loss and gliosis, 
resulting in motor and memory defects.76 Poly(PR) binds 
to DNA and localises with heterochromatin, disrupting 
the condensed state, leading to aberrant histone 
methylation and altered gene expression.76 Furthermore, 
poly(PR) produces nuclear lamina invaginations and 
impairs nucleocytoplasmic transport.76 Poly(PR) also co
localises with heterochromatin in cortex from affected 
patients with the C9orf72 repeat expansion.76 These 
dipeptide repeats can trigger TDP43 proteinopathy, 
forging a link between C9orf72 repeat expansions and 
TDP43 pathology.77,78 Poly(GR) and Poly(GA) induce 
cytoplasmic TDP43 inclusions;77,78 additionally, poly(GR) 
sequesters nucleocytoplasmic trans port proteins.77 
Encouragingly, an antisense oligonucleotide targeting 
C9orf72 GGGGCC repeats reduces poly(GR) burden, 
TDP43 pathology, and neurodegeneration.77 Poly(GR) 
aggregates colocalise with TDP43 inclusions in brain 
tissue from patients with amyotrophic lateral sclerosis, 
suggesting pathological involvement.79 Importantly, 
studies are not fully con cordant, possibly due to differing 
model systems; thus, these findings require further 
investigation.

Liquid-to-liquid phase separation
In addition to impaired nucleocytoplasmic transport, 
there is emerging interest in liquidtoliquid phase 
separation (LLPS) in amyotrophic lateral sclerosis.80 LLPS 
occurs when a homogeneous fluid separates into 
two liquid phases, forming a dynamic, organellelike 
structure lacking a membrane.80 This process is related to 

several pathophysiological processes in amyotrophic 
lateral sclerosis, including nucleocytoplasmic transport, 
RNA metabolism, DNA repair, protein aggregation, and 
axonal transport.80 Stress granules are the most widely 
studied example of LLPS and form under cellular duress; 
normally, however, stress granules are dynamic and 
reversible once the cellular stress subsides. Yet, in 
amyotrophic lateral sclerosis, stress granule dynamics are 
impaired, leading to persistent granules of several RNA 
and protein aggregates, as well as TDP43 and FUS, which 
possess socalled lowcomplexity domains that predispose 
to aggregation.80 Argininerich C9orf72 repeat expansion
derived dipeptide repeats undergo LLPS and induce stress 
granule assembly, impairing dynamics.81 An invitro study 
on various cell types shows how LLPS occurs during 
increased cytoplasmic TDP43 con centrations, even 
independent of stress granules, recruiting nucleoporins, 
importins, and GTPbinding nuclear Ran proteins.82 
Although TARDBP, FUS, and C9orf72 are the major 
LLPSrelated genes for amyotrophic lateral sclerosis, 
multiple, less common risk genes are also involved, such 
as HNRNPA1, HNRNPA2B1, TIA1, and UBQLN2.80 Thus, 
LLPS is an exciting research direction, because it is shared 
by several risk genes and is also intertwined with well 
established pathophysiological mechanisms.

Cell-to-cell prion-like transmission
The lowcomplexity domains from TDP43 and FUS 
contain prionlike motifs.80 Selfpropagating spread of 
amyloid β and tau is a well studied phenomenon 
in Alzheimer’s disease. Celltocell transmission of 
aggregationprone proteins is a developing focus in 
amyotrophic lateral sclerosis research, including of wild
type and mutant SOD1,83 dipeptide repeats,84,85 and 
TDP43.86

Inflammatory pathways
Dysregulated inflammatory pathways are a recurrent 
thread in patients with amyotrophic lateral sclerosis.87 
Central and peripheral inflammation are present in  
mutant C9orf72, SOD1, and TARDBP animal models and 
in patients with familial amyotrophic lateral sclerosis.87 
This pathophysiology is characterised by immune cell 
infiltration into the CNS, dysregulated peripheral immune 
cell counts, induction of an activated immune phenotype, 
and altered cytokine production (figure 3).87 Cytotoxic CD8 
T cells infiltrate the CNS of mutant Sod1G93A mice and 
selectively destroy motor neurons; genetic ablation of this 
immune cell population slows motor neuro degeneration.88 
Furthermore, mutant SOD1G93A CD8 T cells express 
increased concentrations of interferon γ, a cytokine linked 
to amyotrophic lateral sclerosis progression.88 Patients 
with amyotrophic lateral sclerosis and loss of C9orf72 
activity secondary to C9orf72 repeat expansions lose the 
ability to regulate interferon production via the innate 
immune system (cGAS–STING pathway), leading to type 
1 interferonmediated systemic and CNS inflam mation.89 
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Similar increased interferon production is associated with 
TDP43 pathology in cell and animal models of 
amyotrophic lateral sclerosis.90 Blocking innate immunity 
signalling in mutant Tardbp mice normalises interferon 
concentrations, slows disease progression, and lengthens 
survival.90 Simultaneous with the increase in cytotoxic 
immune cells, amyotrophic lateral sclerosis is 
characterised by decreased concentrations of immune
regulatory and antiinflammatory Tregs87 and CD4 T cells.91 
Additionally, less frequent mutations for amyotrophic 
lateral sclerosis induce inflammation, including those in 
OPTN, SQSTM1, TBK1, and VCP.87 Thus, inflammation 
might modulate the progression of amyotrophic lateral 
sclerosis and survival. In patients with sporadic disease 
lacking any known genetic causes, the mechanism of 
immune dysregulation remains uncertain, although it is a 
characteristic feature.91,92 Similar to amyotrophic lateral 
sclerosis with a determined genetic cause, patients with 
sporadic disease have altered peripheral immunity, 
induction of an activated immune phenotype, and changes 
in peripheral cytokine concentrations.87

Overall, the emerging research directions in the patho
physiology of amyotrophic lateral sclerosis are nucleo
cytoplasmic transport, LLPS, and celltocell trans    mission. 
These pathways are interrelated and feed into other 
pathological aspects, such as abnormal ribostasis, 
proteostasis, and trafficking; mitochondrial dysfunction; 
DNA repair defects; and inflammation. Future work is 
needed to generate a holistic view of the pathophysiology 
of amyotrophic lateral sclerosis.

The exposome and amyotrophic lateral sclerosis
Although burgeoning genetic discoveries have deepened 
our understanding of the aetiology of amyotrophic 
lateral sclerosis, most cases are sporadic and do not 
have a known genetic cause. Moreover, incomplete 
heritability of known mutations suggests that 
environmental factors are involved.21 This consideration 
has led to the gene–time–environment hypothesis, 
which suggests that genetic predisposition interacts 
with environmental exposures over time leading to the 
development of amyotrophic lateral sclerosis.21 Thus, 
the role of an individual’s cumulative lifelong exposure 
(the exposome) on the risk of amyotrophic lateral 
sclerosis represents a developing research direction to 
better understand the aetiology and identify modifiable 
risk factors to prevent disease. Furthermore, the 
multistep model also supports environmental effects in 
amyotrophic lateral sclerosis, because a series of steps 
are required for disease onset,93 even in individuals with 
penetrant mutations.26

Several studies have investigated the exposome related 
to amyotrophic lateral sclerosis, which is broad and 
encompasses exogenous toxicant exposures (eg, 
environmental pollutants94), medical events (eg, brain 
trauma94), and lifestyle factors (eg, intense physical 
activity95 and military service94). Some exogenous 
environmental exposures can increase the risk of disease 
or accelerate disease progression (appendix pp 3–6). A 
2017 metaanalysis highlighted some commonly studied 
links between amyotrophic lateral sclerosis and the 

Figure 3: Inflammatory pathways in amyotrophic lateral sclerosis
(A) Various peripheral immune cell populations in blood have differential levels of expression in patients with amyotrophic lateral sclerosis, including innate (eg, neutrophils and natural killer cells) and 
adaptive (CD8 T cells) cells. In patients with amyotrophic lateral sclerosis, circulating natural killer cells over-express surface markers of cytotoxic function (eg, CD38, NKG2D, NKp30, and NKp46) and 
trafficking (eg, CD11a, CD11b, CXCR3, and CX3CR1). Circulating monocytes and dendritic cells expressing mutant TARDBP and C9orf72 repeat expansions increase IFNγ production. (B) Peripheral 
immune cells traffic to the CNS in patients with amyotrophic lateral sclerosis (eg, neutrophils and natural killer cells). This figure was created in BioRender. cGAMP= cyclic guanosine monophospate–
adenosine monophosphate. cGAS=cGAMP synthase. IFNγ=interferon γ. STING=stimulator of interferon genes protein.
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environment (odds ratio>1), encompassing lead exposure, 
heavy metals, pesticides, agricultural chemicals, and 
solvents.94 Studies in the past 5 years add to the growing 
literature of environmental risk factors for amyotrophic 
lateral sclerosis (appendix pp 3–6).

Importantly, not all exposome studies are concordant 
(appendix p 2), which might arise from different 
population sizes or characteristics (eg, location or 
genetics), exposure duration, adjustment parameters, 
and methodology (eg, historical estimates vs analyte 
measurements). Thus, despite a considerable body of 
evidence and identified links between amyotrophic 
lateral sclerosis and the environment, large prospective 
cohort studies are needed.96 These studies will require 
detailed registries of patient medical information linked 
to personal data and occupational and residential history 
with banked biosamples. Studies should evaluate how 
the exposome modifies disease progression and 
outcomes,97 as well as onset risk. Furthermore, environ
mental risks might not be geographically uniform, 
necessitating large prospective cohorts across diverse 
regions, possibly globally. Additionally, geographically 
distinct populations might also be genetically distinct, 
which could modify their exposure risk. Although gene–
environment interaction studies have been done for 
singlegene candidates,95 multiomics studies will be 
needed that bridge genetics98 (ie, monogenic, oligogenic, 
and polygenic risk) with the exposome, to truly 
comprehend amyotrophic lateral sclerosis risk and 
progression.

Conclusions and future directions
Much progress has been made towards a more 
comprehensive picture of amyotrophic lateral sclerosis, 
aided by a new understanding of the complex genetics 
behind the disease and the discovery of novel disease 
mechanisms. The advent of genetic therapies has 
realised experimental and early clinical trials of genetic 
therapies. Our growing body of knowledge advocates for 
a shift in clinical practice, trial design, and emerging 
research questions. Regarding clinical practice, we 
anticipate genetic testing will become routine, with the 
profiling of patients by mutation or genetic or polygenic 
risk, rather than the previous dichotomisation of familial 
or sporadic. Genetic profiling should also be leveraged to 
transform how forthcoming clinical trials are conducted, 
especially for genetic therapies, by stratifying trial 
participants by mutation status. This stratification will 
also ultimately impact management, as we shift gears to 
a more tailored precision approach. For preventive 
therapies, improved predictive algorithms will identify 
individuals most at risk, as the understanding of 
penetrance and oligogenic or polygenic risk crystallises. 
This development will tie in with environmental factors; 
multiomics platforms could generate an integrated 
perspective on gene–exposome architecture rather than 
on individual genetic or exposome contributions. 

Machine learning and big data might play a part in these 
ambitious goals;99 for instance, in prioritising genes for 
amyotrophic lateral sclerosis,100 particularly in view of the 
disease’s complexity. Emerging questions will continue 
to refine our picture of amyotrophic lateral sclerosis. 
Given the phenotypic spectrum of the disease and its 
overlap with other neurological diseases, and the genetic 
overlap among various conditions, should we switch to a 
molecular classification? Could we integrate such a 
classification with an exposome classification? These 
questions are not unique to amyotrophic lateral sclerosis, 
because most neurodegenerative diseases are sporadic. 
To meet the challenges of this complex disease, future 
studies will rely on large multicentre cohorts and 
integrated multiomics platforms, necessitating inter
national collaborative projects. Findings from these 
collaborative projects will improve our understanding of 
disease pathogenesis and lead to much needed and long
awaited therapies.
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Amyotrophic Lateral Sclerosis 2

Recent advances in the diagnosis and prognosis of 
amyotrophic lateral sclerosis 
Stephen A Goutman, Orla Hardiman, Ammar Al-Chalabi, Adriano Chió, Masha G Savelieff, Matthew C Kiernan, Eva L Feldman

The diagnosis of amyotrophic lateral sclerosis can be challenging due to its heterogeneity in clinical presentation and 
overlap with other neurological disorders. Diagnosis early in the disease course can improve outcomes as timely 
interventions can slow disease progression. An evolving awareness of disease genotypes and phenotypes and new 
diagnostic criteria, such as the recent Gold Coast criteria, could expedite diagnosis. Improved prognosis, such as that 
achieved with the survival model from the European Network for the Cure of ALS, could inform the patient and their 
family about disease course and improve end-of-life planning. Novel staging and scoring systems can help monitor 
disease progression and might potentially serve as clinical trial outcomes. Lastly, new tools, such as fluid biomarkers, 
imaging modalities, and neuromuscular electrophysiological measurements, might increase diagnostic and 
prognostic accuracy.

Introduction 
Amyotrophic lateral sclerosis is a neurodegenerative 
disease characterised by progressive, painless muscle 
weakness due to motor neuron death in the brain and 
spinal cord.1 Weakness begins in facial, tongue, and 
pharyngeal muscles in individuals with bulbar-onset 
disease, producing dysarthria and then dysphagia, or in 
distal upper-limb or lower-limb muscles in people with 
spinal-onset disease. Most patients with spinal-onset 
amyotrophic lateral sclerosis present with weakness in 
one body region that spreads over time to the same 
region on the contralateral side, as well as to regions 
rostral and caudal to the initial region of onset. 
Amyotrophic lateral sclerosis is now understood as a 
systems disease and there is substantial variation in 
clinical presentation, including of non-motor symptoms, 
behavioural changes, and cognitive decline (eg, fronto-
temporal dementia). Death generally occurs within 
2–4 years of diagnosis from respiratory failure, although 
more slowly progressive forms of the illness occur in a 
small proportion of patients.

Diagnosis can be challenging, and the process has 
remained essentially unchanged in clinical practice in 
the past decade. No test or tool has replaced clinical 
history and examination for confirming diagnosis, even 
with the increased adoption of genetic testing. The 
typical median time between initial symptoms and a 
definitive diagnosis is 10–16 months,2 due to the rarity of 
the disease, incomplete recognition of symptoms, and 
lack of early and appropriate specialist involvement.3 
Additionally, prognosis remains sub optimal because the 
determinants of disease progression are not fully known.

To facilitate earlier diagnosis and improve prognosis, 
research is ongoing into new diagnostic criteria and 
scoring systems, as well as emerging diagnostic and 
prognostic fluid biomarkers, imaging modalities, and 
electrophysiological measurements. This Series paper 
will highlight these emerging discoveries and focus on 

the most recent advances in diagnosis and prognosis 
within the past 5 years. This paper is accompanied by a 
research-focused Series paper,4 which provides an update 
on the complex genetics, pathophysiology, therapeutic 
development, and exposome science of amyotrophic 
lateral sclerosis.

Epidemiology 
Amyotrophic lateral sclerosis incidence and prevalence 
varies across the globe, and estimates are based on 
different data sources. The availability of registries in 
some countries enables more accurate calculations of 
incidence and prevalence, advocating for the need of 
population-based registries worldwide (panel 1). A recent 
meta-analysis of 110 incidence studies and 58 prevalence 
studies estimated an average global incidence of 1·59 
(95% CI 1·39–1·81) and a prevalence of 4·42 (3·92–4·96) 
per 100 000 indi viduals.11 Ancestral background and 
biological sex are linked to amyotrophic lateral sclerosis 
rates in an age-dependent manner.12 Despite male 
predominance, herit ability is greater in women, with the 
highest concordance in female–female parent–offspring 
pairs.9 Male carriers of the C9orf72 repeat expansion 
develop amyotrophic lateral sclerosis at an earlier age (by 
about 2 years) than female carriers do.13 Thus, an intricate 
interplay between age, sex, and complex genetics drives 
the risk of amyotrophic lateral sclerosis.12 These sex-
dependent differences urge con sideration of sex in 
preclinical and clinical research (to understand the basis 
of these effects), and in clinical trials for developing 
therapeutics.

Clinical presentation 
Amyotrophic lateral sclerosis was historically considered a 
fairly uniform disease of progressive, painless weakness of 
voluntary muscles.1 However, studies have redefined it as a 
complex disorder with considerable heterogeneity in 
clinical presentation, site of disease onset, and distribution 
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of upper and lower motor neuron signs (figure A, table 1). 
Recognition of these multiple hetero geneous presentations 
can facilitate early diagnosis and inform prognosis.16 The 
Australian National Motor Neuron Disease (1677 patients 
with amyotrophic lateral sclerosis)14 and Italian Piemonte 
and Valle d’Aosta registries (2839 patients with amyotrophic 
lateral sclerosis)12,15 have documented this heterogeneity in 
presentations, which also correlate with median survival 
(figure B). Patients with bulbar-onset disease are at a 
greater risk of frontotemporal dementia than are patients 
with other presentations.12 Additionally, less common 
presentations exist (eg, hemiplegic; table 1).17 Further more, 
presentations can correlate with the timing of some 
treatments. In the Australian registry, feeding tube 
placement secondary to dysphagia occurs earlier in 
patients with bulbar-onset disease than in those with 
spinal-onset disease,14 as was also reported in a European 
tertiary care cohort of people with amyotrophic lateral 
sclerosis.18

Thus, classification is based on clinical criteria, such as 
site of disease onset and distribution of upper and lower 
motor neuron signs.16 Additional relevant clinical 
variables, such as age, sex, family history, progression 
rate, genetic profile, and presence of cognitive impair-
ment and other non-motor symptoms, aid disease 
classification and can provide prognostic guidance.19

Non-motor symptoms
The concept of amyotrophic lateral sclerosis as a pure 
motor disease is now abandoned. In fact, it has been 
known for decades that executive dysfunction occurs in 
50% and frontotemporal dementia in 15% of patients. 
Executive dysfunction is evaluated by a suite of neuro-
psychological tests (table 2),20 and frontotemporal dementia 
in patients with amyotrophic lateral sclerosis is diagnosed 
by the revised Strong criteria.25 The most characteristic 
cognitive changes in amyotrophic lateral sclerosis include 
impaired language function22 and executive function 
deficits involving working memory, inhibition, set shifting, 
and fluency, whereas memory and spatial function are 
typically spared.23 Patients also experience cognitive decline 
and neuropsychiatric symptoms, including apathy, 
disinhibition, irritability, loss of sympathy or empathy, 
perseveration, reduced concern for hygiene, and changes 
in eating habits. Similar clinical patterns are present in 
patients with frontotemporal dementia.23 Additionally, 
many patients with amyotrophic lateral sclerosis have 
anxiety, depression, and sleep disorders.26

Executive dysfunction is a negative prognostic indicator 
and, if present, tends to worsen over time.27 Cognitive 
impairment can later manifest even in patients who seem 
to be cognitively spared at diagnosis27 and might be partly 
related to the worsening of motor function.23 Thus, there 
is a growing need to incorporate an evaluation of cognitive 
function into the diagnosis and ongoing management of 
amyotrophic lateral sclerosis. These behavioural changes 
can also frustrate family members or caregivers and 

prevent the patient from accepting medical recom-
mendations, emphasising the importance of addressing 
care preferences early in the disease.28 These cognitive 
and behavioural symptoms can be accompanied by 
structural changes in extramotor domains of the brain.

The influence of genes on clinical phenotype 
The discovery of mutant SOD1 in a subset of patients 
with amyotrophic lateral sclerosis in 1993 suggested a 
potential genetic aetiology, which enhanced our 
understanding of risk factors and pathophysiology.29 This 
possibility was strengthened in 2011 by the discovery 
of C9orf72 repeat expansions in a larger proportion of 
patients, both with and without a family history of 
amyotrophic lateral sclerosis.30 The genetic architecture of 
amyotrophic lateral sclerosis and nuances of familial 
versus sporadic disease are fully detailed in the 
accompanying research-focused Series paper.4 More than 
40 genes have been identified to date, which together 

Panel 1: Global incidence

Standardised incidence
The standardised incidence of amyotrophic lateral sclerosis is 
similar among European populations (1·89 per 100 000 in 
Northern Europe, 1·71 per 100 000 in Western Europe, and 
1·75 per 100 000 Southern Europe), and is higher than the 
standardised incidence in South American populations 
(1·59 per 100 000) and Asian populations (0·83 per 
100 000 in East Asia, 0·94 per 100 000 in West Asia, and 
0·73 per 100 000 in South Asia).5 Standardised rates are 
highest in Oceanian populations (2·56 per 100 000) and north 
African populations (2·03 per 100 000).5 There are no data on 
incidence for sub-Saharan Africa. Standardised incidence in 
North American populations is 1·79 per 100 000.5

Incidence by age
Incidence peaks between the ages of 60 and 75 years.6 In the 
USA, the National ALS Registry, which is coordinated by the 
Centers for Disease Control and Prevention, reports a peak 
prevalence between the ages of 60 and 79 years.7 Although 
global burden of amyotrophic lateral sclerosis is anticipated 
to increase due to the ageing of populations,8 the Irish ALS 
Register did not observe a rise in incidence between 1995 
and 2017.9

Incidence by sex
Sex plays a part in amyotrophic lateral sclerosis incidence and 
prevalence. In the Southeast England ALS Registry, the male-
to-female ratio in incidence at younger ages (25–34 years) 
was 3·7, which narrows to 1·2 in the 65–74-year age group, 
but then grows slightly to 1·4 for those aged 75 years or 
older.10 Sex differences in the prevalence of amyotrophic 
lateral sclerosis are present in the US National ALS Registry, 
which reports that 60% of people living with amyotrophic 
lateral sclerosis are male.7 The Irish ALS Register reports a 
lifetime risk of 1:347 for males and 1:436 for females.9

1542022 Feldman Laboratory Publications



482 www.thelancet.com/neurology   Vol 21   May 2022

Series

account for about 15% of cases. Thus, genetic testing is a 
growing, albeit non-uniform, component of disease 
management. As the cost of genetic profiling drops, we 
anticipate earlier and broader adoption. First, detection of 
known pathogenic variants could complement and 
bolster diagnoses achieved by diagnostic criteria. Second, 
although most mutations converge on a typical phenotype, 
there are important prognostic implications for some 
mutant genes linked to unique features (table 3). For 
example, ALS2, DCTN1, MATR3, OPTN, and SETX 
mutations are associated with slower clinical trajectories 
than those in patients with other, more common, types of 
amyotrophic lateral sclerosis, information that is valuable 
to patients and their families. Furthermore, routine 
genetic profiling could move past the inadequate 
stratification of patients into sporadic or familial disease. 
Additionally, genetic profiling promotes precision 
medicine33 and clinical trial stratification for targeted 
therapeutics (eg, gene therapies). Therefore, a genetic 
profile could potentially facilitate diagnosis, prognosis, 
and treatment for patients harbouring genetic mutations.

Diagnosis
Diagnostic criteria date back to the original El Escorial and 
later the revised El Escorial (Airlie House) and Awaji 
criteria. They rate the degree of diagnostic “certainty by 
clinical assessment alone” from possible to probable to 
definite amyotrophic lateral sclerosis, on the basis of the 
number of affected segments combined with clinical or 
electrophysiological findings, or both.34–36 The El Escorial 
classification provides prognostic information because, for 
instance, definite amyotrophic lateral sclerosis progresses 
faster.19 Although approaches that score the certainty of 
diagnosis solely by clinical assessment are reasonable 
(ie, possible amyotrophic lateral sclerosis), they can delay 
diagnosis and confuse patients, their families, and 
clinicians, who misinterpret these terms as meaning the 
diagnosis is improbable or incorrect.37 In reality, nearly all 
patients diagnosed as having possible amyotrophic lateral 
sclerosis progress and ultimately die from the disease.

Emerging diagnostic criteria 
To address these limitations, an international consensus 
group reconsidered criteria to improve the diagnostic 
process in the early stages of disease when clinical 
symptoms are minimal.38 Recognising the broad 
heterogeneity in presentations, the Gold Coast criteria 
define amyotrophic lateral sclerosis by: (1) progressive 
motor impairment, documented by history or repeated 
clinical assessment, preceded by normal motor function; 
(2) upper and lower motor neuron dysfunction in at least
one body region, or lower motor neuron dysfunction in
at least two body regions; and (3) investigative findings
that exclude alternative diseases.

Adoption of these simplified criteria abandons the 
previous diagnostic categories of possible, probable, and 
definite. The advent of these new criteria facilitates early 

and definitive diagnosis. An Australian study found that 
the diagnostic sensitivity of Gold Coast criteria (92%) was 
maintained irrespective of functional status, disease 
duration, or onset site, and was generally similar to that of 
the revised El Escorial (88·6%) and Awaji criteria (90·3%); 
however, the Gold Coast criteria were more sensitive and 
specific for identifying progressive muscular atrophy and 
for ruling out primary lateral sclerosis as a form of ALS, 
the latter of which meets the definition of possible 
amyotrophic lateral sclerosis in the revised El Escorial and 
Awaji criteria.39 This finding was validated in a five-centre 
European study, which found consistent and improved 
sensitivity of the Gold Coast criteria, due to greater 
sensitivity for identifying progressive muscular atrophy.40 
Lastly, a Chinese study corroborated the greater sensitivity 
of the Gold Coast against the revised El Escorial and Awaji 
criteria,41 suggesting that its diagnostic utility would be 
maintained in racially diverse populations. Importantly, 
the Gold Coast criteria were marginally less specific, 
which clinicians should bear in mind as they monitor 
their patients’ disease course. However, overall, we 
anticipate that the new Gold Coast criteria will facilitate 
diagnosis and dispel uncertainty and confusion for 
patients and their families.

Clinical overlap with other neurodegenerative disorders 
Amyotrophic lateral sclerosis is a multifaceted disease 
with remarkable heterogeneity of motor and non-motor 
features. This complexity contributes, in part, to the 

Figure: Heterogeneity in initial presentation and staging of amyotrophic 
lateral sclerosis

(A) Involvement of motor neuron dysfunction at initial presentation in different 
presentations. Spinal-onset amyotrophic lateral sclerosis involves variable 

motor neuron dysfunction in a combination of limbs. Bulbar-onset amyotrophic 
lateral sclerosis involves motor neuron dysfunction in bulbar muscles (eg, facial, 
tongue, and pharyngeal). Flail-arm amyotrophic lateral sclerosis involves lower 
motor neuron dysfunction in the arms, although mild dysfunction of the upper 

motor neurons can occur in the legs too. Flail-leg amyotrophic lateral sclerosis 
often involves asymmetric lower motor neuron dysfunction in the legs. Primary 

lateral sclerosis mainly involves upper motor neuron dysfunction in the arms 
and legs or bulbar region, although restricted dysfunction of lower motor 

neurons can develop in the later disease stages or become more widespread if it 
transitions to amyotrophic lateral sclerosis, often within 4·5 years of symptom 

onset. (B) Distribution of amyotrophic lateral sclerosis presentations in the 
Australian National Motor Neuron Disease Registry (N=1677; each human figure 

represents one percentage point)14 and distribution of amyotrophic lateral 
sclerosis presentations in the Italian Piemonte and Valle d’Aosta Registry 

(N=1332; each human figure represents one percentage point);12,15 median 
survival in years is presented under each presentation. Note that the two 

registries use slightly different classification systems. (C) King’s staging with four 
stages indicated (1, 2A/B, 3, 4A/B; blue); time to progress to stages and median 
survival at each stage (in months) for both bulbar-onset and limb-onset forms 
are also annotated. (D) ALS-MiToS staging with six stages indicated (0, 1, 2, 3, 
4, 5; orange); staging is based on four functional domains from the ALSFRS-R: 
(i) movement (walking or self-care; ALSFRS-R question 6 or 8); (ii) swallowing 

(ALSFRS-R question 3); (iii) communicating (ALSFRS-R questions 1 and 4), and 
(iv) breathing (ALSFRS-R question 10 or 12). Intensifying colour indicates 

progression along stages for both King’s and ALS-MiToS. 
ALS-MiToS=Amyotrophic Lateral Sclerosis Milano-Torino Staging. 

ALSFRS-R=amyotrophic lateral sclerosis functional rating score–revised. 
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Classic (30%)
2·6 years

Bulbar (34%)
2·0 years

Flail arm
(6%)
4·0 years

Flail leg
(13%)
3·0 years

Respiratory
(1%)
1·4 years

Pure upper
motor
neuron
(4%)
13·1 years

Pure lower
motor
neuron
(3%)
7·3 years

Pyramidal
(9%)
6·3 years

Lumbar (27%)

Spinal Bulbar Flail arm Flail leg Primary lateral sclerosis

Cervical (24%) Bulbar (26%) Flail arm (6%) Flail leg (3%) Primary lateral
sclerosis (5%)

Undifferentiated
(9%)

Italian Piemonte and Valle
d’Aoste Registry
N=1332

Australian National Motor
Neuron Disease Registry
N=1677

B

A

King's staging

Time to stage

Median survival at each
stage (bulbar-onset/
limb-onset)

Stage 1
19/59 months

13·5 months

Stage 2
19/28 months

Stage 3
13/13 months

Stage 4A, 9/6 months
Stage 4B, 3/8 months

C

ALS-MiToS staging

D

Stage 0
No loss of a
functional domain

Stage 1
Loss of one domain

Stage 2
Loss of two domains

Stage 3
Loss of three domains

Stage 4
Loss of four domains

Stage 5
Death

Stage 1
Symptom onset
Involvement of first
region

Stage 2A
Diagnosis

Stage 2B
Involvement of 
second region

Stage 3
Involvement of 
third region

Stage 4A
Need for gastrostomy

Stage 4B
Need for non-invasive
ventilation

Probability of death 0·07 0·26 0·33 0·33 0·86

17·7 months
23·3 months

17·7 months to 4A
30·3 months to 4B

Lower and upper motor neurons Upper motor neuronsLower motor neurons

difficulty of diagnosing the disease, which is rendered 
more challenging by its clinical overlap with other more 
common neurological and neuromuscular diseases 

(table 3). Additionally, C9orf72 repeat expansions, the 
most common mutations associated with amyotrophic 
lateral sclerosis in populations of European descent, are 
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among the strongest determinants of frontotemporal 
dementia. However, the clinical phenotypes present as a 
continuum from amyotrophic lateral sclerosis, to 
amyotrophic lateral sclerosis–frontotemporal dementia, to 
frontotemporal dementia, sometimes even within the 
same pedigree. Further complicating the situation, 
C9orf72 repeat expansions are associated with movement 
disorders such as parkinsonism, essential tremor, and 
myoclonus,42 in addition to cognitive impairment. The 
disease might present as atypical amyotrophic lateral 
sclerosis, which could contribute to a more difficult and 
lengthy diagnosis process. Therefore, awareness of 
additional manifes tations of an amyotrophic lateral 
sclerosis mutation could facilitate early diagnosis. 
Additionally, C9orf72 repeat expansions are the most 
frequent cause of Huntington’s disease phenocopies 
(patients with the classic Huntington’s disease phenotype 
but lacking characteristic HTT repeat expansions and 
inclusions).43 Conversely, patients with amyotrophic lateral 

sclerosis might harbour HTT repeat expansions 
simultaneously with TDP-43 inclusions,44 underscoring 
the complexity of genotype–phenotype associations. 
Understanding the spectrum of clinical presentations and 
overlap arising from mutations will expedite diagnosis. 
Finally, amyotrophic lateral sclerosis aggregates with 
neuro psychiatric illnesses, such as psychosis and suicidal 
ideation.45 Amyotrophic lateral sclerosis and schizo-
phrenia share a risk gene, GLT8D1,46 as well as polygenic 
risk.47 Therefore, in the family history of a patient with 
amyotrophic lateral sclerosis, it is not uncommon to find 
members with other neuro degenerative or psychiatric 
diseases.

Prognosis 
Nearly every patient with amyotrophic lateral sclerosis 
asks a series of questions, including on the amount of 
time the patient has left to live. Access to reliable 
prognostic methods allows clinicians to give patients and 

Affected motor neurons Progression Additional features

Classic bulbar onset Upper and lower motor neurons Begins with dysarthria, then dysphagia, then 
spreads to the limbs

Might have unexplained weight loss; 
typically will benefit from earlier 
feeding tube placement vs those with 
limb-onset disease

Pseudobulbar palsy Upper motor neurons Prominent bulbar features that slowly spread to 
the limbs

Affects more females than males; 
longer survival than for other 
phenotypes; pseudobulbar effect

Progressive bulbar palsy Lower motor neurons Prominent bulbar features, which spread to limbs Patients progress to ALS, although 
median survival can be longer than 
for those with classic bulbar-onset 
disease

Classic cervical onset Upper and lower motor neurons Typically, hand weakness that spreads to bulbar 
and lumbar regions

Trouble with hand dexterity or grip; 
split hand a prominent symptom

Classic lumbar onset Upper and lower motor neurons Typically, foot drop with weakness spreading to 
cervical and bulbar regions

Trouble with gait and a tendency to 
trip

Flail arm Lower motor neurons in upper 
extremities; upper motor neurons in 
lower extremities

Symmetrical weakness in proximal upper limb 
(more so than in distal upper limb) that 
eventually spreads

Slower progression than for other 
presentations; affects more males 
than females

Flail leg Lower motor neurons in lower 
extremities

Symmetrical lower-limb weakness Lower motor neuron weakness 
usually, but upper motor neuron 
signs will often develop

Primary lateral sclerosis Upper motor neurons Might begin in any region and spread over time; if 
lower motor neuron signs develop within 
4·5 years, diagnosis is amyotrophic lateral 
sclerosis instead

Normal life expectancy; exclude 
hereditary spastic paraparesis if the 
disease involves symmetrical lower-
limb signs

Progressive muscular 
atrophy

Lower motor neurons Might begin in any region and spread over time; if 
upper motor neuron signs develop within 
4·5 years, diagnosis is amyotrophic lateral 
sclerosis instead

Male predominance; absence of 
upper motor neuron signs

Respiratory Upper and lower motor neurons Limb weakness follows respiratory involvement Short survival

Hemiplegic Unilateral upper motor neurons 
affected more than lower motor 
neurons

Often begins in leg and spreads to ipsilateral arm Patients can have protracted disease 
course

Cachexia Upper and lower motor neurons Unexplained weight loss preceding presentation 
with classic limb-onset amyotrophic lateral 
sclerosis

Rapidly progressing disease

Classic amyotrophic lateral sclerosis refers to disease with combined upper and lower motor neuron dysfunction in the onset segment, which progressively spreads from 
region to region. Non-classical or atypical forms refer to phenotypes with predominance of upper or lower motor neuron dysfunction in a segment.

Table 1: Clinical spectrum of amyotrophic lateral sclerosis
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Signs and symptoms Neuropsychological tests

Executive function

Working memory Unable to temporarily process, store, and 
use information with conscious 
awareness20

Digit span subtest (Wechsler Adult 
Intelligence Scale, fourth edition); Corsi 
block-tapping test or spatial span 
(Wechsler Memory Scale, third edition)

Inhibition Inability to ignore stimuli, which can result 
in impulsive behaviour

Flanker task, continuous performance 
test, antisaccade task (NIH EXAMINER); 
Stroop test (Delis-Kaplan Executive 
Function System)

Set shifting Inability to change attention and 
behaviour for different circumstances and 
demands,20 causing rigid thinking and 
impairments in multitasking

Trail-making test (Delis-Kaplan 
Executive Function System); Wisconsin 
card sorting; set shifting test (NIH 
EXAMINER)

Fluency Disorganised thoughts or inability to 
initiate tasks

Verbal and design fluency tests; 
category fluency

Language function

Language 
impairment

Impairment in word naming, spelling, and 
grammatical processing

Psycholinguistic Assessments of 
Language Processing in Aphasia

Behaviour

Apathy Passivity and low levels of spontaneity and 
initiative, loss of interest and motivation 
for previously rewarding activities, and 
diminished social interest21

Beaumont Behavioural Inventory

Disinhibition Impulsivity, low self-restraint, socially 
inappropriate behaviours, irritability, verbal 
or physical aggression, disinhibited 
emotional display, changes in sexual 
behaviour, and decline in personal hygiene21

Beaumont Behavioural Inventory

Loss of sympathy or 
empathy

Diminished response and understanding 
of the needs and feelings of others, 
reduced inter-relatedness and personal 
warmth, and emotional detachment21

Beaumont Behavioural Inventory

Perseveration and 
stereotyped or 
obsessive–compulsive 
behaviours

Simple repetitive movements, more 
complex ritualistic behaviours, and 
stereotypy of speech21

Beaumont Behavioural Inventory

Eating behaviours Changed food preferences, and increased 
smoking, binge eating, hyperorality, and 
oral exploration of inedible items21

Beaumont Behavioural Inventory

Changes are shown along with associated symptoms and testing strategies.20–24 NIH=National Institutes of Health.

Table 2: Cognitive impairment and psychiatric comorbidities in patients with amyotrophic lateral sclerosis

their families evidence-based answers. Despite important 
limitations,48 clinicians and researchers currently rely on 
the revised functional rating score for amyotrophic lateral 
sclerosis (ALSFRS-R),49 a scoring system that monitors 
the rate of disease progression. ALSFRS-R changes do 
not necessarily reflect improvement in disease; for 
instance, symptom management (eg, treating sialorrhoea) 
or medical decisions (eg, discontinuing non-invasive 
ventilation) affect the ALSFRS-R, even though there is no 
change in the patient’s underlying disease. The multi-
dimensionality of the ALSFRS-R limits its clinical 
usefulness, especially in clinical trials,50 as well as its low 
responsiveness during plateau periods, which makes it 
hard to discern treatment effects in trials.51 Clinicians also 
derive prognostic value from respiratory tests, such as 
forced vital capacity;52 indeed, forced vital capacity is a 
predictive parameter in the European Network for the 
Cure of Amyotrophic Lateral Sclerosis (ENCALS) model.

Emerging prognostic methods 
Scoring systems 
The self-reported Rasch-Built Overall Amyotrophic 
Lateral Sclerosis Disability Scale (ROADS) was developed 
to overcome ALSFRS-R limitations by ensuring that 
symptom management or medical decisions do not 
ameliorate the disease score, which instead reflects true 
changes in disease progression.53 Compared with the 
ALSFRS-R, the 28-question ROADS better captures 
functional changes because it accounts for function at 
the upper and lower ranges of disability. Additionally, the 
scale has high test–retest reliability and is designed for a 
1-point change to represent the same change in function
across the whole score spectrum. This new scale is not
used in clinical practice as it requires validation; thus,
whether ROADS will supplant or complement the
ALSFRS-R requires further study.

Staging systems 
A staging system identifies where an individual is in the 
disease course, thereby improving counselling and 
resource allocation. Staging systems are also useful in 
clinical trials to establish whether an intervention 
reduces advancement from less-severe to more-severe 
disease stages. The King’s staging defines four pro-
gressive stages linked to survival (figure C) and can help 
in prognostication.18 King’s staging shows the different 
progression of patients as well. For instance, patients 
with bulbar onset require gastrostomy (stage 4A) before 
non-invasive ventilation (stage 4B), whereas non-invasive 
ventilation is usually needed before gastrostomy in 
patients with limb-onset disease. The Milano-Torino 
Staging for Amyotrophic Lateral Sclerosis (ALS-MiToS) 
places patients at one of six stages on the basis of select 
ALSFRS-R responses in four functional domains.54 In 
ALS-MiToS, staging depends on the number of functional 
domains lost (figure D); stage 0 is no loss, a patient at 
stage 1 will have lost one functional domain, a patient at 

stage 2 will have lost two functional domains, and so on, 
with stage 5 representing death. Patients probably 
progress from stage to stage, as opposed to skipping 
stages, with increasing probability of death with each 
stage. The King’s and ALS-MiToS systems are comple-
mentary; the King’s staging system is superior for staging 
earlier in the disease course, whereas ALS-MiToS 
outperforms later in the disease course.55 Although none 
of these instruments is used in clinical practice, both 
staging systems describe progression and survival, albeit 
with limitations,56 and could be useful in clinical trials.57

ENCALS survival model 
The ENCALS survival model is a recently developed 
approach for predicting survival in patients with 
amyotrophic lateral sclerosis, with non-survival defined 
as time to non-invasive ventilation for more than 
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23 h per day, tracheostomy, or death.19 The model used 
data from 11 475 patients with amyotrophic lateral 
sclerosis from 14 centres at several European sites, and 
included 16 clinical predictors, of which only 
eight reached statistical significance (p<0·001), including 
age at onset, time to diagnosis, ALSFRS-R progression 
rate, forced vital capacity, bulbar onset, definite 
amyotrophic lateral sclerosis by revised El Escorial 
criteria, frontotemporal dementia, and C9orf72 repeat 
expansion. These predic tors define five survival groups: 
very short (predicted median survival 17·7 months); short 
(25·3 months); intermediate (32·2 months); long 
(43·7 months); and very long (91·0 months). The 
ENCALS survival model unlocks the potential for 
personalised prognosis, which is essential for a disease 
of such heterogeneity. The model accurately estimated 

the life expectancy of Stephen Hawking,58 in stark 
contrast to the 2-year expectancy he was given at 
diagnosis.

Emerging diagnostic and prognostic biomarkers 
Currently, the diagnosis of amyotrophic lateral sclerosis 
relies on an integrative approach, which leverages clinical 
history (eg, presenting illness and symptom evolution), 
physical examination (eg, testing strength and reflexes), 
and confirmatory tests (eg, electromyography).59 Genetic 
testing is gaining traction but is not without caveats 
(table 3). Electromyography and nerve conduction studies 
are the mainstay of electrodiagnostic tests, although 
additional methods are available (panel 2). Although 
diagnosis remains suboptimal, there is an expanding 
toolbox of available methods and novel biomarkers. 

Inheritance pattern Proportion of 
familial cases

Proportion of 
sporadic 
cases

Associated clinical phenotype Overlap with other diseases

ALS2 Autosomal recessive <1% <1% Slowly progressive; infantile and 
juvenile forms mainly affect upper 
motor neurons; primary lateral 
sclerosis

Hereditary spastic paraparesis

ANG Autosomal dominant; 
presence is a risk factor

<1% <1% Typical; bulbar-onset tendency; 
frontotemporal dementia

No overlap

ANXA11 Autosomal dominant ~1% ~1·7% Not determined Autoimmune diseases, sarcoidosis

ATXN2 Autosomal dominant; 
presence is a risk factor

<1% <1% Typical; early onset; phenotype 
modifer

Spinocerebellar ataxia

C9orf72 Autosomal dominant 40% 7% Typical; frontotemporal dementia Huntington’s disease phenocopy, 
parkinsonism, essential tremor, 
myoclonus

C21orf2 Not determined <1% <1% Typical; frontotemporal dementia No overlap

CCNF Autosomal dominant ~1·0–3·3% <1% Typical; frontotemporal dementia; 
primary lateral sclerosis

No overlap

CHCHD10 Autosomal dominant <1% <1% Typical; frontotemporal dementia Cerebellar ataxia, myopathy

CHMP2B Autosomal dominant <1% <1% Typical; progressive muscular 
atrophy

Frontotemporal dementia

DCTN1 Autosomal dominant; 
presence is a risk factor

<1% <1% Slowly progressive; juvenile Perry syndrome (parkinsonism)

DNAJC7 Not determined <1% <1% Not determined No overlap

ELP3 Allelic <1% <1% Typical No overlap

FUS Autosomal dominant or 
recessive, depending on 
variant; de novo

4% 1% Typical or atypical; frontotemporal 
dementia; dementia; juvenile or 
adult onset

Essential tremor*

GLT8D1 Autosomal dominant <1% <1% Typical; shorter or longer survival 
than typical ALS, depending on 
variant

Schizophrenia

GRN Autosomal dominant; 
modifier

<1% <1% Earlier onset; shorter survival than 
typical ALS

Frontotemporal dementia, 
frontotemporal lobar degeneration, 
dementia with Lewy bodies*

HNRNPA1 Autosomal dominant; de 
novo; presence is a risk 
factor

<1% <1% Typical; cognitive impairment Inclusion body myopathy

HNRNPA2B1 Autosomal dominant; 
presence is a risk factor

<1% <1% Typical; cognitive impairment Inclusion body myopathy

KIF5A Autosomal dominant ~0·5–3% <1% Early onset; longer survival than 
typical ALS

Charcot-Marie-Tooth disease type 2, 
primary progressive multiple sclerosis 
phenocopy,* hereditary spastic paraplegia

(Table 3 continues on next page)
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Presently, most of these approaches are only used in the 
research setting and have not been validated for clinical 
use.

Neurofilaments 
Neurofilaments are neuronal cytoskeletal proteins that 
control neuron shape. Two markers are being developed: 
phosphorylated neurofilament heavy chain (NfH) in CSF 
and neurofilament light chain (NfL) in plasma, serum, or 
CSF. Phosphorylated NfH concentrations and NfL 
concentrations are elevated in individuals with amyo-
trophic lateral sclerosis compared with healthy controls.71 
NfL concentrations also rise 1 year before pheno conversion 
in presymptomatic individuals harbouring an amyotrophic 
lateral sclerosis gene.72 Higher NfL and phosphorylated 
NfH concentrations correlate with more aggressive disease 

and shorter survival, but are of low prognostic value.71,73 
Because baseline NfL concentrations are predictive of 
ALSFRS-R trajectory, incorporating them into mixed-
effects models of ALSFRS-R slopes might lower the 
number of participants needed in clinical trials.82 However, 
increased neuro filament concen trations are characteristic 
of neuro degen erative diseases generally,83 although they 
might still be fairly diagnostic of amyotrophic lateral 
sclerosis;73 thus, overall, neuro filaments remain of 
uncertain diagnostic and prognostic use alone, but could 
add value when combined with other methods.

Brain and spinal cord imaging 
Functional and structural brain imaging is a rapidly 
growing field,67 with considerable progress after the 
advent of multisite imaging protocols,84 studies 

Inheritance pattern Proportion of 
familial cases

Proportion of 
sporadic 
cases

Associated clinical phenotype Overlap with other diseases

(Continued from previous page)

LGALSL Not determined <1% <1% Early onset; typical

MATR3 Autosomal dominant <1% <1% Slowly progressive; typical or 
atypical; frontotemporal dementia; 
myopathy

Distal myopathy

NEFH Autosomal dominant; 
presence is a risk factor

<1% <1% Typical Charcot-Marie-Tooth disease type 2*

NEK1 Not determined ~1–2% <1% Not determined No overlap

OPTN Autosomal dominant or 
recessive, depending on 
variant

<1% <1% Slowly progressive; atypical Open-angle glaucoma, Paget’s disease

PFN1 Autosomal dominant <1% <1% Typical No overlap

SETX Autosomal dominant <1% <1% Slowly progressive; juvenile Spinocerebellar ataxia, progressive motor 
neuropathy

SPG11 Autosomal recessive <1% <1% Slowly progressive; juvenile, mainly 
affects upper motor neurons

Hereditary spastic paraparesis

SOD1 Autosomal dominant or 
recessive, depending on 
variant; de novo

12% 1–2% Prominent lower motor neurons; 
cognitive impairment very rare

No overlap

SQSTM1 Autosomal dominant ~1% <1% Typical Paget’s disease, frontotemporal dementia, 
dementia with Lewy bodies*

TARDBP Autosomal dominant or 
recessive, depending on 
variant; de novo

4% 1% Typical; frontotemporal dementia Supranuclear gaze palsy

TBK1 Autosomal dominant; de 
novo

~3% <1% Typical; frontotemporal dementia Frontotemporal lobar degeneration, 
dementia with Lewy bodies*

TIA1 Autosomal dominant ~2·2% <1% Frontotemporal dementia Dementia with Lewy bodies*

TUBA4A Autosomal dominant <1% <1% Typical; frontotemporal dementia No overlap

UBQLN2 X-linked; autosomal 
dominant

<1% <1% Typical; juvenile or adult onset; 
frontotemporal dementia

Frontotemporal dementia*

VAPB Autosomal dominant <1% <1% Typical or atypical Spinal muscular atrophy, essential tremor

VCP Autosomal dominant; de 
novo

1% 1% Typical; frontotemporal dementia Inclusion body myositis with Paget’s 
disease, parkinsonism, scapuloperoneal 
muscular dystrophy, dropped head 
syndrome

Adapted, with modifications, from Goutman et al (2018)31 and Chia et al (2018).32 Typical phenotype refers to the classic motor phenotype. ALS=amyotrophic lateral sclerosis. 
*Findings limited to few patients.

Table 3: Summary of genotype–phenotype correlations and their overlap with other diseases in people carrying genetic mutations associated 
with ALS
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indicating feasibility for early diagnosis68 and possibility 
of prog nosis,77,78 and for insight into pathogenesis—
eg, quantifying brain atrophy and connectomics (ie, con-
nections between brain regions). Spinal cord MRI is 
widely used to rule out diagnostic considerations other 
than amyotrophic lateral sclerosis,59 but more advanced 
diagnostic69 and prognostic79 applications are emerging.85

MRI assesses tissue appearance, brain structure 
volumes, and diffusivity, among other factors (appendix). 
Routine MRI does not identify people with amyotrophic 
lateral sclerosis; findings, if present, might be higher 
corticospinal tract and corpus callosum intensity in 
patients with amyotrophic lateral sclerosis than in 
healthy controls.86 A hypo-intensity of the cortical band 

along the precentral gyrus, called the motor band sign, 
might be characteristic of amyotrophic lateral sclerosis 
and can be detected by routine susceptibility-weighted 
images.87 However, advanced MRI analyses generate 
deeper insights using post-image processing (eg, asses-
sing brain volumes by mapping brain regions vs 
established clinical standards). Advanced MRI of patients 
with amyotrophic lateral sclerosis indicates, to variable 
degrees, atrophy in the precentral gyri, posterior 
cingulate cortex, thalamus, caudate, pallidum, putamen, 
hippocampus, and amygdala.88 Additional MRI tech-
niques include diffusion tensor imaging (DTI) and 
diffusion weighted imaging (DWI), which focus on white 
matter tracts. Studies consistently report changes to the 

Panel 2: Diagnostic and prognostic biomarkers for amyotrophic lateral sclerosis

Diagnostic methods in clinical use
Criteria: the most frequently used are the revised El Escorial34 
(ie, Airlie House)36 and Awaji35 criteria; these criteria rate the 
degree of diagnostic certainty (possible to probable to definite) 
on clinical assessment, on the basis of the number of affected 
segments or electrophysiological findings, or both.

Electrodiagnostic: needle electromyography recordings are used 
to confirm the presence and extent of lower motor neuron 
involvement.59

Ultrasound: lower motor neuron fasciculations are often an 
early sign60 (method is not very specific, so differential diagnosis 
might be needed); ultrasound can also be used to localise 
specific muscle groups during needle electromyography.

MRI: can be used to exclude cerebral and spinal amyotrophic 
lateral sclerosis mimics.59

Genetic testing: around 40 genes associated with disease are 
currently known; genetic testing is burgeoning, but with 
caveats.

Diagnostic methods in the research setting
Criteria: Gold Coast criteria are simplified criteria to define 
amyotrophic lateral sclerosis, particularly in the early stages.38

Electrodiagnostic: the number of functioning lower motor 
neuron units can be quantified using various methods,61 
whereas upper motor neuron involvement can be assessed by 
cortical hyperexcitability through transcranial magnetic 
stimulation with some diagnostic utility (and also by spectral 
EEG mapping and magnetoencephalography, which are both 
novel techniques);62–66 these techniques will be useful as 
adjuncts to existing methods, but require further research to 
evaluate their integration in clinical practice and to establish 
their sensitivity and specificity.

MRI and PET: advanced brain and spinal cord imaging offer 
some diagnostic insight;67–69 these techniques will be useful as 
adjuncts to existing methods but require additional research to 
evaluate their integration in clinical practice and their 
sensitivity and specificity.

Fluid biomarkers: the focus is on neurofilaments, but other 
biomarkers have been reviewed70 (neurofilaments have 
uncertain diagnostic utility);71–73 such biomarkers could serve as 
adjuncts to other methods.

Prognostic methods in clinical use
Scoring: the revised functional rating score for amyotrophic 
lateral sclerosis (ALSFRS-R) is an established scoring system to 
monitor the rate of disease progression.48,49

Spirometry: respiratory tests, such as forced vital capacity, 
generate prognostic value.52

Prognostic methods in the research setting
Scales and scoring: the self-reported Rasch-Built Overall ALS 
Disability Scale captures functional changes at upper and lower 
disability ranges,53 but requires validation.

Staging: the four-stage King’s staging18 and six-stage Milano-
Torino Staging54 systems are not used in clinical practice but might 
be useful in clinical trials;57 patients progress across stages over the 
disease course and median survival drops from stage to stage.

Prediction models: the ENCALS model can predict individual 
patient survival by leveraging eight characteristics;19 it is not in 
clinical use but could be useful for providing additional 
information to patients and their families.

Electrodiagnostic: hyperexcitability by transcranial magnetic 
stimulation has some prognostic utility;62–66 it might be useful 
as an adjunct to existing methods but requires further research 
to evaluate its integration into clinical care.74–76

MRI and PET: advanced brain and spinal cord imaging offer 
some prognostic insight;67,77–79 neuroimaging will be useful as an 
adjunct to existing methods but requires additional research to 
evaluate its integration in clinical practice.

Fluid biomarkers: the current focus is on neurofilaments, but 
various markers have been reviewed70 (neurofilaments have 
some prognostic utility but it is generally low71,80); another new 
biomarker is neutrophil-to-lymphocyte ratio,81 which positively 
correlates with shorter survival.

See Online for appendix
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corticospinal tract, corticopontine tract, corticorubral 
tract, corticostriatal pathway, and corpus callosum.88,89 

Diffusion kurtosis, a DTI adjunct, is a newer, more 
sensitive neuroimaging technique of white matter 
abnormalities, which might more accurately identify 
patients with amyotrophic lateral sclerosis than DTI 
without kurtosis.90 White matter changes are usually the 
earliest findings, followed by grey matter changes.91 
Spinal cord findings suggest a drop in corticospinal tract 
magnetisation transfer ratio and potential DTI changes, 
although progressive atrophy and cross-sectional area 
might be the most accurate biomarkers.85

The complexity of amyotrophic lateral sclerosis 
pathology advocates for multimodal MRI, which 
combines multiple MRI techniques. Multimodal MRI of 
both brain volume and white matter integrity has 
85·7% sensitivity and 78·4% accuracy for discriminating 
scans from people with amyotrophic lateral sclerosis and 
healthy controls.92 A multisite Italian study evaluated 
global and lobar connectivity in patients with amyotrophic 
lateral sclerosis using DTI, fractional anisotropy (a white 
matter tract integrity measure), and resting-state 
functional MRI.93 The study found widespread con-
nectomics dysfunction, with early degeneration of brain 
motor regions followed by a breakdown in functional 
connections, leading to cognitive decline.93 Multimodal 
longitudinal MRI can monitor spatio temporal spread via 
the brain connectome and potentially serve as a disease 
biomarker.89 Finally, quantitative susceptibility mapping 
MRI measures iron accumulation in the motor cortex,94 
which can be coupled with white matter assessments 
(ie, DTI, DWI, or diffusion kurtosis) to identify early tract 
changes associated with metal toxicity in individuals with 
amyotrophic lateral sclerosis. Similarly, multimodal MRI 
of the spinal cord has leveraged fractional anisotropy, 
magnetisation transfer ratio, and cross-sectional area to 
build a survival prediction model.79

PET imaging is another modality that might facilitate 
diagnosis and prognosis (appendix pp 3–8). By use of 
[¹⁸F]-fluorodeoxyglucose (FDG) PET, a two-site study 
reported hypometabolism in the frontal cortex and 
hypermetabolism in the temporal cortex, cerebellum, 
and brainstem in patients with amyotrophic lateral 
sclerosis.95 [¹¹C]-peripheral-type benzodiazepine receptor 
(PBR28) PET brain uptake, a surrogate of microglial 
activation, is increased in the bilateral precentral and 
paracentral gyri of patients with amyotrophic lateral 
sclerosis compared with healthy controls, and colocalises 
with cortical thinning (as assessed by integrated MRI 
imaging)96 but might not correlate with clinical pro-
gression.96 Integrating the spinal cord with the brain in 
[¹⁸F]-FDG PET allows differentiation of amyotrophic 
lateral sclerosis from mimics of the disease.97

Overall, tremendous progress has been made in 
advanced brain MRI and PET along with advanced spinal 
cord imaging, which could improve diagnosis68,69 and 
prognosis.77–79 Although we anticipate that imaging will 

be useful as an adjunct to existing methods, additional 
research is required to evaluate how to integrate imaging 
into clinical care. Furthermore, most imaging studies 
focused on individuals with amyotrophic lateral sclerosis 
versus healthy controls; however, future studies will need 
to include patients with mimic disorders to better 
evaluate sensitivity and specificity.68,97

Spectral EEG mapping and magnetoencephalography 
Electrophysiological techniques are used to assess brain 
networks. High-density spectral EEG mapping measures 
the coherence of several frequency bands between brain 
regions, generating a functional measure of brain 
connectivity.98,99 EEG changes occur to brain connectivity in 
both motor and non-motor systems, confirming that 
amyo trophic lateral sclerosis is not a pure motor disease, 
in agreement with MRI connectomics findings.99 Magneto-
encephalography shows that brain networks become 
increasingly connected during disease progression, 
indicating a dysfunctional, modified brain topology.100 
These findings are important because reorganisation of 
brain connections could potentially predict disease 
spread.89 Connectomics studies are needed that combine 
multi modal MRI, high-density spectral EEG, and magneto-
encephalography to further understand how brain 
structural changes and corresponding connectivity 
changes associate with the symptomatology and disease 
course. EEG and magneto encephalography connectomics 
are novel techniques not presently in clinical use and their 
potential as diagnostic and prognostic tools is unknown.

Hyperexcitability 
Excessive cortical excitability (ie, hyperexcitability) is 
increasingly recognised as a pathophysiological mech-
anism of the neurodegenerative cascade.101 Clinically, 
hyper excitability manifests as fasciculations combined 
with upper motor neuron features of increased tone and 
hyperreflexia.102 Hyperexcitability is linked to excito-
toxicity from excessive glutamate receptor activity at the 
synaptic cleft, leading to motor neuron death.33,103 Cortical 
motor neuronal hyperexcitability can be captured by 
transcranial magnetic stimulation (TMS).104 A TMS coil is 
placed over the motor cortex and responses are recorded 
from the contralateral hand in the abductor pollicis 
brevis muscle. TMS extracts measures of short-interval 
intracortical inhibition and facilitation that represent 
interneuron function.

There is a decrease in short-interval intracortical 
inhibition and increase in short-interval intracortical 
facilitation in presymptomatic individuals with amyo-
trophic lateral sclerosis.105 TMS detects cortical hyper-
excit  ability across a range of phenotypes and can 
differ entiate amyotrophic lateral sclerosis from other 
disor ders with high sensitivity (73·21%) and 
specificity (80·88%) at early disease stages.62 TMS can also 
distinguish amyotrophic lateral sclerosis (with cortical 
hyperexcitability predominance) from primary lateral 
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sclerosis (with cortical inexcitability pre dominance).63 
TMS can also investigate pathological spread, using 
hyperexcitability as a surrogate by recording responses at 
the tibialis anterior in addition to the abductor pollicis 
brevis. Analysis of patients with amyotrophic lateral 
sclerosis shows that there is heterogeneity in cortical 
dysfunction by body region; cortical hyperexcitability 
predominates in the upper limbs and cortical inexcitability 
predominates in the lower limbs when compared with 
healthy controls.64 Further more, cortical hyperexcitability 
correlates with the clinically affected body region; patients 
with amyotrophic lateral sclerosis exhibit focal asymmetry 
at the onset site early in the disease but widespread 
hyperexcitability alterations in late stages.65 Cortical motor 
hyperexcitability might also detect cognitive dysfunction; 
cortical resting motor threshold distinguishes 
amyotrophic lateral sclerosis, amyo trophic lateral 
sclerosis–frontotemporal dementia, and fronto temporal 
dementia.66

The role of TMS in prognosis is less established than it 
is in diagnosis. A longitudinal study of participants with 
suspected amyotrophic lateral sclerosis found cortical 
hyperexcitability increases with longer disease duration, 
indicating a potential link to disease progression.74 
Cortical inexcitability might predict a poorer clinical 
trajectory, with inexcitability in all four limbs correlating 
with younger age, lower-limb onset, greater extent of 
functional disability, and more rapid disease 
progression.75 Thus, cortical hyperexcitability might 
improve our ability to predict clinical outcomes. It could 
also serve as a biomarker for drug activity, such as in 
clinical trials of retigabine, an activator of voltage-gated 
potassium channels.76

Presently, TMS is not in clinical use, although it does 
appear to offer some diagnostic and prognostic utility 
and probably will be informative as an adjunct to 
pre-existing methods. However, future research will 
establish the full potential of TMS, and whether this 
novel electrophysiological assessment will become a 
fully accepted disease biomarker.

Machine learning 
Amyotrophic lateral sclerosis is a highly heterogenous 
syndrome of genetic and unknown causes with diverse 
clinical presentations. Machine learning approaches can 
analyse large datasets (eg, clinical, demographic, electro-
physiological, imaging, or morphology) in an agnostic, 
data-driven manner to develop diagnostic and prognostic 
models.106 Tang and colleagues used clinical data 
encompassing 8000 patients, 3 million records, and 
200 clinical features from the Patient Data Pooled 
Resource Open-Access ALS Clinical Trials database.107 
Their analysis yielded four consistent phenotypes, 
defined by slope change in ALSFRS-R, with more than 
95% diagnostic accuracy on the basis of multivariate 
features. These investigators used deep learning 
modelling, a form of machine learning, for prognosis. 

Their modelling predicted patient survival in this cohort 
when incorporating TDP-43 aggregation and morphology, 
and MRI connectivity data with clinical characteristics.89 
Further research will establish whether machine learning 
can unlock a way forward for diagnosing and prog-
nosticating at the individual level by integrating multi   -
domain information.

Overview of prognostic and diagnostic tests 
Overall, most novel diagnostic and prognostic tests for 
amyotrophic lateral sclerosis are limited to the research 
setting. Further studies are needed to establish whether 
these approaches will be useful in a real-world clinical 
setting. Such evaluation will entail studies enrolling 
participants with diseases mimicking amyotrophic 
lateral sclerosis and longitudinal studies against validated 
prognostic scales to evaluate their potential for improved 
diagnosis (sensitivity and specificity) and prognosis. 
Additionally, it will be necessary to identify how to apply 
findings made from large cohort studies to the diagnosis 
and prognosis of individual patients. Until more specific 
and sensitive tests are developed, the diagnosis of 
amyotrophic lateral sclerosis will remain an integrative 
and iterative process reliant on clinical history, physical 
examination, and confirmatory electrodiagnostic tests.

Conclusions and future directions 
Although diagnosis and prognosis have remained 
essentially unchanged in the past decade (except for 
genetic testing), research is ongoing into new diagnostic 
and prognostic criteria, and biomarkers (eg, neuro-
filament, hyper excitability, and imaging). Even within the 
realm of genetic testing, questions remain regarding 
variant pathogenicity, penetrance, and overlap with other 
neurological disorders. It is anticipated and hoped that 

Search strategy and selection criteria 

Between Aug 3 and Aug 12, 2021, we searched PubMed for 
English language articles published from Jan 1, 2016, to 
Oct 12, 2021, using the term “amyotrophic lateral sclerosis”, 
and the terms “epidemiology”; “phenotype”; “diagnostic”; 
“cognition” and “cognitive”; “GWAS” plus each amyotrophic 
lateral sclerosis gene in turn; “neurofilaments”, “Amyotrophic 
Lateral Sclerosis”[MeSH] AND “magnetic[title] OR mri[title]”, 
“Amyotrophic Lateral Sclerosis”[MeSH] AND 
“connectome[title]”, “Amyotrophic Lateral Sclerosis”[MeSH] 
AND “PET[title] OR positron[title]”, “EEG”, and 
“hyperexcitability”; and “prognosis”. Additional searches were 
done during revisions between Nov 15 and Nov 19, 2021, 
using the terms “amyotrophic lateral sclerosis” and: “spinal 
cord”, “multimodal MRI”, and “PET”; “machine learning”; 
“biomarker”, “fluid”, “electrodiagnostic”, and 
“electrophysiological”. Additionally, authors used articles from 
their personal files and references from the identified articles. 
Articles were selected on the basis of relevance to this Series.
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advances in these areas will expedite the diagnosis and 
prognosis of amyotrophic lateral sclerosis in the future. 
Faster diagnosis will allow clinicians to initiate care 
earlier, which might enhance effectiveness or ensure 
administration within a therapeutic window. Ultimately, 
insight into the long preclinical phase of amyotrophic 
lateral sclerosis will be necessary to truly facilitate early 
diagnosis.108 Improved prognosis will give patients and 
their families a better understanding of the disease 
course, aiding medical decisions and planning. A major 
advance is the recognition of amyotrophic lateral sclerosis 
as a disease with both motor and non-motor features, 
which has implications for diagnosis, management, and 
prognosis. Importantly, cognitive symptoms are not 
presently considered in clinical criteria and scales, yet 
their integration might improve diagnosis and prognosis. 
We foresee that these and other future advances will lead 
to better care for patients with this disease.
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Amyotrophic lateral sclerosis 
Eva L Feldman, Stephen A Goutman, Susanne Petri, Letizia Mazzini, Masha G Savelieff, Pamela J Shaw, Gen Sobue

Amyotrophic lateral sclerosis is a fatal CNS neurodegenerative disease. Despite intensive research, current management 
of amyotrophic lateral sclerosis remains suboptimal from diagnosis to prognosis. Recognition of the phenotypic 
heterogeneity of amyotrophic lateral sclerosis, global CNS dysfunction, genetic architecture, and development of novel 
diagnostic criteria is clarifying the spectrum of clinical presentation and facilitating diagnosis. Insights into the 
pathophysiology of amyotrophic lateral sclerosis, identification of disease biomarkers and modifiable risks, along with 
new predictive models, scales, and scoring systems, and a clinical trial pipeline of mechanism-based therapies, are 
changing the prognostic landscape. Although most recent advances have yet to translate into patient benefit, the idea of 
amyotrophic lateral sclerosis as a complex syndrome is already having tangible effects in the clinic. This Seminar will 
outline these insights and discuss the status of the management of amyotrophic lateral sclerosis for the general neurologist, 
along with future prospects that could improve care and outcomes for patients with amyotrophic lateral sclerosis.

Introduction 
Amyotrophic lateral sclerosis, a fatal CNS neuro
degenerative disease, can be difficult to recognise, 
especially in the early stages. The disease is rare, and 
more common illnesses are frequently considered before 
amyotrophic lateral sclerosis, delaying diagnosis. 
However, the lifetime risk of the disease is approximately 
one in 350 people, although low life expectancy reduces 
the prevalence.1 Recognition of phenotypic heterogeneity, 
and amyotrophic lateral sclerosis as a complex syndrome 
that frequently includes behavioural deficits, could help 
physicians better recognise it earlier in the disease course. 
Development of new diagnostic criteria and identification 
of genetic risk factors could also expedite the diagnostic 
process.2 Regarding prognosis, a clearer understanding of 
the multisystem nature of amyotrophic lateral sclerosis, 
including cognitive dysfunction and behavioural changes, 
has important ramifications for caregiving support and 
endoflife decision making. Moreover, newly developed 
predictive models, scales, and scoring systems can give 
patients with amyotrophic lateral sclerosis and their 
physicians a clearer idea of their disease course.2 Advances 
in our understanding of disease pathophysiology are 
leading to mechanismbased and potentially disease
modifying therapies, currently in clinical trials. This 
Seminar will outline these topics and current clinical 
practice for amyotrophic lateral sclerosis, along with 
research advances, which could facilitate future 
improvements in diagnosis and prognosis for patients 
with amyotrophic lateral sclerosis.

Epidemiology 
Incidence of amyotrophic lateral sclerosis rises with age 
and is highest between 60 years and 79 years,3,4 although 
variation can occur by ancestral background.5 Some 
studies show stable incidence over the past two 
or three decades,1 whereas others report a possible 
increase.6,7 Changes in perceived incidence could arise 
from improved diagnosis or changes in reporting 
standards over time, advocating the construction of well 
curated population registries. Whether the incidence of 
amyotrophic lateral sclerosis has changed in the past 

couple of decades is unclear, although it is anticipated to 
increase with an ageing population.8 Prevalence of 
amyotrophic lateral sclerosis is also expected to increase 
due to an ageing population, in addition to improved 
management, which supports increased life expectancy.8,9 
However, it remains a relatively rare disease. Standardised 
global incidence of amyotrophic lateral sclerosis by meta
analysis is only 1·68 per 100 000 personyears of 
followup, but varies by region.10 In populations of 
predominantly European descent, such as in Europe 
and North America, incidence is slightly higher than 
the global average, ranging from 1·71 per 100 000 
to 1·89 per 100 000, and could even be higher within 
populationbased studies.11 Asian populations have lower 
incidences, varying from 0·73 per 100 000 in south Asia 
to 0·94 per 100 000 in west Asia, whereas Oceania 
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Search strategy and selection criteria

We searched PubMed for English language articles from 
Sept 15, 2021, to Oct 5, 2021, and then again in 
January, 2022, with the terms, in addition to “amyotrophic 
lateral sclerosis”: “epidemiology”; “phenotype”; “diagnostic”, 
“diagnosis”, “cognition”, and “cognitive”; “GWAS”, “genetic”, 
“risk”, “oligogenic”, “polygenic”, and “heritability”; “mimic” 
and “GWAS” combined with every amyotrophic lateral 
sclerosis gene in turn; “pathophysiology”, “mechanism”, 
“nucleocytoplasmic transport”, “cell-to-cell transmission”, 
“immune system”, “exposure”, “environment”, “pollutant”, 
“toxin”, “metals”, and “traffic”; “prognosis”, “scoring”, 
“scaling”, and “staging”; “multidisciplinary care”, “riluzole”, 
“edaravone”, “non-invasive ventilation”, and “gastrostomy”; 
and “gene therapy”, “antisense oligonucleotide“, “antibody”, 
“immune”, “clinical trial”, “neurofilaments”, “imaging”, “PET”, 
“connectome”, “EEG”, and “hyperexcitability”. The search 
focused on articles published from Jan 1, 2017, 
to Jan 31, 2022, although older seminal articles were also 
considered. We also included articles from the authors’ 
personal reference lists. Articles were selected on the basis of 
relevance to this Seminar. Additionally, we searched 
ClinicalTrials.gov for “amyotrophic lateral sclerosis”.
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universally has the highest incidence (2·25 per 100 000).7,10 
Incidence also varies by sex, with an overall standardised 
maletofemale ratio of 1·35, which is affected by age of 
onset.12 Genetics also has a role; heritability is higher in 
mother–daughter pairs,1 whereas the most common 
known amyotrophic lateral sclerosis risk gene, C9orf72, 
lowers onset age in men versus women.13 Thus, 
amyotrophic lateral sclerosis arises from complex 
interrelationships between age, sex, and genetics,14 which 
has implications for preclinical and clinical research, and 
clinical trials.

Clinical presentation 
Phenotypic heterogeneity 
Amyotrophic lateral sclerosis presents as a combination of 
upper motor neuron (UMN) and lower motor neuron 

(LMN) dysfunction, affecting the bulbar, cervical, thoracic, 
or lumbar segments.2 This dysfunction leads to progressive 
weakness of voluntary skeletal muscles involved 
in limb movement, swallowing (dysphagia), speaking 
(dysarthria), and respiratory function, with different 
clinical presentations (panel 1). Sphincter and extraocular 
muscles are classically spared, although autonomic 
dysfunction in amyotrophic lateral sclerosis is increasing ly 
recognised (eg, urinary urgency and incontinence).15 
Clinical weakness spreads contralaterally, rostrally, and 
caudally, most often in an anatomically contiguous 
manner. A 2018 survey of 470 patients with amyotrophic 
lateral sclerosis found that 85% had focal onset in one body 
segment, which progressed to the contralateral side and 
then to adjacent anatomical segments.16 Spread of disease 
to noncontiguous segments was less common.

Panel 1: Definitions of amyotrophic lateral sclerosis motor signs and phenotypes

Lower motor neurons (LMN) 
• Brainstem cranial motor nerve nuclei or anterior horn

cells
• LMN dysfunction is characterised by muscle weakness,

atrophy, and fasciculations

Upper motor neurons (UMN) 
• Betz cells in layer V of the primary motor cortex
• UMN dysfunction is characterised by increased and 

pathological reflexes (including Hoffmann’s sign, 
Babinski, and snout), pathological spread of reflexes,
preserved reflexes in a weak limb, and spasticity

Bulbar amyotrophic lateral sclerosis 
• Phenotype presents with weakness starting in the

muscles controlling speaking and swallowing
• Both LMN and UMN signs are present

Pseudobulbar palsy 
• A non-classical subset of bulbar onset, characterised by 

prominent bulbar features, predominantly from UMN 
signs, which slowly spread to limbs

Pseudobulbar affect 
• Uncontrollable emotional outbursts, including laughing,

crying, and excessive yawning

Classical amyotrophic lateral sclerosis 
• Phenotype presents with muscle weakness starting in the

limbs; both LMN and UMN signs are present

Cervical-onset amyotrophic lateral sclerosis 
• A subset of classical amyotrophic lateral sclerosis with

weakness commencing in the upper limbs, especially 
hand weakness

Lumbar-onset amyotrophic lateral sclerosis 
• A subset of classical amyotrophic lateral sclerosis with 

weakness commencing in the lower limbs, especially foot
drop

Flail arm 
• Prominent LMN dysfunction initially causing proximal 

muscle weakness greater than distal muscle weakness in
the arms

• Unlike progressive muscular atrophy, patients with flail arm 
do manifest progressive UMN dysfunction; this entity can 
also be referred to as brachial amyotrophic diplegia

Flail leg: 
• LMN dysfunction causing muscle weakness in the legs; 

unlike progressive muscular atrophy, this phenotype does 
not generalise or generalises very slowly

Primary lateral sclerosis*: 
• UMN dysfunction causing weakness in muscles controlling 

limbs, swallowing, and speaking
• Less commonly causes respiratory dysfunction

Pyramidal: 
• Like primary lateral sclerosis but additionally eventually 

exhibiting LMN signs

Progressive muscular atrophy*: 
• LMN dysfunction causing weakness in muscles controlling 

limbs, swallowing, speaking, and respiratory function

Respiratory onset 
• LMN and UMN dysfunction causing weakness commencing 

in the respiratory muscles

Hemiplegic 
• Predominantly UMN dysfunction causing muscle weakness 

in one side of the body

Cachexia 
• Unexplained weight and muscle loss

*This Seminar considers primary lateral sclerosis and progressive muscular atrophy on the 
spectra of amyotrophic lateral sclerosis phenotypes, although they can also be considered 
as separate clinical entities.

Downloaded for Anonymous User (n/a) at UNIVERSITY OF MICHIGAN from ClinicalKey.com by Elsevier on December 
07, 2022. For personal use only. No other uses without permission. Copyright ©2022. Elsevier Inc. All rights reserved.

1682022 Feldman Laboratory Publications



Seminar

www.thelancet.com   Vol 400  October 15, 2022 1365

Amyotrophic lateral sclerosis presents as multiple 
phenotypes (figure 1A–B; appendix pp 4–6). Bulbaronset 
and spinalonset (cervical and lumbar) amyotrophic lateral 
sclerosis are the most common presentations, each 
constituting about a quarter of the cases. Less frequently,  
patients present flail arm and leg, primary lateral sclerosis, 
progressive muscular atrophy, respiratory onset, or 
hemiplegia.12,13 This Seminar considers primary lateral 
sclerosis and progressive muscular atrophy on the spectra 
of amyotrophic lateral sclerosis phenotypes, although they 
could also be considered as separate clinical entities. Age, 
sex, and genetics also contribute to amyotrophic lateral 
sclerosis phenotypes. Women aged 60 years or older more 
commonly develop bulbaronset amyotrophic lateral 
sclerosis, whereas men aged less than 60 years present 
with the classical phenotype. Pure UMN variants are more 
commonly seen in men and women aged less than 60 
years. Flail arm, leg, and respiratory onset primarily 
develop in men, irrespective of age.14 Specific genetic 
mutations favour certain pheno types. One study of 
German and Chinese registries suggests that phenotypes 
could vary globally.18 German patients with amyotrophic 
lateral sclerosis have an older onset age (66·6 years), a 
larger proportion of bulbar onset (35·9%), and a smaller 
maletofemale ratio (1·33) than do Chinese patients 
(53·2 years onset age; 22·8% bulbar; 1·51 maletofemale 
ratio).18 Consensus phenotyping between registries would 
advance our knowledge of age, sex, genetics, racial, and 
ethnic contributions to phenotypes.

Cognitive and behavioural changes 
Classically, amyotrophic lateral sclerosis was 
predominantly considered a disease of motor dysfunction 
(eg, dysarthria, dysphagia, and weakness of upper and 
lower limb muscles). However, cognitive and behavioural 
changes, which can occur early in the disease course,19,20 
are now recognised to occur in 35–50% of patients with 
amyotrophic lateral sclerosis.21,22 Individuals with 
amyotrophic lateral sclerosis have loss of normal 
language and executive function (ie, poor working 
memory, inhibition, and fluency). Typically, more long
term memory and spatial domains remain intact.21 Other 
behavioural changes include apathy, irritability, disregard 
for hygiene, and eating habit changes. Approximately 
15% of patients with amyotrophic lateral sclerosis meet 
the diagnostic criteria for frontotemporal dementia.20,23 
Furthermore, depression, anxiety, and sleep disruptions 
occur in amyotrophic lateral sclerosis24 along with 
pseudobulbar affect, which causes emotional lability.16

These cognitive and behavioural changes support the 
concept that amyotrophic lateral sclerosis is a global 
neurodegenerative disease along the same continuum 
as frontotemporal dementia (figure 1C). Transactive 
response DNAbinding protein 43 kDa (TDP43) 
proteinopathy, an almost universal finding in amyotrophic 
lateral sclerosis, is present in around 97% of patients and 
around 50% of patients with frontotemporal dementia. 

Mild deficits in executive function, language, and fluency 
have 100% specificity for TDP43 pathology in nonmotor 
brain regions corresponding to these domains.25 Some 
patient characteristics, such as C9orf72 status26,27 and 
bulbar onset,27 are strong determinants of cognitive 
impair ment and could help the physician and patient to 

See Online for appendix

Figure 1: Amyotrophic lateral sclerosis phenotypic variation and spectrum with frontotemporal dementia
(A) Schematic showing UMNs (blue), which relay signals from the motor cortex to the LMNs (yellow; ie, cranial 
motor nerve nuclei in the brainstem and anterior horn cells in the spinal cord), which relay signals to the muscles. 
Motor neurons connecting within the brain stem innervate, among other muscles, cranial muscles. Initial UMN 
and LMN degeneration in the brain stem are linked to bulbar-onset amyotrophic lateral sclerosis. Motor neurons 
connecting within the cervical region of the spinal cord innervate, among other muscles, upper limb and 
respiratory muscles. Motor neurons connecting within the thoracic and lumbar regions of the spinal cord 
innervate, among other muscles, accessory respiratory, abdominal, and lower limb muscles. Initial UMN and LMN 
degeneration in the cervical and lumbar regions are linked to spinal-onset amyotrophic lateral sclerosis. 
(B) Patients with amyotrophic lateral sclerosis can present with signs of UMN (blue), LMN (yellow), and combined 
UMN and LMN (green) dysfunction. Most common amyotrophic lateral sclerosis phenotypic presentations are 
bulbar and classical spinal limb onset (cervical and lumbar). Less common amyotrophic lateral sclerosis phenotypic 
presentations are flail leg, pyramidal, flail arm, PLS, PMA, respiratory onset, and hemiplegic. Proportion of 
amyotrophic lateral sclerosis phenotypes shown in the figure as the percentage of a total representative 
amyotrophic lateral sclerosis population.14,17 Pyramidal is predominantly UMN, but still exhibits some LMN signs, 
differentiating it from PLS (appendix pp 4–6). (C) Amyotrophic lateral sclerosis occurs on a continuum with 
frontotemporal dementia. Amyotrophic lateral sclerosis is on one end of the spectrum and presents with pure 
motor signs from UMN and LMN neurodegeneration. Frontotemporal dementia is on the other end of the 
spectrum and presents with behavioural and cognitive deficits from frontotemporal neurodegeneration. 
After pure amyotrophic lateral sclerosis are patients with amyotrophic lateral sclerosis not meeting frontotemporal 
dementia criteria, defined as ALSci, ALSbi, and ALScbi, followed by patients meeting frontotemporal dementia 
criteria (ALS–FTD). Patients on the remainder of the continuum have frontotemporal dementia but do not meet 
the criteria for amyotrophic lateral sclerosis. Some patients still have evidence of MND with frontotemporal 
dementia and patients with no MND signs have frontotemporal dementia. ALS=amyotrophic lateral sclerosis. 
ALSbi=amyotrophic lateral sclerosis behavioural impairment. ALSci=amyotrophic lateral sclerosis cognitive 
impairment. ALScbi=amyotrophic lateral sclerosis cognitive and behavioural impairment. FTD=frontotemporal 
dementia. LMN=lower motor neurons. MND=motor neuron disease. PLS=primary lateral sclerosis. 
PMA=progressive muscular atrophy. UMN=upper motor neurons. 
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anticipate this complication. Furthermore, cognitive 
dysfunction and behavioural abnormalities might be 
prognostic of disease stage.21 In a report of 146 patients 
with amyotrophic lateral sclerosis, cognition worsened in 
30% after 6 months, even among patients that initially 
presented with normal cognition.22 The patients who 
presented with cognitive decline had a more rapid clinical 
progression and shorter survival than those with normal 
cognition. Network analyses of brain MRIs show 
widespread disruption of motor and extramotor networks 
that correspond with amyotrophic lateral sclerosis 
phenotypes. Specifically, abnormal structural connectivity 
correlates with motor impairment, whereas disrupted 
functional connectivity aligns with changes in cognition 
and behaviour.28

Collectively, this new understanding of amyotrophic 
lateral sclerosis as a multisystem disorder underscores 
the importance of managing cognitive decline and neuro
psychological problems (eg, depression, dysfunctional 
sleep, apathy, and irritability).24 Importantly, when 
cognitive symptoms emerge, care teams should engage 

early with patients and their families to inquire about 
endoflife care preferences to ensure the patient has an 
active role in these important conversations.

Diagnosis
Criteria 
Patients with amyotrophic lateral sclerosis are unlikely to 
encounter a neurologist early in the diagnostic journey.29,30 
Therefore, there should be a low threshold for 
neurological referral when patients present with 
progressive dysarthria, dysphagia, limb weakness, or 
neuromuscular respiratory failure. The Amyotrophic 
Lateral Sclerosis Association’s thinkALS tool31 encourages 
early neurological referral to avoid unnecessary 
procedures, starts patients on diseasemodifying 
treatments, and fasttracks patient enrolment into 
clinical trials. Additional indications of a diagnosis of 
amyotrophic lateral sclerosis include unexplained weight 
loss, pseudobulbar affect, changes in cognition or 
executive functioning, and a family history of 
amyotrophic lateral sclerosis or other neurodegenerative 

Panel 2: Amyotrophic lateral sclerosis diagnosis

Clinical history 
• Symptoms (eg, weakness and time course)
• Family history of amyotrophic lateral sclerosis or other

neurodegenerative diseases

Neurological examination 
• Signs of upper motor neuron (UMN) and lower motor 

neuron (LMN) dysfunction in bulbar, cervical, thoracic, or 
lumbosacral segments (eg, hand weakness [split hand] and
foot drop)

• Unexplained weight loss, cognition or executive 
functioning dysfunction, and pseudobulbar affect are 
additional signs

Electrodiagnostic testing 
• Nerve conduction studies and needle electromyography to

confirm LMN signs

Laboratory testing
• Serology should be normal except for elevated creatine

phosphokinase concentrations, which can also lead to 
abnormal liver function tests

MRI 
• Imaging the spinal cord by MRI is essential to rule out more 

common differential diagnoses (eg, disc herniation or cord 
compression)

Criteria 
• Most neurologists use the revised El Escorial criteria32

• Classifies patients with amyotrophic lateral sclerosis 
as possible, probable, probable laboratory supported, 
and definite, on the basis of clinical presentation 
and electrodiagnostic findings

Revised El Escorial criteria 
The presence of:
• LMN signs by clinical, electrodiagnostic testing, 

or neuropathological examination
• UMN signs by clinical examination
• Progressive symptom or sign spread within a region or to 

other regions, as determined by history or examination
With the absence of:
• Electrodiagnostic or pathological evidence of other diseases 

explaining LMN and UMN signs
• Neuroimaging evidence of other diseases explaining the 

observed clinical and electrodiagnostic signs

El Escorial diagnostic categories 
Clinically definite 
• Clinical evidence of UMN and LMN signs in the bulbar 

and two spinal regions, or
• UMN and LMN signs in three spinal regions

Clinically probable 
• Clinical evidence of UMN and LMN signs in at least 

two regions with UMN signs rostral to LMN signs

Clinically probable—laboratory supported 
• Clinical evidence of UMN and LMN signs in one region 

or UMN signs alone in one region, and
• LMN by electrodiagnostic criteria in at least two regions

Clinically possible 
• Clinical evidence of UMN and LMN in one region, or
• UMN signs in two or more regions, or
• LMN signs are rostral to UMN signs
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diseases. Clinical features that do not support a diagnosis 
include prominent sensory, sphincter, and autonomic 
nervous system dysfunction and anterior visual pathway 
abnormalities. A detailed neurological examination 
should identify signs of UMN and LMN dysfunction in 
bulbar, cervical, thoracic, or lumbosacral segments 
(panel 2).

Clinical history and neurological examination are 
accompanied by serological and electrodiagnostic testing. 
Patients with amyotrophic lateral sclerosis have normal 
serology, except for elevated creatine phosphokinase 
concentrations in some cases. Other abnormal serologies 
call into question an amyotrophic lateral sclerosis 
diagnosis. Nerve conduction studies exclude sensory 
nerve involvement and motor nerve conduction block. 
Needle electromyography can confirm LMN involvement, 
with the provision that testing of distal muscles, and 
muscles in the involved clinical segment, have the highest 
sensitivity.33,34 Most neurologists still use the revised El 
Escorial criteria to subclassify amyotrophic lateral 
sclerosis, which categorises patients as possible, probable, 
probable laboratory supported, and definite amyotrophic 
lateral sclerosis, depending on clinical presentation and 
electromyography findings. The revised El Escorial criteria 
are most widely used (panel 2).32

Regarding advances in diagnostic criteria for 
amyotrophic lateral sclerosis, the Gold Coast criteria have 
been proposed to simplify and potentially replace the 
revised El Escorial and improve interrater reliability 
(appendix pp 7–9).35 The Gold Coast criteria are primarily 
based on clinical presentation, although they do not 
consider cognitive changes, which the authors noted 
were covered by the 2017 Strong criteria.36 Gold Coast 
classifies patients as having or not having amyotrophic 
lateral sclerosis, streamlining diagnostic certainty and 
eliminating confusion to patients and their relatives from 
El Escorial terminology. A comparison of the sensitivity 
and specificity of the various criteria reveal that Gold 
Coast criteria are the most sensitive, whereas El Escorial 
are the most specific (appendix pp 7–9). Additionally, the 
revised El Escorial criteria provide information that the 
Gold Coast criteria do not, such as the distribution of 
clinical segmental involvement, which is important for 
stratifying disease severity in patients with amyotrophic 
lateral sclerosis. Although the revised El Escorial criteria 
remain the mainstay of amyotrophic lateral sclerosis 
diagnosis, the field could be slowly moving towards 
simpler criteria, such as the Gold Coast.

Overall, early diagnosis of the disease is important. 
Educational efforts for physicians most likely to encounter 
patients with amyotrophic lateral sclerosis during initial 
symptom onset are essential to support prompt recogni
tion of the disease and timely initiation of treatment. As 
simplified diagnostic criteria become more universally 
accepted, we anticipate that more practitioners will 
recognise and treat amyotrophic lateral sclerosis early in 
the disease course.

Cognitive assessment 
Although not part of formal amyotrophic lateral 
sclerosis diagnostic criteria, it is essential to evaluate 
cognition and behaviour in patients with amyotrophic 
lateral sclerosis, despite potentially further fatiguing 
individuals undergoing long and complex clinical visits. 
Assessments of cognitive and behavioural impairment 
are essential as they relate to prognosis and progression 
rate, and thus inform clinical management.21,22 
Assessment of cognitive impairment in patients with 
amyo trophic lateral sclerosis should include multiple 
cognitive domains (eg, executive and language 
dysfunction, and social cognition).37 Behavioural 
impairment (eg, apathy, disinhibition, loss of empathy, 
and compulsive beha viour) also affects the wellbeing of 
patients and family members and requires evaluation.

Some patients are diagnosed with fronto temporal 
dementia (amyotrophic lateral sclerosis–fronto temporal 
dementia, known as ALS–FTD), as defined by the criteria 
set by Neary and colleagues38 or Rascovsky and colleagues.39 
For patients not meeting formal frontotemporal dementia 
criteria, the revised Strong criteria define patients with 
amyotrophic lateral sclerosis with cognitive dysfunction as 
amyo tro phic lateral sclerosis cognitive impairment, with 
behavioural problems as amyotrophic lateral sclerosis 
behavioural impairment, or with both, as amyotrophic 
lateral sclerosis combined cognitive behavioural deficits 
(appendix p 10).36 Several assessment batteries can classify 
these changes. The Edinburgh Cognitive and Behavioural 
Amyotrophic Lateral Sclerosis Screen (ECAS) is a 
validated, multidomain, assessment tool developed for 
patients with amyotrophic lateral sclerosis, which can be 
administered by neuropsychological and nonneuro
psychological professionals.37 ECAS, available in 
23 languages, covers the largest number of amyotrophic 
lateral sclerosisspecific cognitive or behavioural assess
ment scales. Incorporating ECAS into manage ment of 
amyotrophic lateral sclerosis has a positive effect on the 
quality of care by stimulating endoflife care discussions, 
referrals to other services, and identifying caregiver 
support needs.40

The Amyotrophic Lateral Sclerosis Cognitive 
Behavioural Screen, available in three languages, can also 
identify cognitive and behavioural impairment and 
frontotemporal dementia in patients with amyotrophic 
lateral sclerosis.37 The ALS–FTD questionnaire, completed 
by healthcare professionals or caregivers to assess 
behavioural changes in patients with amyotrophic lateral 
sclerosis, is translated into nine languages and able to 
identify patients with behavioural variant frontotemporal 
dementia.37 The Beaumont Behavioural Inventory is a 
screening tool developed in 2017 for evaluating behavioural 
impairment in patients with amyotrophic lateral sclerosis 
and might be more sensitive than the ALS–FTD 
questionnaire.37

Overall, cognitive symptoms should be recognised as a 
manifestation of amyotrophic lateral sclerosis, and 
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properly identifying these symptoms improves disease 
management, counselling, and prognostication. Since 
cognitive symptoms can change with disease progression, 
regularly assessing them is crucial to best care for the 
patient. Future directions include standardising 
cognitive assessments for inclinic screening, deter
mining whether neuropsychologists should become part 
of the regular multidisciplinary team, and developing 
evidencebased treatments for cognitive impairment in 
amyotrophic lateral sclerosis.

Genetic architecture 
Amyotrophic lateral sclerosis is currently classified as 
either familial or sporadic. Familial amyotrophic lateral 
sclerosis, which constitutes 10–15% of cases, is inherited 
from family members with amyotrophic lateral sclerosis 
and associated syndromes (eg, frontotemporal dementia).41 
About 70% of familial cases have mutations within known 
amyotrophic lateral sclerosis genes. Sporadic amyotrophic 
lateral sclerosis, which constitutes approximately 85% of 
the remaining cases, arises in patients without a family 
history of amyotrophic lateral sclerosis. About 15% of 

patients with sporadic amyotrophic lateral sclerosis 
harbour private pathogenic mutations (mutations limited 
to a single individual) to known amyotrophic lateral 
sclerosis genes, hence, they are without a family history of 
amyotrophic lateral sclerosis.41 There is no known cause in 
the remaining 85% of sporadic cases of amyotrophic 
lateral sclerosis. Sporadic cases harbouring low penetrant 
mutations and belonging to small families, or having 
incomplete or poor knowledge of family history, could in 
fact be familial amyotrophic lateral sclerosis. Thus, 
familial amyotrophic lateral sclerosis might be  under
reported and represent closer to 20% of cases.42,43 As 
genetic testing becomes more widely implemented, and 
potential candidate therapies more targeted, it might 
become useful to drop the familial versus sporadic 
dichotomy of amyotrophic lateral sclerosis, in favour of 
genetically confirmed versus nongenetically confirmed 
amyotrophic lateral sclerosis (ie, presence versus absence 
of an amyotrophic lateral sclerosis mutation underpinning 
the molecular subclassification of the disease).

Genetic architecture of amyotrophic lateral sclerosis is 
highly complex and largely based on monogenic 
inheritance of rare variants (single diseasecausing genes; 
figure 2A).44 More than 40 amyotrophic lateral sclerosis
associated genes have been identified,45,46 which vary in 
frequency, mode of inheritance (mostly dominant, rarely 
recessive), and penetrance (figure 2B; appendix pp 11–14). 
The most common and penetrant mutations are C9orf72, 
TARDBP, SOD1, and FUS,45 although the frequency of 
genetic subtypes varies by population ancestry.47 Some 
amyotrophic lateral sclerosis genes are not necessarily 
diseaseinducing, but rather confer an increased risk of 
developing amyotrophic lateral sclerosis (ANG, ATXN2, 
and DCTN1).45 Importantly, uncertainty remains on the 
relevance of some identified genes, which require further 
confirmation and replication efforts.48 Consortia of 
amyotrophic lateral sclerosis genetics experts can curate 
and maintain an uptodate list of amyotrophic lateral 
sclerosis genes as evidence emerges,49 facilitating clinical 
translation for genetic testing. Since amyotrophic lateral 
sclerosis genetic architecture is complex, it is advisable 
that specialist amyotrophic lateral sclerosis centres 
perform genetic testing to avoid overdiagnosing or 
missing genetic amyotrophic lateral sclerosis. Of note, 
genetic testing in amyotrophic lateral sclerosis might not 
identify rare pathogenic variants (ie, allele frequency less 
than 1%).

In addition to primary monogenic inheritance in 
amyotrophic lateral sclerosis, interest in the effect on 
oligogenic and polygenic inheritance on disease risk has 
also gained traction. Several studies highlight that 
oligogenic inheritance, meaning a trait or disease 
controlled by inheritance of several genes, might have a 
role in amyotrophic lateral sclerosis risk and disease 
progression (figure 2C).50,51 Genetic screening identified a 
subset of patients with sporadic amyotrophic lateral 
sclerosis harbouring two or more variants in amyotrophic 

Figure 2: Amyotrophic lateral sclerosis genetic architecture
Adapted from Goutman et al.2 Amyotrophic lateral sclerosis genetics is 
characterised by monogenic, oligogenic, and polygenic risk; figure featuring only 
three representative chromosomes (within each panel, chromosomes on the left 
for a person without the disease, on the right for a person with the disease). 
(A) Monogenic inheritance is characterised by inheritance of a single gene. 
(B) amyotrophic lateral sclerosis genes are not fully penetrant and pathogenicity 
of certain variants is uncertain. (C) Oligogenic inheritance is characterised by 
inheritance of several genes (four shown in the figure). (D) Polygenic inheritance 
is characterised by inheritance of many genes (nine shown in the figure).
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Amyotrophic lateral 
sclerosis diagnosis

UMN and LMN signs meeting 
rEEC or Gold Coast criteria for 
amyotrophic lateral sclerosis

UMN signs only meeting rEEC 
or Gold Coast criteria for 
amyotrophic lateral sclerosis

Decreased likelihood of an ALS diagnosis Increased likelihood of an ALS diagnosis

Amyotrophic lateral 
sclerosis diagnosis

Yes

Yes Yes Yes

No

No No

LMN
signs only

UMN + LMN UMN
signs only

Figure 3: Amyotrophic lateral sclerosis differential diagnosis
Differential diagnosis, represented here by a flowchart for the classical process by use of symptoms and signs, is central to the diagnostic process in amyotrophic lateral 
sclerosis. At minimum, individuals suspected of the disease will undergo physical and neurological examinations, electrodiagnostic assessment, MRI of involved 
regions, and relevant serological testing. This figure is based on a summary of potential differential diagnoses for diseases more common or as common as 
amyotrophic lateral sclerosis (appendix p 10). Overlap of known amyotrophic lateral sclerosis genes with other diseases and syndromes also occurs (appendix 
pp 11–13). ALS=amyotrophic lateral sclerosis. CFS=cramp-fasciculation syndrome. CIDP=chronic inflammatory demyelinating polyneuropathy. HSP=hereditary spastic 
paraparesis. IBM=inclusion body myositis. LMN=lower motor neuron. MMN=multifocal motor neuropathy. MG=myasthenia gravis. PPMS=primary progressive 
multiple sclerosis. rEEC=revised El Escorial criteria. SBMA=spinobulbar muscular atrophy. UMN=upper motor neuron. *Several potential differential diagnoses present 
with proximal weakness and should be considered along with flail arm amyotrophic lateral sclerosis, which also presents with proximal greater than distal upper 
extremity weakness. Thus, check for increased proximal reflexes on examination and neurogenic motor unit action potentials on electromyography.
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lateral sclerosis genes; these patients were more likely 
to have earlier onset disease versus patients with 
one or no variants.50,51 Polygenic inheritance, arising from 
inheritance of multiple genetic variants, is also a 
component of amyotrophic lateral sclerosis genetic 
architecture (figure 2D).52,53 Analysis of the genetic profiles 
identified shared polygenic risk of amyotrophic lateral 
sclerosis with traits and single nucleotide polymorphisms 
correlated with smoking status, physical activity, cognitive 
performance, and educational attainment,52 as well as 
obesityrelated traits, 52,53 particularly hyperlipidaemia. 
Our growing knowledge of the genetic architecture is 
due, in great part, to large collaborative projects, which 
are driving discovery in this relatively rare disease, such 
as the Amyotrophic Lateral Sclerosis Sequencing 
Consortium,54 International Amyotrophic Lateral 
Sclerosis Genomics Consortium,55 Genomic Translation 
for Amyotrophic Lateral Sclerosis Care Consortium,54 
Answer Amyotrophic Lateral Sclerosis Foundation,54 and 
Project MinE.54 We anticipate that these consortia will 
continue to deliver results and foster further investigation.

Importantly, amyotrophic lateral sclerosis is also 
characterised by incomplete heritability, meaning 
genetics does not fully account for all disease burden. 
Estimates vary, but most studies report heritability of 
45–50% in amyotrophic lateral sclerosis parent–child 
dyads, driven largely by rare genetic variants.1 However, 
heritability estimates can be as high as 66% in some dyad 
comparisons and as low as 37% in patients without a 
known genetic risk.1 Several additional factors can 
account for missing heritability in amyotrophic lateral 
sclerosis,56 such as alterations in the noncoding genome, 
structural variants,57 epigenetic changes,58 and environ
mental factors.59 The contribution of the environment 
has led to the gene–time–environment hypothesis of 
amyotrophic lateral sclerosis,60 which proposes that an 
interaction of genes and environment over time causes 
amyotrophic lateral sclerosis through a multistep 
process.61 Evolving evidence shows that the environment 
effects amyotrophic lateral sclerosis risk and progression 
in a genedependent manner.

As therapeutics that target some genetic forms of 
amyotrophic lateral sclerosis become a possibility, 
genetic testing for all patients with amyotrophic lateral 
sclerosis will probably become standard practice. Future 
genetic treatments will increase the need for classifying 
and assessing genetic variants in amyotrophic lateral 
sclerosis. Additionally, partnership with genetic 
counsellors will expand to facilitate discussions of these 
complex results with patients and their families.62

Differential diagnosis and overlap syndromes 
General physicians, and even specialist neurologists, 
might not initially recognise a diagnosis of amyotrophic 
lateral sclerosis in a patient with symptoms due to 
overlap of disease presentation with other conditions. 
Thus, classical differential diagnosis on the basis of 

clinical presentation is an important element of the 
diagnostic process in amyotrophic lateral sclerosis 
(figure 3; appendix pp 14–15).

Diseases more common than amyotrophic lateral 
sclerosis are often considered and thoroughly evaluated 
first, which ultimately delays an amyotrophic lateral 
sclerosis diagnosis. Conditions that most commonly 
mimic amyotrophic lateral sclerosis include multifocal 
motor neuropathy with conduction block, axonal motor
predominant chronic inflammatory demyelinating 
polyneuropathy, spinobulbar muscular atrophy, and 
inclusion body myositis.63 Simultaneous cervical nerve 
root and spinal cord compression by disc herniations, 
tumours, or malformations might cause combined LMN 
symptoms in the arms and UMN symptoms in the legs, 
and be misdiagnosed as classical amyotrophic lateral 
sclerosis.63 UMNdominant amyotrophic lateral sclerosis 
or primary lateral sclerosis can be confused with hereditary 
spastic paraplegias or primary progressive multiple 
sclerosis. Additional, but rare, differential diagnoses 
include hyperparathyroidism and hexosaminidase A 
deficiency.63 Since some of these disorders are treatable, 
these possibilities should be ruled out.

In conjunction with clinical presentation, genetic testing 
is increasingly used to explain disease cause and predict 
family risk. Risk amyotrophic lateral sclerosis genes can 
cause other syndromes or phenocopy alternative 
neurodegenerative diseases (appendix pp 11–13). C9orf72 
expansions, the most common amyotrophic lateral 
sclerosis gene, are linked to movement disorders64,65 and 
phenocopy Huntington’s disease in patients without 
huntingtin (HTT) expansions.66 Conversely, patients with 
amyotrophic lateral sclerosis can have HTT repeat 
expansions simultaneously with TDP43 inclusions.67 
Thus, patients could present with atypical amyotrophic 
lateral sclerosis, delaying diagnosis. Additional 
amyotrophic lateral sclerosis genes overlap with other 
syndromes and an improved understanding of the 
complexity of genotype–phenotype relationships will 
expedite the diagnosis of amyotrophic lateral sclerosis. 
Finally, the disease is associated with neuropsychiatric 
illnesses, such as psychosis and suicidal ideation,68,69 thus, 
clinicians should obtain comprehensive detailed family 
history, not just of amyotrophic lateral sclerosis, but of  
neurodegenerative and neuropsychiatric illnesses.

Risk, progression, and pathophysiology 
Identifying factors that increase amyotrophic lateral 
sclerosis risk and progression is central to patient diagnosis 
and care. Genetics are a major risk factor for amyotrophic 
lateral sclerosis (appendix pp 11–14). For instance, C9orf72 
expansions are penetrant and confer high risk, and are also 
associated with bulbar onset14 and a decreased survival70 in 
some studies. However, there are genetic mutations that 
confer risk but do not affect progression; therefore, risk 
and progression can be independent processes, and factors 
influencing either, or both, are an active area of research.71 
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A patient’s cumulative environmental lifetime exposures, 
known as the exposome, is also increasingly recognised to 
confer amyotrophic lateral sclerosis risk and could 
accelerate disease progression.72 Independent of whether 
risk is secondary to genetics or the exposome, a knowledge 
of amyotrophic lateral sclerosis pathophysiology will 
promote the development of novel treatment and 
prevention strategies, such as genetic therapies for 
asymptomatic carriers of highly penetrant pathogenic 
mutations.73

Molecular pathomechanisms 
In amyotrophic lateral sclerosis, pathological processes 
arise from toxic gainoffunction or lossoffunction 
mutations to the approximately 40 known amyotrophic 
lateral sclerosis genes. Toxicity also occurs from 
aggregates of both wildtype and mutant proteins, which 
is a universal pathological feature in sporadic and familial 
amyotrophic lateral sclerosis.74 Pathophysiological 
processes broadly fall into four major categories: impaired 
RNA metabolism, altered proteostasis or autophagy, 
cytoskeletal or trafficking defects, and mitochondrial 
dysfunction.75 Several amyotrophic lateral sclerosis genes, 
including C9orf72, TARDBP, and FUS, impair RNA 
metabolism. Aggregation of the DNA and RNA binding 
proteins, TDP43 and FUS, into inclusions impairs their 
normal function, causing broad changes to transcription 
and RNA processing. TDP-43, among several other 
amyotrophic lateral sclerosis genes, also dysregulates 
proteostasis and autophagy by preventing the clearance of 
damaged proteins. Multiple mutant amyotrophic lateral 
sclerosis genes, such as tubulin alpha 4a (TUBA4A) and 
profilin 1 (PFN1), induce cytoskeletal and tubulin defects, 
blocking axonal trafficking. Mitochondrial dysfunction, 
as triggered by SOD1, is a central characteristic for 
amyotrophic lateral sclerosis, which also increases 
oxidative stress.

Although much progress has been made, the full 
molecular underpinnings of the pathophysiology are 
incompletely understood. In addition to the major 
processes previously mentioned, TDP43 and SOD1 
aggregates also transfer from cell to cell in prionlike 
transmission,76,77 which would propagate the pathology. 
TARDBP, FUS, and several other genes are linked to 
dysfunctional DNA repair in amyotrophic lateral sclerosis. 
For instance, loss of nuclear TDP43 induces accumulation 
of doublestranded DNA breaks,78 which would 
compromise genome stability. TDP43 aggregates,79 
mutant FUS,80 and C9orf72 repeat expansions81 also 
impair nucleocytoplasmic transport, the shuttling of 
cargo between the nucleus and cytoplasm.79 Dipeptide 
repeat proteins derived from mistranslated C9orf72 
expansion transcripts are neurotoxic and might promote 
heterochromatin anomalies82 and TDP43 aggregation.83

Central and peripheral inflammatory mechanisms are 
important contributors to amyotrophic lateral sclerosis,84 
both in the context of specific genetic mutations85–87 and 

probably as a consequence of the general disease process 
in sporadic disease.88,89 In amyotrophic lateral sclerosis, 
changes occur in specific immune cell populations,88,89 
their activation state,88 and cytokine production.86,87 
Immune system involvement in amyotrophic lateral 
sclerosis is doubleedged; a protective initial response is 
overcome by a destructive cytotoxic phase.84 Hyper
metabolism is also a broad characteristic,90 both 
dependent and independent of mutations in amyotrophic 
lateral sclerosis, and metabolomics investigations91 could 
provide information on the specific molecular changes 
that underscore disease progression. Pathways related to 
amyotrophic lateral sclerosis genes, inflammation, 
hypermetabolism, and other continued insights into the 
pathological mechanisms underlying the disease provide 
an essential knowledge base for therapeutic development 
and prevention strategies.

Environmental exposure 
The gene–time–environment hypothesis of amyotrophic 
lateral sclerosis suggests that genetic susceptibility, 
agerelated cellular damage, and a burden of environmental 
exposures combine to trigger amyotrophic lateral 
sclerosis.60 Several lines of evidence support this model. 
First, genetic variants do not fully account for the disease.92 
Second, populationbased modelling of amyotrophic lateral 
sclerosis indicates that disease occurs in a multistep 
process,61 even in patients with highly penetrant monogenic 
mutations (eg, mutant SOD1).93 Finally, a growing body of 
research supports the association of environmental 
exposures with disease risk, with a new focus on the 
amyotrophic lateral sclerosis exposome.59

The amyotrophic lateral sclerosis exposome is defined as 
the cumulative lifetime effect of environmental exposures, 
including lifestyle factors. Since the exposome involves 
exposures throughout a patient’s lifespan, multiple study 
designs are needed to interrogate its role in amyotrophic 
lateral sclerosis. Many casecontrol studies have explored 
the relationship between occupational, residential, and 
avocational environmental risk factors on the risk of 
amyotrophic lateral sclerosis. Although studies leveraging 
populationbased registries would provide a higher level of 
evidence, studies based on retrospective cohorts show 
reassuringly consistent results (appendix pp 16–17).

Of exposures with documented relevance to 
amyotrophic lateral sclerosis, plasmapersistent organic 
pollutants94 and blood metals95,96 correlate with disease 
risk and shortened survival.72 Lifestyle factors associated 
with risk of amyotrophic lateral sclerosis include high 
cigarette packyears, a low current BMI, and lifetime 
alcohol consumption.97 Some relationships are 
dependent on C9orf72 status,97 showing an interaction 
between genes and environment. Physical activity as a 
risk is supported by several studies,97,98 including 
analysis of the National Football League players.99 
Military service is also a recurring theme in risk 
assessments for amyotrophic lateral sclerosis.100
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There are some important unanswered questions 
relating to the amyotrophic lateral sclerosis exposome. 
Are there periods of greater susceptibility to exposure 
throughout life, which increase the risk of amyotrophic 
lateral sclerosis? Will it be possible to adopt a preventative 
approach to the disease if modifiable risks are identified? 
Prospective studies using well curated population 
registries and biorepositories can help answer these 
questions and are a future goal of the field.59

Prognosis 
Prognosis of amyotrophic lateral sclerosis is dependent 
on disease progression. Currently, clinicians monitor 
disease progression using the Amyotrophic Lateral 
Sclerosis Functional Rating ScoreRevised (ALSFRSR), a 
multidomain assessment that also serves as the gold 
standard for primary efficacy outcomes in clinical trials.101 
Respiratory function, which is a domain of the ALSFRSR, 
provides prognostic information.102 One shortcoming of 
the ALSFRSR is that some subscores increase with 
symptom improvement despite continued underlying 
disease progression.101,103 The Raschbuilt Overall 
Amyotrophic Lateral Sclerosis Disability Scale was 
designed to specifically capture functional decline arising 
from the underlying disease course,103 thereby overcoming 
the limitations of the ALSFRSR. The Raschbuilt Overall 
Amyotrophic Lateral Sclerosis Disability Scale awaits 
clinical validation before widespread adoption.

New staging examples have also been developed to 
inform prognosis. Patients assessed with the King’s 
staging system104 and Amyotrophic Lateral Sclerosis 
MilanoTorino Staging (ALSMiToS)105 system consistently 

Figure 4: Amyotrophic lateral sclerosis risk and prognosis
(A) King’s staging with four stages indicated (blue); time to progress to stages 
and median survival at each stage in months. (B) ALS-MiToS staging with 
six stages indicated (orange); staging based on four functional domains from the
ALSFRS-R: (1) movement (walking and self-care; ALSFRS-R question 6 or 8); 
(2) swallowing (ALSFRS-R question 3); (3) communicating (ALSFRS-R 
questions 1 and 4); and (4) breathing (ALSFRS-R question 10 or 12). Intensifying
colour indicates progression along stages for both King’s and ALS-MiToS. 
(C) Schematic overview of factors that affect amyotrophic lateral sclerosis risk
(onset) and prognosis, which include clinical and demographic features, genetic 
architecture (eg, rapidly progressive SOD1A5V and slowly progressive DCTN1 
mutations), and exposome (eg, environmental exposures). (D) ENCALS 
prediction model of amyotrophic lateral sclerosis prognosis. Reproduced from 
Westeneng and colleagues,70 with permission from Elsevier. The model defines 
five survival groups: very short (red; predicted median survival 17·7 months), 
short (orange; predicted median survival 25·3 months), intermediate (light 
orange; predicted median survival 32·2 months), long (light green; predicted 
median survival 43·7 months), and very long (green; predicted median survival 
91·0 months). The dashed black line represents median survival without the use 
of the ENCALS prediction model, which is overly optimistic for patients with 
amyotrophic lateral sclerosis classified to the very short and short survival groups 
(ie, they end up with less time), and overly pessimistic for patients classified to 
long and very long groups (ie, they end up with more time). Horizontal bars have 
dots to represent median times to composite outcome, thick lines to represent 
probability IQR, and thin lines to represent 10–90% probability intervals to 
composite outcome. ALS=amyotrophic lateral sclerosis. 
ALS-MiToS=ALS Milano-Torino Staging. ALSFRS-R=ALS Functional Rating 
Score-Revised.
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progress along stages that are associated with decreasing 
median survival (figure 4A, B). The King’s staging system 
is more sensitive early in the disease course; the 
ALSMiToS later in the disease course.106,107 Neither staging 
system is yet in widespread clinical use.

Although median survival for amyotrophic lateral 
sclerosis is only 2–4 years, there is a broad distribution of 
individual patient survival, affecting both the clinician’s 
ability to discuss and the patient’s ability to understand 
disease prognosis. This variability is attributable to various 
factors that influence survival in amyotrophic lateral 
sclerosis (figure 4C), such as clinical and demographic 
features (eg, age at onset, site of onset, and presence 
of frontotemporal dementia), genetic architecture (eg, 
rapidly progressive SOD1A5V and slowly progressive 
DCTN1 mutations; appendix pp 14–15), and the exposome 
(eg, environmental exposures). The European Network for 
the Cure of Amyotrophic Lateral Sclerosis model was 
created to predict personalised survival (defined as survival 
without tracheostomy or noninvasive ventilation 
>23 h/day) based on eight parameters: onset age, time to
diagnosis, ALSFRSR progression rate, forced vital
capacity, bulbar onset, definite amyotrophic lateral
sclerosis by revised El Escorial criteria, frontotemporal
dementia, and C9orf72 repeat expansion (figure 4D).70

Although not in routine clinical use, the European Network
for the Cure of Amyotrophic Lateral Sclerosis prediction
tool can potentially benefit patients by giving them a more
accurate perspective of life expectancy.

Overall, accurate prognostication of the clinical course 
of the disease remains in its infancy since even 
predictions by the best models retain uncertainty. Thus, 
clinical care teams should advise patients and their 
families on the anticipated disease course and range of 
expected symptoms, with the caveat that these predictions 
can vary with each patient. Variation of disease 
phenotypes, even within the same family, attests to this 
unpredictability. Although clinical staging methods 
provide useful metrics for comparing participant stages 
in clinical research populations, their use in the clinic 
remains to be established.

Treatment 
As amyotrophic lateral sclerosis remains incurable, 
treatment is focused on the use of diseasemodifying 
therapies and maximising quality of life. The American 
Academy of Neurology, the European Federation of 
Neurological Societies, the UK National Institute for 
Health and Care Excellence,108 and Amyotrophic Lateral 
Sclerosis Canada109 have published evidencebased and 
expert consensus guidelines for managing amyotrophic 
lateral sclerosis, and supportive multidisciplinary care 
improves survival and qualityoflife for patients 
with amyotrophic lateral sclerosis (table 1).110 The 
two medications with approval in some countries for 
slowing progression of amyotrophic lateral sclerosis are 
riluzole and edaravone. Riluzole, an antiglutamate 

agent, improves patient survival in clinical trials and 
postmarketing analyses, but whether this prolongation 
occurs at all stages of amyotrophic lateral sclerosis or 
just at advanced disease stages remains a topic of 
debate.116,117 The antioxidant edaravone, given for 
6 months, showed some efficacy in posthoc analysis of 
the first phase 3 trial for participants, meeting the 
criteria of definite or probable amyotrophic lateral 
sclerosis (El Escorial and revised Airlie House diagnostic 
criteria), disease duration less than 24 months, forced 
vital capacity (lung function test) of more than 80%, and 
ALSFRSR subscale scores all more than 2.121 The trial 
was repeated prospectively with this defined patient 
population,118,122 and again reported that edaravone 
slowed disease progression. However, this trial design 
could lack generalisability to the broader population of 
patients with amyotrophic lateral sclerosis and 
postmarketing analyses raise questions about 
edaravone’s safety and benefits.119,120 Thus, use of 
edaravone remains controversial and has not obtained 
worldwide approval. A combination of dextromethorphan 
and quinidine is approved in the USA for managing 
symptoms of pseudobulbar affect.123 This drug is not 
marketed in all countries and alternative and more cost
effective treatments are available. Noninvasive 
ventilation also improves amyotrophic lateral sclerosis 
survival and quality of life.124 For this reason, patients 
with amyotrophic lateral sclerosis should be regularly 
monitored for respiratory symptoms and undergo the 
appropriate respiratory assessments, such as overnight 
oximetry or measures for blood gas partial pressure of 
CO2, blood bicarbonate concentrations, vital capacity, or 
maximum inspiratory pressure to confirm whether they 
qualify for noninvasive ventilation.125

Gastrostomy is also an effective therapy for supporting 
nutrition and is probably of greater benefit when 
established earlier in the disease course. Gastrostomy 
tubes can be inserted with percutaneous endoscopic 
gastrostomy, radiologically inserted gastrostomy, and 
peroral imageguided gastrostomy placement with 
similar mortality.126 Factors that are associated with a 
poor outcome after gastrostomy include use of 
noninvasive ventilation for more than 16 h/day, older 
age, BMI less than 20 kg/m², and recurrent 
accumulation of airway secretions.127 High calorie 
nutrition has also been investigated for treating 
amyotrophic lateral sclerosis90 and posthoc analysis of a 
phase 3 trial suggests that it might be helpful for rapidly 
progressing patients,128 although confirmatory trials are 
needed.

Several additional treatments are available (panel 3). 
Patients with amyotrophic lateral sclerosis might also 
contemplate alternative and offlabel treatments, often 
found on the internet. Amyotrophic Lateral Sclerosis 
Untangled was conceived to provide a systematic review 
of unproven treatments. Care guidelines for amyotrophic 
lateral sclerosis encourage providers to have an open 

For more on Amyotrophic 
Lateral Sclerosis Untangled see 
https://www.alsuntangled.com/
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Panel 3: Treatments and interventions for management of amyotrophic lateral sclerosis

Disease-modifying treatments
Disease progression 
Only two drugs with regulatory approval are available, riluzole 
and edaravone. They are of marginal efficacy and only in select 
populations, and merely lengthen survival by a few 
months.116–118 However, even within select populations, 
the efficacy of edaravone is contested.119,120

Symptomatic management 
Comprehensive care 
A multidisciplinary clinic plans the comprehensive, 
multidisciplinary care needed to manage symptoms in patients 
with amyotrophic lateral sclerosis. Care spans the management of 
respiration and oral symptoms (speech and swallowing); nutrition 
and gastrointestinal symptoms; pain and symptoms secondary 
to muscle loss; and cognition, mood, and behavioural changes.

Respiratory and oral symptoms 
Bronchial secretions 
Stop any provoking medications. Administer mucolytics if the 
patient exhibits sufficient cough flow, including 
N-acetylcysteine, anticholinergic bronchodilator, β-receptor 
antagonist and nebulised saline, furosemide, and guaifenesin. 
Mechanical or non-pharmacological approaches are also available, 
including manual assisted cough, mechanical insufflator–
exsufflator, portable home suction device, and room humidifier. 
Additionally, patients are encouraged to remain hydrated or 
drink pineapple or papaya juice to break up secretions.

Dysarthria 
Evaluate speech and language regularly and identify language 
impairments. Provide assistive communication tools, such as 
electronic writing, voice banking, and voice amplification devices.

Dyspnoea 
Options include elevating the head of the bed, use of a hospital 
bed for elevation, non-invasive ventilation, and invasive 
tracheostomy ventilation.

Sialorrhea 
Administer anticholinergics, such as amitriptyline, atropine 
ophthalmic drops, glycopyrrolate, and scopolamine patch. 
If sialorrhea is refractory to anticholinergics, botulinum toxin 
injections, external beam radiation therapy, and surgery can be 
considered. A portable suction device is a less aggressive 
approach. Dark grape juice and ginger tea are reported to 
decrease saliva production.

Nutrition and gastrointestinal symptoms 
Constipation 
Increase fluid and fibre intake or adjust enteral nutrition. 
Administer an osmotic or stimulant laxative. Increase physical 
activity.

Sources 
EFNS Task Force on Diagnosis and Management of 
Amyotrophic Lateral Sclerosis,62 the American Academy of 
Neurology,111–113 the UK National Institute for Health and Care 
Excellence (NICE),108 Amyotrophic Lateral Sclerosis Canada109 
and other Canadian guidelines,114 and Bradley and Daroff’s 
Neurology in Clinical Practice.115 These therapies, in most 
cases, represent good clinical practice as few clinical trials 
involving patients with amyotrophic lateral sclerosis exist to 
provide a robust evidence base for these interventions. 

dialogue about the use and risks of these treatments, 
especially as some can carry medical or financial risk.

Emerging directions in amyotrophic lateral 
sclerosis 
Novel treatment approaches 
Recognition of heterogeneity, genetics, and a deeper 
understanding of pathophysiology in amyotrophic lateral 
sclerosis brings new treatment approaches to the 
amyotrophic lateral sclerosis community. This recognition 
promotes new trial designs to address hetero geneity, 
genetic therapies, immunetargeting agents against 
inflammation, and stem cells to enrich the CNS 
environment.

New trial designs 
New amyotrophic lateral sclerosis clinical trials can 
leverage a basket design of targeted agents against 
participant populations defined by phenotypes or 
genetics.129,130 Novel platform trial designs simultaneously 
evaluate multiple therapies in distinct arms against a 
single placebo group, lowering the number of required 

participants and shortening trial duration.129 Adaptive 
designs can further shorten trial duration by response
adaptive randomisation, which increases participant 
allocation to more promising treatment groups.129 
Several major trials with novel compounds and 
treatment approaches are currently underway (appendix 
pp 18–23).

Genetic therapies 
There is a growing consensus that gene therapy is a 
promising avenue in amyotrophic lateral sclerosis. 
One strategy is silencing toxic gainoffunction genes by 
targeting mRNA and premRNA with antisense 
oligonucleotides. The first clinical trial of the SOD1 
antisense oligonucleotide, BIIB067, showed safety, 
evidence of target engagement, and promising trends in 
exploratory secondary outcome measures.131 However, 
the phase 3 clinical trial did not meet its primary efficacy 
outcome of slowing disease progression as measured by 
the ALSFRSR, although cerebrospinal fluid (CSF) 
SOD1 protein and neurofilament concentrations were 
significantly decreased.132 A new approach is earlier 
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intervention with BIIB067 during the presymptomatic 
phase of disease in mutant SOD1 carriers (NCT04856982; 
appendix p 19). Clinical trials are also underway of 
antisense oligonucleotides that target other autosomal 
dominant gainoffunction mutations, including 
C9orf72, FUS, and ATAXN2.133

Antibodies 
Monoclonal antibodies against mutant C9orf72 and 
TDP-43 are in preclinical development.134 Several clinical 
trials have also been launched, but besides reporting 
safety, none were effective (eg, tocilizumab and 
ozanezumab).134 A few antibody candidates are still in 
the clinical trial pipeline, including AP101 against SOD1 
aggregates (NCT05039099), ANX005 against C1q protein 
(NCT04569435), and AT1501 against CD40L protein 
(NCT04322149; appendix pp 18–23).

New antiinflammatory therapies that target the 
immune system are also in the clinical pipeline 
(appendix pp 18–23). Phase 1/2 clinical trial results 
report that lowdose interleukin2 is well tolerated and 
immunologically effective in increasing regulatory Tcell 
numbers, although its effect on progression of 
amyotrophic lateral sclerosis is still being evaluated in a 
phase 2b/3 trial (MIROCALS).135 Autologous infusion of 
expanded Treg cells in a small patient cohort slowed 
disease progression.136 Masitinib, a tyrosine kinase 
inhibitor, reduces microglial activation and showed 
promise in a phase 2/3 trial.137 These reports underscore 
the feasibility of immunetargeting drugs as candidate 
therapies for amyotrophic lateral sclerosis.

Stem cells offer the unique opportunity to simul
taneously target multiple dysregulated pathways while 
providing CNS neurotrophic support.138 They can derive 
from diverse sources (eg, mesenchymal stem cells and 
neural progenitor cells [appendix pp 18–23]), each 
offering distinct advantages and disadvantages.138 One 
metaanalysis concluded that adult stem cells are safe 
and well tolerated,139 however, apart from a possible 
transient positive effect, trials have not shown long
lasting efficacy from stem cells.

Novel diagnostic biomarkers 
There is an urgent need for amyotrophic lateral sclerosis 
biomarkers to expedite diagnosis, particularly in atypical 
phenotypes, and enable improved prognosis of disease 
course. Biomarkers can also refine clinical trial participant 
stratification, facilitate the estimation of progression 
rates, monitor target engagement, and detect early 
potential treatment effects.

Neurofilaments 
CSF and plasma neurofilaments are well characterised 
and promising fluid biomarkers. Elevated CSF and 
plasma neurofilament light chain concentrations correlate 
with shorter survival, more aggressive di sease pheno
types, and presence of C9orf72 expansion.140–142 Plasma 

neurofilaments are also elevated up to 5 years before 
disease onset in sporadic and familial cases of amyotrophic 
lateral sclerosis,143,144 and indicate pheno conversion in 
clinically asymptomatic mutant SOD1 carriers.143 Some 
2020 clinical trials support their use as pharmacodynamic 
markers of amyotrophic lateral sclerosis progression.131,145

Regarding brain imaging, although routine MRIs cannot 
diagnose amyotrophic lateral sclerosis, MRIs with 
quantitative analysis of fluidattenuated inversion recovery 
can identify increased corticospinal tract and corpus 
callosum intensities in patients with amyotrophic lateral 
sclerosis.146 More advanced structural and functional MRI 
techniques are not yet in routine clinical practice 
but might provide new diagnostic biomarkers. Examples 
include diffusion tensor imaging147,148 and multimodal147,149 
approaches, such as quantitative susceptibility mapping to 
detect ironrelated motor cortex changes, and connectome 
analyses of motor and nonmotor networks. T1weighted 
imaging and diffusion tensor imaging detect abnor
malities (cortical and subcortical atrophy and white matter 
changes) already present in presymptomatic C9orf72 
repeat expansion carriers.150 Although not a diseasespecific 
biomarker, positron emission tomography by use of tracers 
to quantify brain metabolism ([¹⁸F]fluorodeoxyglucose) or 
glial activation ([¹¹C]PBR28) provides new insights 
into disease mechanisms and could prove useful as 
pharmacodynamic indices in future clinical trials.151,152

Neurophysiological markers 
Neurophysiological markers of diseaseassociated 
changes are currently available. Spectral electro
encepha logram mapping reveals brain connectivity 
changes in amyotrophic lateral sclerosis, which 
correlate with MRI findings and could become useful, 
costeffective markers of cortical network disruption.153,154 
Magnetoence phalography shows enhanced connectivity 
during progression of amyotrophic lateral sclerosis.155

Cortical motor neuronal hyperexcitability can sometimes 
be detected by routine transcranial magnetic stimulation 
(TMS); however, more often, refined techniques 
such as thresholdtracking TMS measuring shortinterval 
intracortical inhibition and intracortical facilitation are 
necessary to detect subclinical UMN involvement.156 
Cortical hyperexcitability across phenotypes of amyo
trophic lateral sclerosis distinguishes the disease from 
nonamyotrophic lateral sclerosis disorders, correlates 
with clinically affected body regions,157 disease spread,157 
and cognitive dysfunction.158 TMS might also have a role 
in prognosis, with increased cortical hyperexcitability 
associated with longer disease duration159 and cortical 
inexcitability with poorer clinical trajectory.160 Change in 
shortinterval intracortical inhibition was the primary 
endpoint in a phase 2 amyotrophic lateral sclerosis trial of 
patients with amyotrophic lateral sclerosis given  
retigabine, a potassium channel activator, showing the 
potential of neurophysiological outcome measures as 
pharmacodynamic disease markers.161
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LMN degeneration can be quantified by the noninvasive 
motor unit index, which correlates with the number of 
functioning motor units.156 This index detects motor unit 
decline already in clinically unaffected muscle groups 
and can monitor motor unit loss over time. When used 
as an outcome measure in clinical trials, the index 
requires thorough qualification of the rater to ensure 
reliability.162

Conclusions 
Amyotrophic lateral sclerosis remains difficult to 
diagnose and manage. This difficulty is due to 
heterogenous presentation and multiple disease 
phenotypes, and the overlap of symptoms and signs with 
other illnesses. Early in the diagnostic process, physicians 
should refer patients presenting with progressive 
dysarthria, dysphagia, limb weakness, or respiratory 
failure to a neurologist. This referral aligns with 
suggestions by advocate groups, as they lobby to help 
patients seek early treatment and enrol in clinical trials. 
Unfortunately, there are no effective diseasemodifying 
drugs, and treatment revolves around multidisciplinary 
care to manage symptoms and aid endoflife planning.

Research into improved diagnostic and prognostic tools 
could expedite diagnosis and give patients a better 
understanding of their disease course. Thus, we anticipate 
future directions in clinical management of the disease 
will move towards simpler diagnostic criteria, such as the 
Gold Coast criteria, and widespread genetic testing. 
Research will evaluate whether newly developed scoring, 
staging, and predictive tools will give patients meaningful 
and accurate insight into their anticipated clinical 
trajectory. Pathophysiology research and novel trial 
designs are developing rational, targeted candidates, 
which are passing through the clinical testing pipeline 
more efficiently. We anticipate that these research efforts 
will translate into improved outcomes for current and 
future patients with amyotrophic lateral sclerosis.
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Abstract
ALSUntangled reviews alternative and off-label treatments on behalf of people with ALS who ask about them. Here we
review rituximab, a drug which specifically depletes B lymphocytes. We show a current lack of evidence for a role of
these cells in ALS progression. The one patient we found who described using Rituximab for their ALS found no bene-
fit. Given all this, and the known serious risks of rituximab, we advise against its use as an ALS treatment.

Keywords: ALS, rituximab, neuroinflammation, off-label treatment

Introduction

ALSUntangled reviews alternative and off-label
treatments for ALS on behalf of people living with
ALS (PALS). Here we review rituximab, for which
we have had 445 requests (https://www.alsun-
tangled.com/future-reviews/).

Background

Rituximab is a first-generation chimeric monoclo-
nal antibody generated by fuzing a rodent Fab
domain with a human Fc domain (1). It selectively
targets and rapidly depletes circulating CD20þ B
lymphocytes, and via this action it is used to treat
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autoimmune diseases such as rheumatoid arthritis
and hematological malignancies such as chronic
lymphocytic leukemia (CLL) and non-Hodgkin’s
lymphoma (NHL) (1–3). Rituximab is also
increasingly utilized as a second or third line treat-
ment for autoimmune encephalitis, neuromyelitis
optica, inflammatory neuropathy and myasthenia
gravis (4–7).

Mechanism

Over the past few decades, evidence has emerged
to support the downstream role of neuroinflamma-
tion in the progression of ALS. Microglial activa-
tion, perivascular infiltration of monocytes and T
cells, and release of proinflammatory cytokines are
pathological manifestations in ALS brain and spi-
nal cord tissues (8,9). Microglia and macrophages
are the primary sources of proinflammatory mole-
cules (10). To date, no convincing evidence has
emerged supporting a direct role of B cells in ALS.

B cells are part of the adaptive immune system
and lead to the production of antibodies. CD20 is
a marker expressed on most B cells, including
immature, naïve and mature memory B cells (11).
Mature CD19þ/CD20þ memory B cells express
IgG on cell surface and evolve into antibody
secreting plasmablasts and plasma cells. CD19þ
plasmablasts are located at the periphery and have
various levels of CD20 expression (12). CD38þ
plasma cells reside in the bone marrow and most
also express CD19þ (13). Although antibodies
against gangliosides and other proteins have been
detected in PALS (14,15), the function of these
antibodies in ALS pathogenesis is unclear; they
may simply be an epiphenomenon of neurodegen-
eration, rather than a cause. Indeed, B cell surface
markers (CD19, CD45, CD69) and serum
immunoglobulin levels do not differ between
SOD1G93A ALS mice and wild type mice (16).
Moreover, depleting B cells from SOD1G93A mice
does not affect limb strength, onset of limb paraly-
sis or survival time (16,17). These studies suggest
that B lymphocytes play a less pivotal role in ALS
progression (16,17). However, in another study
using this same animal model, transfer of IL-10þ
B cells decreased myeloid-derived macrophages in
the central nervous system and was associated with
a trend toward improved neuromuscular function
(though this did not prolong survival,18). Notably,
the SOD1 ALS model may not be the idea disease
model because only 20% of familial and 5% of
sporadic PALS carry an SOD1 gene mutation.
Further studies are required to clarify whether B
cells play any significant role in ALS progression.

Based on the theory that rituximab might
reduce neuroinflammation (albeit with no current
evidence for a specific effect of B cells in this pro-
cess), we assign a TOE “Mechanisms” grade of D.

Pre-clinical models

Recent pre-clinical studies show B cells are present
in the meninges and likely derived locally from cal-
varia (19). Moreover, pre-B cells accumulate in the
spinal cord meninges of mutant SOD1 mice (20).
However, we did not find published studies examin-
ing rituximab treatment in preclinical ALS models.
Unpublished work suggests that intrathecal adminis-
tration of rituximab IgG Fc fragment to the pre-
symptomatic SOD1G93A mice lowered B cell counts
and extended survival by one month (the unpub-
lished data were obtained from Dr. Rachel
Lichtenstein, contributing author of this review).
Thus, we assign a TOE “Pre-clinical” grade of D.

Cases

In the online community PatientsLikeMe, we found
three people who reported taking rituximab for their
ALS (https://www.patientslikeme.com/treatments/
detail/rituximab). The only person who provided any
details stated that they perceived no benefits from this
treatment (https://www.patientslikeme.com/treatment_
evaluations/browse?attribute=efficacy&brand=false&
condition_id=9&id=7572&value=1). Therefore, we
assign a TOE “Cases” grade of F.

Trials

We found no clinical trials using rituximab in
PALS. We therefore assign a TOE “Trials” grade
of U.

Risks, dosing, costs

There are no data examining risks in large num-
bers of PALS exposed to rituximab. Significant
adverse events have been documented in patients
with rheumatoid arthritis, systemic vasculitis and
non-Hodgkin’s lymphoma treated with Rituximab,
especially in the COVID era. Infusion reactions
are common, which include fever, headache, prur-
itus, flushing, and hypotension (21). These reac-
tions are often mild to moderate; however severe
anaphylactic reactions have been reported (22).
Rituximab can reactivate previous hepatitis B and
hepatitis C virus infection (23,24). Therefore, test-
ing for hepatitis B and hepatitis C infection status
are recommended before drug administration.
Rituximab has also been reported to cause neutro-
penia (25,26) and hypogammaglobulinemia (27),
which further increase the associated risk of infec-
tion. Finally, rituximab can lead to progressive
multifocal leukoencephalopathy (PML), a rare but
severe and fatal central nervous system infection
caused by JC virus (28). In light of these findings,
FDA has issued black box warnings for fatal infu-
sion reactions, severe mucocutaneous reactions,
PML, and reactivation of hepatitis B infection.
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Rituximab has been reported to have similar side
effects when it is used off-label in neurological
conditions (29–31). Based on the frequency of ser-
ious adverse events in various populations, we
assign a TOE Grade of F (Table 1).

When it is used in rheumatoid arthritis, rituxi-
mab is administered as two 1000mg dose IV infu-
sions separated by 2 weeks, followed by a repeat
course every 24 weeks for responders (32). In
ANCA-associated vasculitis, rituximab is given as
375mg/m2 every week for four weeks during the
induction phase (33) followed by maintenance treat-
ment of 500mg every six months for two years or
longer (34). Both dosing strategies have been utilized
in autoimmune neurological diseases. Complete B
cell depletion occurs within 14 days and can last for
6–12 months. Therefore, rituximab is typically re-
dosed at a 6-month interval. Recommendations vary
among different diseases regarding re-dosing inter-
vals. A fixed 6-month repeat interval and repeat
course based on circulating CD19þ B cell counts
have both been utilized (34,35).

The cost of rituximab treatment, including the
drug and the infusion, is approximately $1000 per
100mg (information from UpToDate).

Conclusion

Neuroinflammation is associated with disease pro-
gression in PALS. Rituximab depletes a population
of immune cells, so it could theoretically help with
slowing progression. However, rituximab specific-
ally acts on B cells and the importance of these
specific cells in ALS progression is still unclear;

further studies are needed to elucidate this. The
one person we found who reported taking it for
ALS perceived no benefit. We found no trials of
rituximab in ALS. Considering the side effect pro-
file and lack of evidence to support its efficacy, we
do not currently recommend the use of rituximab
as an ALS treatment.
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Abstract
ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS).
Here we review ozone therapy. Ozone therapy has possible mechanisms for slowing ALS progression based on its anti-
oxidant, anti-inflammatory, and mitochondrial effects. A non-peer-reviewed report suggests that ozone treatment may
slow progression in a mTDP-43 mouse model of ALS. One verified “ALS reversal” occurred on a cocktail of alternative
treatments including ozone. There are no ALS trials using ozone to treat PALS. There can be potentially serious side
effects associated with ozone therapy, depending on the dose. Based on the above information, we support an investiga-
tion of ozone therapy in ALS cell or animal models but cannot yet recommend it as a treatment in PALS.

Keywords: ALS, ozone therapy, oxidative stress, neurodegeneration, alternative therapy

Introduction

ALSUntangled reviews alternative and off-label
treatments on behalf of people living with
amyotrophic lateral sclerosis (PALS). Here we
review ozone therapy, for which we have had 556
requests (1).

Overview

Ozone is a gaseous molecule with a pungent smell.
It is generated when diatomic oxygen (O2) is
exposed to an electrical field or ultraviolet light,
which causes a portion of the diatomic oxygen
molecules to split into individual oxygen atoms.
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These free oxygen atoms combine with diatomic
oxygen molecules to form ozone (O3). Ozone is an
unstable molecule due to the weak bonds holding
the third oxygen atom, rendering it a powerful oxi-
dizing agent which is used to disinfect and sanitize
water and hard surfaces (2).

There are currently no FDA-approved medical
indications for ozone therapy. In fact, the FDA
has advised against the medical use of ozone (3)
and reportedly even shut down clinic advertise-
ments touting ozone as a medical treatment (4).
Nonetheless, different experimental and/or off-
label methods have been and still are being
employed to administer ozone to the human body,
including local ozone injection as well as systemic
administration via infusion of ozonized saline solu-
tion, rectal ozone insufflation, or using an ozone
sauna, wherein a body part is bagged and exposed
to ozone gas. Ozone autohemotherapy involves
collecting venous blood from a patient, blending it
with an oxygen/ozone mixture and then reinfusing
it via the same vein (5). This review focuses on
systemic ozone application (e.g. infusion, rectal
insufflation, sauna, or autohemotherapy). Ozone
therapy is different from hyperbaric oxygen ther-
apy, which was reviewed separately in a previous
ALSUntangled paper (6). Ozone is currently being
offered as an ALS treatment on multiple websites
(e.g. 7,8).

Mechanisms

Oxidative stress, neuroinflammation, and mito-
chondrial dysfunction are believed to play roles in
ALS pathophysiology. There is some evidence that
ozone therapy might modify these processes.

Antioxidant effects

Oxidative stress is an imbalance between produc-
tion of damaging reactive oxygen species and their
elimination by antioxidants. Oxidative stress can
lead to protein misfolding and insoluble inclusions,
which are associated with ALS (9,10). As a potent
oxidizer, ozone can transiently worsen oxidative
stress (11). However, this worsening in turn can
activate the nuclear factor-related erythroid factor
2 (Nrf2) pathway, ultimately leading to the tran-
scription of antioxidant response elements (AREs,
11,12). In small study of patients with multiple
sclerosis, ozone therapy (20 ug/ml delivered rec-
tally three times per week) was associated with
increased markers of antioxidant activity and
decreased markers of oxidative damage to lipids
and proteins (12).

Anti-inflammatory effects

Neuroinflammation, characterized by microglial
and astrocyte activation, as well as T lymphocyte

infiltration, is associated with the progression of
ALS (13). In rats, inhaled ozone can promote neu-
roinflammation (14). However, ozone delivered
via injection to rats reportedly reduces pro-inflam-
matory cytokines by blocking the action of nuclear
factor-kB (NF-kB) and promoting the Nrf2 path-
way (15). In small numbers of patients with mul-
tiple sclerosis, ozone delivered rectally was
associated with increased Nrf2 phosphorylation
and decreased pro-inflammatory cytokine expres-
sion (12); ozone delivered via autohemotherapy
was associated with increased expression of anti-
inflammatory Treg cells (16).

Mitochondrial effects

Mitochondria produce the energy required for
most of the cellular processes. Mitochondrial dys-
function is proposed to play a role in ALS progres-
sion (17). In animal models, ozone was shown to
reduce mitochondrial damage in rat models of
ischemia-reperfusion heart injury (18) and noise-
induced hearing loss (19). It is not clear how simi-
lar the mitochondrial dysfunction seen in these
animal models is to that seen in PALS.

Since ozone therapy is associated with reduced
markers of oxidative stress and inflammation in
small studies of humans with multiple sclerosis
(12,16), ALSUntangled assigns a TOE
“Mechanism” grade of A (Table 1).

Pre-clinical models

Ozone therapy has been studied in mSOD1 and
mTDP43 mouse models of ALS. In mSOD1
mice, intraperitoneal injections of ozone for five
consecutive days starting at symptom onset were
associated with reduced markers of neuroinflam-
mation and increased motor neuron counts in

Table 1. Table of evidence for ozone therapy.

Grade Explanation

Mechanism A Peer-reviewed publications show that
ozone treatment is associated with
decreased markers of oxidative stress
and inflammation in patients with
multiple sclerosis.

Pre-clinical D Non-peer- reviewed reports suggest that
ozone therapy was associated with
improved motor performance and
prolonged survival in a mTDP43
mouse model of ALS.

Cases C One unpublished case report with
validated diagnosis and improvements
(however, ozone therapy was part of
many treatments used)

Trials U Ozone therapy has not been studied in
ALS trials

Risks D More than 0% but less than 5% of
exposed patients experienced death or
hospitalizations
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some but not all areas of the brain (20). However,
these injections had no effect on motor perform-
ance or survival (21). In 42-d-old mTDP43 mice,
aerosolized ozone treatment for 4 h a day for 15 d
was associated with improved motor performance
and lengthened survival compared to animals
treated with filtered air (22). Ozone therapy was
also associated with several metabolic changes
related to glucose regulation and insulin resistance
in this mouse model (21,22). These mTDP43
studies were flawed by very small sample sizes
and, as of this writing; they have not been pub-
lished in peer-reviewed journals. Therefore,
ALSUntangled assigns a TOE “Pre-Clinical
Models” grade of D (Table 1).

Data in PALS

Cases

In the online community PatientsLikeMe, three
members report receiving ozone therapy as a treat-
ment for ALS. Two PALS completed treatment
evaluations and both rated effectiveness as “slight”
(23). We did not have records to verify the diagno-
ses nor the perceived benefits of ozone in these
patients. Google search identified the website of
Mr. Kim Cherry, who reports that his ALS
reversed on a regimen of ozone treatments, in add-
ition to hyperbaric oxygen therapy, various vita-
mins and supplements, detox, special diets, and
attitude changes (24). His ALS diagnosis and his
improvements have been independently verified by
our group (25,26). Mr. Cherry’s disease onset was
mid-2010 and slowly progressed to his nadir in
January 2012, at which time his ALSFRS-R score
was 31. His ALSFRS-R score in August 2015 had
improved to 47 (6). Associations like this do not
prove causality.

Based upon these cases, we assign a TOE
“Cases” grade of C (Table 1).

Trials

Ozone therapy has not been evaluated in an ALS
clinical trial. As such, ALSUntangled assigns a
TOE “Trials” grade of U (Table 1). Of potential
interest, ozone therapy has been trialed in several
other neurological conditions (reviewed in refer-
ence 11), including ischemic stroke (27), fibro-
myalgia (28), and multiple sclerosis (12,16,29).
None of these trials produced results compelling
enough to warrant FDA approval.

Dosing, risks, and costs

There is an online protocol for using ozone as an
ALS treatment (30). However, it is not clear to us
that this protocol has ever been studied so we do
not know what benefits and/or side effects it might

produce. Ozone therapy should never be
administered by inhalation because of the risk of
life-threatening pulmonary edema (3,31). The
dose-effect relationship of ozone therapy delivered
in other ways (autohemotherapy, ozonized saline
solution, insufflation, etc.) is hormetic (32). This
means that low doses can be anti-oxidant and anti-
inflammatory, but higher doses can be toxic.
According to the Madrid Declaration of ozone
therapy (31), an online document written by scien-
tists, dentists, pharmacists, and physicians with
interests and experience in administering ozone,
the potential therapeutic dosage for systemic treat-
ment ranges between 5.0 and 6.0mg per treat-
ment, and concentrations of 10–50 lg/Nml are
safe. Non-serious adverse events may occur at
these doses, related to the administration tech-
nique. For example, side effects of autohemother-
apy can include itching on lips and tongue,
nausea, bad taste in the mouth, and dyspnea.
Rectal insufflation can cause bloating and consti-
pation. Higher doses of ozone may cause serious
side effects, including stroke, myocardial infarc-
tion, and death (31). Given all this, if ozone ther-
apy is at all useful in the treatment of ALS, the
therapeutic dosing range is likely quite narrow.
Because of the small risk of serious side effects
including death, we assign a TOE “Risks” grade
of D.

The cost of ozone therapy is variable. Clinics
administering ozone intravenously charge any-
where from $100 to over $1000 per session (33).
In our opinion, it is unlikely that insurance would
cover this. In terms of devices currently on the
market that can generate ozone by design or as a
byproduct, FDA has regarded them as adulterated
and/or misbranded if used or intended for use in
any medical condition for which there is no proof
of safety and effectiveness (3).

Conclusion

Ozone therapy has possible mechanisms for treat-
ing ALS. A preclinical study in very small numbers
of mTDP43 mice (which has yet to be peer-
reviewed) suggested benefits on motor function
and survival (21,22); however, these benefits were
not seen in mSOD1 mice (20). One verified “ALS
reversal” occurred on a cocktail of alternative
therapies including ozone (24); an association such
as this does not prove causality. There have been
no trials of ozone therapy in PALS. There may be
potentially serious side effects associated with
ozone therapy, depending on the dose (31). Based
on all this, we support further investigation of
ozone therapy in ALS cell or animal models, but
we cannot yet recommend it as an ALS treatment.
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Glial-neuron crosstalk in health and disease: A focus on metabolism, 
obesity, and cognitive impairment 
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A B S T R A C T

Dementia is a complex set of disorders affecting normal cognitive function. Recently, several clinical studies have 
shown that diabetes, obesity, and components of the metabolic syndrome (MetS) are associated with cognitive 
impairment, including dementias such as Alzheimer’s disease. Maintaining normal cognitive function is an 
intricate process involving coordination of neuron function with multiple brain glia. Well-orchestrated bio-
energetics is a central requirement of neurons, which need large amounts of energy but lack significant energy 
storage capacity. Thus, one of the most important glial functions is to provide metabolic support and ensure an 
adequate energy supply for neurons. Obesity and metabolic disease dysregulate glial function, leading to a failure 
to respond to neuron energy demands, which results in neuronal damage. In this review, we outline evidence for 
links between diabetes, obesity, and MetS components to cognitive impairment. Next, we focus on the metabolic 
crosstalk between the three major glial cell types, oligodendrocytes, astrocytes, and microglia, with neurons 
under physiological conditions. Finally, we outline how diabetes, obesity, and MetS components can disrupt glial 
function, and how this disruption might impair glia-neuron metabolic crosstalk and ultimately promote cognitive 
impairment.   

1. Introduction

The burden of dementia, defined as an impairment in mental ca-
pacity that interferes with daily function, is growing at a rapid pace as 
the population increases in size and age. Dementia is not one specific 
disorder but rather a constellation of signs and symptoms, which include 
poor judgement, faulty executive function, poor memory, and declining 
social skills. Alzheimer’s disease (AD) is a complex neurodegenerative 
brain disease, which results in symptoms of dementia and constitutes the 
bulk of dementia cases. However, cognitive impairment occurs on a 
continuum, from mild cognitive impairment (MCI) leading up to the 
more serious loss of cognitive function present in frank AD. Although 
well-known AD risk genes exist, most notably apolipoprotein E ε4 (APOE 
ε4) (Serrano-Pozo et al., 2021), the vast majority of AD cases are spo-
radic and lack a known genetic determinant. Multiple clinical studies 
have identified associated AD risk factors, including components of the 
metabolic syndrome (MetS), such as diabetes (Biessels and Despa, 2018) 

and obesity (O’Brien et al., 2017). AD itself is also characterized by 
dysfunctional metabolism, including insulin resistance (Kim and Feld-
man, 2015; Kellar and Craft, 2020) and impaired glucose and lipid 
metabolism in the brain (Butterfield and Halliwell, 2019; Zhu et al., 
2019). Thus, impairment of both systemic and brain metabolism are 
intimately linked to neurodegeneration and are important areas of 
ongoing inquiry. 

This relationship between systemic and brain metabolism with 
neuronal health is intuitive. Neurons rely on well-coordinated bio-
energetics to transmit signals, turnover neurotransmitters, and regulate 
synaptic and dendritic spine formation. Thus, breakdown in bio-
energetics will impair each of these functions and would eventually lead 
to neurodegeneration and AD. Moreover, neurons are aided in these 
roles by glia, and AD is now increasingly believed to progress in a non- 
cell autonomous manner (Heneka et al., 2015), suggesting that AD en-
tails a breakdown in axo-glial communication. However, the precise 
mechanisms remain to be elucidated. 
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In this review, we present the studies supporting the evolving idea 
that disrupting axo-glial metabolic crosstalk can promote neuro-
degeneration and AD. First, we outline the clinical evidence demon-
strating that systemic metabolic dysfunction increases the risk of AD. 
Next, we summarize the known mechanisms of axo-glial metabolic 
crosstalk under physiological conditions. Finally, we discuss how 
disruption of this crosstalk under pathological conditions promotes 
cognitive impairment. 

2. MetS, diabetes, obesity, and cognitive impairment

Systemic metabolic dysfunction in humans is characterized by the
presence of the metabolic syndrome (MetS). The MetS is defined as three 
out of five metabolic criteria: elevated waist circumference (≥102 cm 
males, ≥88 cm females; i.e., obesity), increased systolic (≥130 mmHg) 
or diastolic blood pressure (≥85 mmHg), increased triglycerides (≥150 
mg/dL), elevated fasting blood glucose (>100 mg/dL; i.e., prediabetes, 
diabetes), and lower high-density lipoprotein cholesterol (HDL-c; <40 
mg/dL males, <50 mg/dL females) (Grundy et al., 2005). Over the past 
decade, several clinical studies have shown that the components of MetS 
are dementia risks. 

In diabetes patients with hyperglycemia, impairment commences 
very subtly as so-called diabetes-associated cognitive decrements but 
can progress to MCI or overt AD (Biessels and Despa, 2018). Cognitive 
impairment secondary to diabetes is accompanied by structural brain 
changes and pathological processes, such as central insulin resistance 
(Arnold et al., 2018), inflammation, and oxidative stress (Biessels and 
Despa, 2018). Cross-sectional analysis of the Spanish PREDIMED-PLUS 
study (n = 6823) found that older (mean 65 years), overweight or 
obese type 2 diabetes (T2D) participants with glycated hemoglobin 
(HbA1c) < 53mmol/mol (7%), a hyperglycemia surrogate, had better 
executive function versus participants above this level, after various 
adjustments, including education level (Mallorquí-Bagué et al., 2018). 
The US ARIC study of older participants (n = 5099), spanning four 
states, identified risks for incident MCI at a 5-year median follow-up, 
which include diabetes (adjusted hazard ratio [HR] 1.14 [95% confi-
dence interval (CI) 1.00, 1.31]), poor glycemic control based on HbA1c 
in diabetic individuals (HR 1.31 [95%CI 1.05, 1.63]), and longer dia-
betes duration (≥5 vs. <5 years; HR 1.59 [95%CI 1.23, 2.07]), adjusted 
for several covariates and education (Rawlings et al., 2019). Diabetes 
already in midlife can have far-reaching consequences in later-life; 

analysis of the Japan Public Health Center-Based Prospective Study (n 
= 12,219, aged 40–59 years) found that diabetes correlated positively 
with incident dementia risk (odds ratio [OR] 2.60 [95%CI 1.12, 6.03]. 
Thus, overall diabetes associates with dementia or MCI in cross-sectional 
and longitudinal studies and across diverse populations. 

Several studies also report an association between dyslipidemia and 
central obesity with cognitive impairment and dementia. As with dia-
betes, obesity has pathological processes in common with AD, such as 
inflammation and mitochondrial dysfunction (O’Brien et al., 2017). In a 
cross-sectional US Michigan cohort (n = 184), obese, but normoglyce-
mic, participants performed more poorly on the NIH Toolbox versus lean 
normoglycemic controls, after multiple adjustments, including educa-
tion level (Callaghan et al., 2020). This study indicates that elevated 
waist circumference is a risk for cognitive impairment independent of 
hyperglycemia. A meta-analysis of 21 longitudinal studies with a mini-
mum 2-year follow-up found that being overweight or obese correlated 
positively with incident dementia (risk ratio [RR] 1.41 [95%CI 1.20, 
1.66] in participants less than 65 years old; interestingly, the trend 
reversed above 65 years of age (RR 0.83 [95%CI 0.74, 0.94]) (Pedditzi 
et al., 2016). Another analysis of ARIC (n = 13,997) found that elevated 
midlife total cholesterol, low density lipoprotein-c, and triglycerides 
correlated with more extensive cognitive decline at a 20-year follow-up, 
after adjusting for education along with multiple clinical and de-
mographic variables (Power et al., 2018). 

These findings indicate that early disruptions to systemic metabolism 
have long-lasting and progressive effects on cognition. However, the 
precise metabolic mechanisms leading to cognitive impairment remain 
incompletely understood. Since AD develops non-cell autonomously, we 
propose early events leading to cognitive impairments occur in concert 
with a breakdown in both neuronal and glial function, particularly their 
metabolic crosstalk. To set the framework, we will first review the ho-
meostatic functions of glia-neuron interactions, followed by the mech-
anisms leading to their breakdown during pathological conditions of 
metabolic dysfunction. 

3. Glia-neuron interactions in the healthy brain

Under homeostatic conditions, neurons are supported by central
nervous system (CNS) glia, which mainly comprise oligodendrocytes, 
astrocytes, and microglia. Conventionally, oligodendrocytes myelinate 
CNS axons to expedite signal transmission, astrocytes primarily regulate 

Fig. 1. Oligodendrocyte-neuron interactions under homeo-
static conditions. 
(A) Oligodendrocytes develop from the differentiation and
maturation of oligodendrocyte precursor cells (OPCs) during
embryogenesis and, to a lesser extent, in adulthood during
myelin turn-over. The primary oligodendrocyte function is
axon myelination in the CNS, which brings oligodendrocytes
and axons into close contact. (B) Oligodendrocytes also meta-
bolically support neurons. Glucose is taken up by oligoden-
drocytes through GLUT1 and undergoes glycolysis to pyruvate
followed by conversion to lactate to provide metabolic aid to
axons. Lactate is released from oligodendrocytes through
MCT1 into the periaxonal space, where it enters the axon
through MCT2. Oligodendrocytes also communicate with
neurons by releasing EVs, which contain enzymes, such as
SIRT2, a gluconeogenesis regulator, potentiating neuronal
metabolic activity. (C) Oligodendrocytes use gap junctions to
metabolically interact with both neurons and astrocytes by
enhancing the exchange of lactate through connexins.
astro, astrocyte; CNS, central nervous system; EVs, extracel-
lular vesicles; glu, glucose; GLUT1, glucose transporter 1; lac,
lactate; MCT, monocarboxylate transporter; oligo, oligoden-
drocyte; OPC, oligodendrocyte precursor cell; pyr, pyruvate;
SIRT2, NAD-dependent deacetylase sirtuin 2.

R.E. Henn et al.

1952022 Feldman Laboratory Publications



Neurobiology of Disease 170 (2022) 105766

3

CNS blood flow and recycle neurotransmitters, and microglia, the resi-
dent immune cells, protect neurons from invading pathogens or brain 
damage via the inflammatory response. Recent evidence indicates, 
however, that glia, e.g., oligodendrocytes, also nurture axons by care-
fully orchestrated axo-glial metabolic crosstalk, in addition to their more 
traditional roles, e.g., myelin formation (Philips and Rothstein, 2017). 
The need to metabolically aid axons is intuitive; a resting cortical neuron 
in the human brain expends 4.7 billion ATP molecules per second, so the 
energy requirements are massive (Zhu et al., 2012). Although neurons 
have among the highest percent mitochondrial mass versus other cell 
types to meet these energy needs (Yu and Pekkurnaz, 2018), they lack 
significant energy storage capacity and rely on continuous glucose up-
take. Thus, glia supplement axons with energy substrates during periods 
of especially high energy need (González-Gutiérrez et al., 2020), e.g., 
during high firing rates or during neurodevelopment, making glia- 
neuron metabolic crosstalk a central tenet of healthy brain functioning. 

3.1. Oligodendrocyte-neuron interactions 

Oligodendrocytes primarily function to myelinate CNS axons, facil-
itating saltatory signal transmission. Oligodendrocytes wrap around 
axons, bringing oligodendrocytes into very close proximity to axons 
(Fig. 1). Each oligodendrocyte can give rise to several myelin segments 
and support multiple axons (Philips and Rothstein, 2017). Oligoden-
drocytes develop from oligodendrocyte progenitor cells, a process called 
oligodendrogenesis, which starts in embryonic stages and slows with 
aging (Bergles and Richardson, 2015). However, oligodendrocyte pro-
genitor cells are continuously present during life (Rivers et al., 2008) 
and de novo myelin deposition is a dynamic process, which, if impaired, 
can lead to cognitive impairment (Arai, 2020; Chen et al., 2021). Thus, 
oligodendrocyte-neuron interactions are critical to neuronal function 
and cognition. 

Although the concept of metabolic support from glia to neurons was 
first advanced in astrocytes, the direct intimate contact of oligoden-
drocytes to axons renders them especially suitable for fulfilling the 
metabolic requirements of neurons (Philips and Rothstein, 2017). 
Studies in oligodendrocyte protein-specific knockout animals highlight 
oligodendrocyte support function beyond myelination. Mice lacking 
proteolipid protein (PLP) suffer axonal degeneration without changes to 
myelin compaction (Griffiths et al., 1998). In contrast, myelin basic 

protein (MBP) knockout does not induce axonal degeneration in mice 
but impairs myelin compaction (Griffiths et al., 1998). Further, identi-
fication of myelin-to-axon cytoplasmic channels, which are dependent 
on the oligodendrocyte protein 2′,3′-cyclic nucleotide 3′-phosphodies-
terase (CNP), suggests a potential route for transfer of contents to the 
axon (Snaidero et al., 2017). Overall, these findings demonstrate that 
axon degeneration can occur independent of myelin compaction, indi-
cating a purpose for oligodendrocyte proteins, such as PLP, beyond 
myelin structure (Griffiths et al., 1998). 

This view was reinforced by the discovery of the essential role of 
monocarboxylate transporters (MCTs) to axon health (Fig. 1). In a 
seminal paper, Lee et al. found MCT1 was highly enriched in oligo-
dendrocytes, which they suggested was an important route oligoden-
drocytes leverage to metabolically support axons (Lee et al., 2012). In 
vivo, oligodendrocyte-specific MCT1 knockdown induces axon degen-
eration. Further, MCT1 inhibition ex vivo in organotypic spinal cord 
slices induces motor neuron death under glucose starvation, which is 
rescued by supplementing the culture media with lactate. Since lactate 
supplementation rescues the effect of MCT1 inhibition, the authors 
suggested that MCT1 transport of lactate from the oligodendrocyte to 
the axon is essential to neuronal health. 

Inhibiting MCT1, 2, and 4 in the hippocampus in vivo impairs long- 
term memory formation, which can be rescued by lactate supplemen-
tation in the case of MCT1 and 4 inhibition, but not MCT2 inhibition 
(Suzuki et al., 2011). These data indicate a substantial reliance of neu-
rons on MCT-mediated lactate uptake for memory retention (Fig. 1). 
Indeed, additional studies suggest neurons may even prefer lactate as an 
energy source over glucose, in both the intact (Wyss et al., 2011) and 
injured brain (Glenn et al., 2015). Additionally, inhibiting MCT1/MCT2 
lowers axonal ATP levels in electrically stimulated axons (50 and 100 
Hz) and alters the ATP to compound action potential ratio, lowering the 
capacity for electrical conduction (Trevisiol et al., 2017). Therefore, a 
growing body of evidence supports the concept that MCT-mediated 
lactate shuttling occurs from oligodendrocytes to axons and that 
lactate is an important energy source in the CNS, both in oligodendro-
cytes and neurons. 

There are multiple examples of the role of lactate as an essential 
energy source in the brain (Hu and Wilson, 1997), both for oligoden-
drocytes as well as for neurons, directly and through oligodendrocyte- 
mediated lactate transfer. For example, lactate supplementation can 

Fig. 2. Astrocyte-neuron interactions under homeo-
static conditions. 
(A) The primary function of astrocytes is to regulate
CNS blood flow and recycle neurotransmitters. (B)
Astrocytes take up glucose from blood vessels, which
is metabolized to pyruvate by glycolysis, and then, in
turn, to lactate. Astrocytes leverage the MCT1/MCT2
shuttle to transfer lactate to neurons, providing
metabolic support to axons. (C) Moreover, astrocytes
serve as an energy reserve through glycogen storage.
(D) Astrocytes also play important roles through the
recycling of glutamate/glutamine. First, astrocytes
take up glutamate via GLT-1, which is converted to
glutamine and transported to neurons via GLAST.
Neurons can then convert glutamine back to gluta-
mate to replenish their neurotransmitter pool. (E)
Finally, astrocytes provide antioxidants to neurons,
which prefer oxidative metabolism and generate
relatively high reactive oxygen species levels.
astro, astrocyte; CNS, central nervous system; GLAST,
glutamate aspartate transporter; gln, glutamine; glt,
glutamate; glu, glucose; GLT-1, glutamate transporter
1; lac, lactate; MCT, monocarboxylate transporter;
oligo, oligodendrocyte; pyr, pyruvate.
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rescue low-glucose-induced impairment in oligodendrocyte differenti-
ation in rat cerebellar or cortical slices, suggesting lactate is an impor-
tant substrate during oligodendroglial myelination (Rinholm et al., 
2011). In parallel, blocking oxidative phosphorylation in mature oli-
godendrocytes by COX10 knockout shifts metabolism to glycolysis and 
lactate utilization as a readily available energy source, which has no 
effect on myelination (Fünfschilling et al., 2012). Additionally, oligo-
dendrocytes may import lactate independent from MCT1 through gap 
junctions composed of connexin hemichannels (Philips and Rothstein, 
2017). Knocking out the expression of connexin hemichannels, which 
are mainly expressed by oligodendrocytes, induces neuronal vacuola-
tion and variable degrees of dysmyelination (Odermatt et al., 2003). 
Even connexin hemichannel knockout in astrocytes triggers myelination 
defects and cognitive impairment in mice, suggesting the presence of 
gap junction crosstalk between astrocytes and oligodendrocytes (Lutz 
et al., 2009). 

In addition to MCTs and the lactate axis, oligodendrocyte N-methyl- 
D-aspartate receptors (NMDARs) sense neuron-derived glutamate, a
surrogate of signal transmission activity, which regulates the metabolic
support offered by oligodendrocytes (Saab et al., 2016). Specifically,
oligodendroglial NMDAR activation in optic nerves ex vivo enhances
calcium influx and glucose uptake by oligodendrocytes via glucose
transporter 1 (GLUT1), in turn augmenting lactate transfer to axons.
Thus, an increase in neuronal transmission activates biochemical path-
ways in oligodendrocytes, which stimulates lactate transfer to energy- 
requiring axons through metabolic crosstalk.

Oligodendrocytes can additionally communicate with axons by 
secreting extracellular vesicles (EVs), which enter the periaxonal space 
and are internalized by neurons via endocytosis (Fig. 1) (Frühbeis et al., 
2020). This EV-mediated oligodendrocyte-axon crosstalk enhances 
neuronal metabolism (Frühbeis et al., 2013), firing rates (Fröhlich et al., 
2014Fröhlich, Kuo et al. 2014), and axonal transport (Frühbeis et al., 
2020). Interestingly, PLP- and CNP-deficient oligodendrocytes secrete 
dysfunctional EVs, which are incapable of neuronal or axonal support 
(Frühbeis et al., 2020). Oligodendrocyte-derived EVs also transfer SIRT2 
cargo, an NAD + -dependent deacetylase and regulator of gluconeo-
genesis, to axons, increasing axonal basal respiration and ATP produc-
tion and levels in maturing neurons (Chamberlain et al., 2021). SIRT2 
then boosts mitochondrial bioenergetics by deacetylating axonal mito-
chondria proteins, indicative of oligodendrocyte-axon metabolic cross-
talk independent of myelin function. 

Overall, evidence indicates that oligodendrocytes support neurons 
beyond myelin formation through metabolic coupling. This enforces the 
critical dependence of neurons on oligodendrocytes for the required 
energy substrates to maintain normal neuronal function and cognition. 

3.2. Astrocyte-neuron interactions 

Astrocytes primarily function to regulate CNS blood flow and recycle 
neurotransmitters. They help neurons maintain synaptic transmission 
and excitability via the primary astrocytic recycling pathway, the 
glutamate-glutamine cycle (Fig. 2) (Bélanger et al., 2011). Using this 
pathway, astrocytes take up glutamate via glutamate transporter 1, and 
convert it to glutamine which is transferred to neurons through the 
glutamate aspartate transporter. Neurons then convert glutamine back 
to glutamate, replenishing the neuronal neurotransmitter pool. Astro-
cytes interact directly with neuronal synapses, so-called tripartite syn-
apses, to facilitate synaptic plasticity and transmission (Mederos et al., 
2018). Hippocampal astrocytes also express functional acetylcholine 
receptors (Gahring et al., 2004; Shen and Yakel, 2012) and modulate 
neuronal cholinergic firing rates (Pabst et al., 2016). Thus, astrocytes 
may modulate neuronal activity through glutamate and cholinergic 
neurotransmitters (Maurer and Williams, 2017). 

Astrocyte-neuron synapse interactions also couple neurons to the 
vasculature, facilitating astrocyte-coordinated changes to CNS blood 
flow and metabolite supply to the CNS through the vasculature 

(Bélanger et al., 2011). Astrocyte-mediated changes in blood flow are 
influenced, at least in part, by brain metabolism (Gordon et al., 2008), 
supporting metabolic links between neurons and astrocytes. Astrocytes 
residing near blood vessels increase glucose uptake from circulation in 
response to neuronal transmission and disseminate glucose and metab-
olites through connexins across astrocytic networks (Rouach et al., 
2008). 

In terms of metabolism, both astrocytes and neurons can use glucose 
and lactate as energy sources; however, they prefer different, though 
complementary, energy sources and pathways. Astrocytes primarily 
utilize glycolysis and produce lactate (Lovatt et al., 2007), whereas 
neurons prefer oxidative metabolism (Bélanger et al., 2011). Comple-
mentary energy generating pathways are critical to astrocyte-neuron 
metabolic interactions. Astrocytes consume a large portion of the 
brain glucose supply, especially during neural activation (Chuquet et al., 
2010). However, neurons require a disproportionally large amount of 
energy to function versus other CNS cell types. Metabolic interaction 
partially explains this discrepancy; astrocytes sense glutamate, a surro-
gate of neuronal activity, which enhances their glucose consumption 
and subsequent lactate release to neurons through the astrocyte-neuron 
lactate shuttle (Pellerin and Magistretti, 1994). Thus, elevated astrocytic 
glucose metabolism serves to enhance lactate substrate transport into 
neurons, amplifying their energy reserves and aiding electrical activity. 
It is important to note that neuron and astrocyte populations are het-
erogeneous, varying in number and type by brain region and multiple 
additional factors; thus, their interactions likely also vary (Khakh, 
2019). 

While neurons prefer oxidative metabolism and generate relatively 
high amounts of reactive oxygen species, they are limited in intrinsic 
antioxidant production rendering them particularly susceptible to 
oxidative damage (Fig. 2). Astrocytes are less vulnerable to oxidative 
stress and also assist neurons partly by providing them with antioxidant 
precursors, e.g., glutathione (Bélanger et al., 2011), underscoring 
another instance of astrocyte-neuron interactions involving metabolism. 
The antioxidant glutathione is regenerated from its oxidized form using 
electrons from NADPH, which is itself generated from glucose process-
ing via the pentose phosphate pathway (Dringen, 2000). Oxidative stress 
upregulates pentose phosphate pathway activity and NADPH levels in 
astrocytes (García-Nogales et al., 2003), augmenting their antioxidant 
capacity and ability to support neurons. Additionally, increased brain 
activity stimulates a shift in energy utilization from primarily glucose to 
lactate consumption in neurons concomitant with enhanced antioxidant 
ascorbic acid release from astrocytes (Castro et al., 2009), providing an 
additional route to astrocyte-mediated metabolic support. 

Primarily located in astrocytes, glycogen is an important energy 
storage reserve in the brain that can protect neurons under hypoglyce-
mic conditions (Brown, 2004). These astrocytic glycogen reserves are 
also a lactate source to neurons via the astrocyte-neuron lactate shuttle, 
further providing metabolic support to neurons and synaptic activity 
(Tekkök et al., 2005). Blocking astrocytic glycogenolysis impedes 
memory consolidation and long-term memory formation, implying 
bioenergetic support from glycogen is critical to cognitive function 
(Suzuki et al., 2011). Exogenous lactate reverses these effects, unless the 
neuronal lactate transporter MCT2 is blocked, indicating a critical role 
for astrocyte-neuronal metabolic lactate signaling long-term memory 
consolidation. Lastly, in addition to the significant metabolic interaction 
between astrocytes and neurons, astrocytes are also key mediators of 
metabolic support of oligodendrocytes to neurons, forming a neuron- 
oligodendrocyte-astrocyte axis (Amaral et al., 2013). The integrity of 
this critical trio is paramount to normal brain function. 

3.3. Microglia-neuron interactions 

Microglia are resident innate immune cells of the brain; however, 
their function extends well beyond immune surveillance and response to 
pathogens. During development, microglia support neurons by 
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regulating neuronal survival and differentiation, eliminating non-viable 
neurons and pruning synapses (Fig. 3) (Schafer and Stevens, 2015; 
Mosser et al., 2017). Microglia-neuron crosstalk continues in the adult 
brain, serving a variety of purposes, including sensing neuronal activity 
and regulating synaptic plasticity (Marinelli et al., 2019). Microglia- 
neuron crosstalk is mediated by both direct contact (Cserép et al., 
2021) and secreted signals (Marinelli et al., 2019). Microglia extend 
cellular processes that constantly surveil their environment, secret sol-
uble signals that bind neuronal receptors, and express receptors to 
receive neuronal signals (Pósfai et al., 2019; Uweru and Eyo, 2019). 
Microglial processes communicate with neurons at multiple cellular 
anatomical locations, including somas, axons, and dendrites, allowing 
microglia to sense and respond to neuronal activity directly (Cserép 
et al., 2021). Here, we highlight the main mediators and key functions of 
microglial-neuronal crosstalk in development and the healthy adult 
brain. 

Complement signaling though complement receptor 3 (C3R) on 
microglia and C3 from neurons contributes to developmental synaptic 
pruning (Fig. 3) (Schafer et al., 2012). In adulthood, aberrant comple-
ment activation is implicated in neurodegenerative disease (Dalakas 
et al., 2020). Other receptor-ligand pairs essential for homeostatic 
microglial-neuronal crosstalk involve fractalkine (CX3CL1; neurons) 
and the fractalkine receptor (CX3CR1; microglia), and CD200 ligand 
(neurons) and CD200 receptor (CD200R; microglia), which perform 
anti-inflammatory and house-keeping roles (Marinelli et al., 2019). 

Microglia and neurons also communicate via secreted 

neurotransmitters, neurotrophic factors, cytokines, purines, and the 
purine derivative ATP (Marinelli et al., 2019). Microglia express sero-
tonin, GABAB, and glutamatergic receptors, which allows them to sense 
neuronal activity (Marinelli et al., 2019). They also express acetylcho-
line receptors, which, upon activation, exert anti-inflammatory and 
neuroprotective effects (Suzuki et al., 2006; Egea et al., 2015; Li et al., 
2019b). Microglia also secrete neurotrophic factors (e.g., brain-derived 
neurotrophic factor) and cytokines (e.g., tumor necrosis factor alpha 
[TNF-α], interleukin-1β [IL-1β]), which bind to cognate receptors 
expressed on neurons (Pósfai et al., 2019). Purinergic receptor activa-
tion, e.g., P2XRs and P2YRs, evoke diverse microglial responses, such as 
migration upon ATP stimulation of P2RY12 (Fig. 3) (Calovi et al., 2019; 
Illes et al., 2020). Microglial purinergic receptors form purinergic 
junctions with neuronal somas (Cserép et al., 2020). The exact function 
of these purinergic junctions remains under investigation, but microglia 
may leverage them to sense neuronal activity, since these junctions are 
comprised of neuronal mitochondria and endoplasmic reticulum 
contacts. 

Diverse interactions between microglia and neurons contribute to 
proper nervous system development and help maintain homeostasis in 
the adult brain. In addition to interactions concerning neurotransmit-
ters, neurotrophic factors, cytokines, and purinergic receptors, recent 
evidence also suggests potential for a metabolic aspect to microglia- 
neuron interactions. Most studies have defined the relationship be-
tween microglial activation state and metabolism, whereas less is known 
about microglia-neuron metabolic crosstalk. Microglia express multiple 

Fig. 3. Microglia-neuron interactions under homeostatic conditions. 
The primary microglia function is as the resident innate immune cells of the brain; however, their function extends well beyond immune surveillance. (A) Microglia 
clear cellular debris from the CNS and eliminate non-viable neurons. (B) Microglia also prune neuronal synapses through C3-C3R interactions. (C) In addition, 
microglia-neuron interactions occur through other receptor-ligand interactions (CX3CL1-CX3CR1, CD200-CD200R, anti-inflammatory and house-keeping functions) 
and microglia-secreted neurotransmitters, neurotrophic factors, and cytokines, which bind to cognate receptors on neurons. (D) Regarding metabolic communication, 
one putative mechanism is through junction formation of neuronal somas to microglial purinergic receptors, e.g., P2RY12, which are activated by ATP and may 
constitute a sensing mechanism of neuronal activity since these junctions are enriched with neuronal mitochondria and endoplasmic reticulum contacts. (E) 
Microglia prefer glucose as an energy substrate, which they take up through GLUTs, and metabolize through oxidative phosphorylation (OXPHOS) under homeostatic 
conditions (pink microglia). However, even though less efficient, activated microglia (red microglia) shift their metabolism to glycolysis while mounting a pro- 
inflammatory response. One putative reason is that microglia may utilize glycolysis-derived NADPH to generate reactive oxygen species for host defense. 
C3, complement component 3; C3R, C3 receptor; CNS, central nervous system; CD200, Cluster of Differentiation 200 ligand; CD200R1, CD200 receptor 1; CX3CL1, 
fractalkine also called chemokine (C-X3-C motif) ligand 1; CX3CR1, fractalkine receptor also called CX3C chemokine receptor 1; glu, glucose; GLUT, glucose 
transporter; OXPHOS, oxidative phosphorylation; P2RY12, purinergic receptor. 

R.E. Henn et al.

1982022 Feldman Laboratory Publications



Neurobiology of Disease 170 (2022) 105766

6

GLUT receptors and utilize glucose as their main fuel source, preferen-
tially using oxidative phosphorylation when in a homeostatic state 
(Bernier et al., 2020a, 2020b, Lauro and Limatola, 2020). However, 
although glucose is preferred, microglia can utilize glutamine, and 
possibly free fatty acids and amino acids, as fuel sources, making them 
metabolically versatile when glucose levels are low or under stressful 
conditions, for example when mounting an inflammatory response 
(Bernier et al., 2020a; Bernier et al., 2020b). 

When microglia respond to a pro-inflammatory challenge, such as 
lipopolysaccharide stimulation, they transition from oxidative phos-
phorylation to glycolysis (Lauro and Limatola, 2020). This metabolic 
switch is also observed in activated peripheral macrophages (Liu et al., 
2021). In a recent review on the topic, Bernier et al. proposed microglia 
require the glycolytic shift to mount a pro-inflammatory response 
(Bernier et al., 2020a, 2020b). Specifically, microglia might benefit from 
a glycolytic shift because NADPH can be used to generate reactive ox-
ygen species for host defense, and metabolic intermediates can 
contribute to proliferation and cytokine production. Indeed, inhibiting 
glycolysis blocks lipopolysaccharide-induced primary microglial TNF-α, 
IL-1β, and IL-6 expression (Hu et al., 2020). Thus, the metabolic state of 
microglia regulates inflammatory signals, which can communicate with 
surrounding cells, including neurons. 

How microglia might sense neuronal metabolism remains largely 
unknown. Microglia sense ATP- and activity-dependent neurotrans-
mitter release from neurons, so, perhaps, they indirectly sense metabolic 
demands. One potential source of direct metabolic crosstalk exists at the 
microglial to neuronal somatic purinergic junction, where neuronal 
mitochondria aggregate, suggesting a potential mechanism of metabolic 
communication (Cserép et al., 2020). 

Overall, microglial metabolic shifts are critical for pro-inflammatory 
activation, whereas microglia-neuron metabolic crosstalk remains 
poorly understood. However, given emerging evidence of potential 
metabolic communication, e.g., via purinergic receptors, research into 
microglial-neuron metabolic crosstalk constitutes an interesting 
research direction. 

4. Glia-neuron interactions in the brain in the context of the
MetS and dysfunctional metabolism

In the healthy brain, carefully orchestrated metabolic glia-neuron 
interactions occur to sustain normal brain functioning (Philips and 
Rothstein, 2017). Under conditions of the MetS, rising insulin resistance 
and excess energy substrates, both elevated glucose and lipid levels, 
perturb glial homeostasis and metabolism and induce neuro-
inflammation (Van Dyken and Lacoste, 2018; de la Monte and Grammas, 
2019; O’Grady et al., 2019; Langley et al., 2020; Bouhrara et al., 2021). 
Additionally, metabolic dysfunction lowers brain expression of neuro-
transmitter receptors, e.g., acetylcholine receptors (Xu et al., 2020; 
Martinelli et al., 2021; Martins et al., 2021), which would lead to 
cognitive impairment. In parallel to MetS-induced glial disruption, we 
posit perturbations in glia-neuron interactions occur with a loss of en-
ergy substrate transfer to neurons in need of metabolic support. Ulti-
mately, this would lead to failure of neuronal bioenergetics and signal 
transmission, and, eventually, neuronal loss and cognitive impairment. 
The following section summarizes the available studies on glia-neuron 
metabolic crosstalk occurring in the context of dysfunctional 
metabolism. 

4.1. Oligodendrocyte-neuron interactions 

As discussed in the section on homeostatic glia-neuron interactions, 
oligodendrocytes provide two pivotal supporting functions for neurons, 
myelination and metabolic support (Philips and Rothstein, 2017). With 
reference to myelination, diabetes, obesity, and MetS components 
negatively impact oligodendrocytes, leading to oligodendrocyte loss and 
loss of myelin integrity (Yoon et al., 2016; Kim et al., 2020). These 

pathological changes correlate with cognitive impairment in preclinical 
studies. In mouse models of obesity, high-fat diet (HFD) decreases 
myelin thickness, which correlates with poorer cognitive performance 
(Graham, Grabowska et al., 2019). Similarly, in type 2 diabetic mice, 
loss of white matter, a marker of brain demyelination, is associated with 
worsened cognitive function (Li et al., 2019a). In human clinical studies, 
patients with type 2 diabetes, like their murine counterparts, exhibit 
disrupted white matter networks that correlate with cognitive impair-
ment (Zhang et al., 2016; Biessels and Despa, 2018). In parallel, obesity 
and insulin resistance are linked to lower myelin content in cognitively 
unimpaired adults (O’Grady et al., 2019; Bouhrara et al., 2021). 

With reference to metabolic support, metabolomics analysis of cen-
tral nervous system tissue from MetS animals fed a HFD demonstrates 
impaired metabolism occurs concurrently with oligodendrocyte loss, 
with a drop in tricarboxylic acid (TCA) cycle intermediates and changes 
in protein biosynthesis, glutathione metabolism, and the mitochondrial 
electron transport chain (i.e., oxidative phosphorylation) (Langley et al., 
2020). These detrimental changes worsen over time. HFD feeding also 
promotes the loss of oligodendrocyte progenitor cells and reduces their 
differentiation in mouse models (Langley et al., 2020). In a db/db mouse 
model of obesity and type 2 diabetes, early changes in myelin and 
mitochondrial lipids occur in the brain prior to the onset of overt 
structural alterations (Palavicini et al., 2020). Although these studies in 
mouse models on oligodendrocytes are correlative and not causative, 
they suggest that systemic metabolic dysfunction adversely impact 
oligodendrocyte health, and possibly neuronal health in turn, and 
constitute interesting research avenues. Importantly, there is discor-
dance across studies, which may arise from the rodent age, location of 
the sampled CNS matter, and differences in diet, which also require 
further inquiry. 

The impact of hyperglycemia on oligodendrocytes is unclear. 
Chronic hyperglycemia does not affect viability, oxidative stress, or 
differentiation of oligodendrocyte progenitor cells in vitro (da Rosa 
et al., 2019). Yet a high-fat high-sucrose diet decreases the number of 
mature myelinating oligodendrocytes in mouse spinal cord in tandem 
with impaired TCA metabolism (Kim et al., 2020). Therefore, it is 
possible that mature oligodendrocytes, but not their progenitors, are 
susceptible to hyperglycemia. This idea is supported by data from type 1 
diabetic rats with hyperglycemia. In these animals, the optic nerve is 
characterized by disorganized myelin and some demyelinated zones, 
indicating a potential oligodendrocyte loss and impaired function 
(Dorfman et al., 2015). 

Regarding potential effects of metabolic dysfunction on 
oligodendrocyte-neuron metabolic crosstalk, neuronal expression of 
components of the lactate shuttle, MCT1 and MCT2, increase in the 
brain of obese mice after 12 weeks of HFD, as well as in the brain of type 
2 diabetes and obesity mouse models (ob/ob and db/db mice) (Pierre 
et al., 2007). These findings likely represent an initial compensatory 
mechanism by the brain to overcome the bioenergetic crisis produced by 
systemic MetS conditions (Chomova, 2022). More recent MCT research 
has addressed changes in AD murine models over time, but data are 
lacking on HFD and MetS animals. MCT1, MCT2, and MCT4 expression 
and lactate levels decrease in APP/PS1 AD mice with cognitive 
impairment (Zhang et al., 2018), supporting an association between 
aberrant oligodendrocyte-neuron coupling and cognition. This associa-
tion is further supported by studies showing brain MCT1 and MBP levels 
progressively decrease in older versus younger APP/PS1 AD mice, par-
alleling the trajectory of cognitive decline (Dong et al., 2018). Finally, 
AD also directly affects oligodendrocyte metabolism by altering the 
expression of glycolytic and ketolytic genes, impairing their ability to 
provide metabolic support and energy substrates to neurons (Saito et al., 
2021). Analogous studies are required in MetS animal models to 
improve our understanding of systemic metabolic dysfunction on 
oligodendrocyte-neuron metabolic crosstalk. 

It is also possible to draw parallels between oligodendrocyte-neuron 
interactions with Schwann cell-neuron coupling in the peripheral 
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nervous system. Schwann cell-restricted MCT1 knockout triggers sen-
sory neuropathy and hypomethylation in aging mice along with per-
turbed myelin lipid composition (Jha et al., 2020b). Heterozygous MCT1 
knockout worsens sensory and motor neuropathy and causes a thinning 
of myelin in STZ type 1 diabetic mice (Jha et al., 2020a). In models of 
peripheral nerve injury, Schwann cells shift their metabolism to 
glycolysis to supply neurons with energy fuel during repair, which 
specifically occurs through MCT1 and Schwann cell-axon metabolic 
coupling (Babetto et al., 2020). Indeed, heterozygous MCT1 knockout 
(Morrison et al., 2015) or pharmacological MCT1 inhibition (Babetto 
et al., 2020) impairs axon repair and/or accelerate degeneration. 
Cumulatively, these studies demonstrate how Schwann cells metaboli-
cally support neurons during pathological conditions, be it during dia-
betes- or mechanical injury-induced axon degeneration. Whether similar 
mechanisms operate in the CNS has not been investigated in this level of 
detail, to our knowledge. 

In summary, diabetes, obesity, and MetS components disrupt oligo-
dendrocyte metabolism and myelin integrity (Yoon et al., 2016; Kim 
et al., 2020), which we posit leads to a failure to provide adequate 
metabolic support to neurons and cognitive impairment (Fig. 4). 

4.2. Astrocyte-neuron interactions 

Astrocytes are central to normal brain physiology, glucose homeo-
stasis, and energy regulation. Glucose is the primary energy source for 
the brain, and while neurons have high energy requirements, astrocytes 
are the principal cells responsible for glucose uptake and transfer of 
metabolic substrates, particularly lactate, to neurons. Although insulin 
is not required for glucose uptake by neurons, the brain is an insulin 
sensitive organ (Cai et al., 2018; Kim et al., 2019a) and develops insulin 
resistance in response to MetS, with changes in brain structure (Lu et al., 
2021) (Fig. 5). 

Fig. 4. Oligodendrocyte-neuron interactions under pathologic 
conditions of metabolic dysfunction. 
(A) Diabetes, obesity, and MetS components negatively impact
oligodendrocytes, which correlate with cognitive impairment.
HFD promotes obesity and the MetS and induces oligoden-
drocyte loss and perturbed myelin structure and lipid compo-
sition. (B) Additionally, transcriptomics and metabolomics
changes occur to multiple targets related to metabolism (drop
in TCA cycle intermediates), mitochondrial biogenesis and
function (changes in PGC-1α expression, drop in OXPHOS), and
protein biosynthesis, along with upregulated endoplasmic re-
ticulum stress and oxidative stress pathways (glutathione
metabolism). (C) We hypothesize HFD also stimulates changes
to MCT1, 2, and 4 expression and that oligodendrocytes
experience a glycolytic shift to supply neurons with energy fuel
under conditions of stress via metabolic coupling. (D) Lastly,
HFD also promotes the loss of OPCs and reduces their differ-
entiation, which would impair the ability to regenerate HFD- 
induced damage to myelin.
glu, glucose; HFD, high-fat diet; lac, lactate; MCT, mono-
carboxylate transporter; MetS, metabolic syndrome; OPC,
oligodendrocyte precursor cell; OXPHOS, oxidative phosphor-
ylation; PGC-1α, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha; TCA, tricarboxylic acid.

Fig. 5. Astrocyte-neuron interactions under patho-
logic conditions of metabolic dysfunction. 
Diabetes, obesity, and MetS components negatively 
impact astrocytes and correlate with cognitive 
impairment. (A) Obesity promotes astrocyte reac-
tivity (red astrocytes), morphologic changes, and 
inflammation. (B) Insulin resistance in the brain 
impairs the ability of astrocytes to take up glucose 
and maintain CNS glucose homeostasis. (C) Diabetes 
perturbs astrocytic metabolism. (D) Obesity and 
diabetes also impair the ability of astrocytes to clear 
glutamate, which subsequently suppresses neuronal 
transmission, and leads to excitotoxicity. 
CNS, central nervous system; GLAST, glutamate 
aspartate transporter; gln, glutamine; glt, glutamate; 
glu, glucose; GLT-1, glutamate transporter 1; IR, in-
sulin resistance; lac, lactate; MCT, monocarboxylate 
transporter; pyr, pyruvate; TCA, tricarboxylic acid.   
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Astrocytes express insulin receptors and are insulin responsive, 
increasing glycogen storage following insulin treatment (Heni et al., 
2011). In vivo studies using astrocyte-specific insulin receptor knockout 
mice show that astrocytes lacking insulin receptors are less capable of 
maintaining CNS glucose homeostasis, secondary to loss of hypotha-
lamic astrocyte function, disrupting normal physiological responses to 
brain glucose levels (García-Cáceres et al., 2016). This is paralleled by a 
loss of normal glucose transport across the blood-brain barrier in these 
same animals, further emphasizing the crucial role astrocytes play in 
sensing systemic glucose (García-Cáceres et al., 2016). Insulin receptor 
knockout in astrocytes lowers ATP release and disrupts astrocyte-neuron 
energy exchange, which decreases dopamine release from dopaminergic 
neurons (Cai et al., 2018). This decreased dopamine release impacts 
cognition since knockout animals display depressive and anxiety. These 
preclinical observations support a growing literature on how systemic 
insulin resistance, a hallmark of dyslipidemia and the MetS, in parallel 
with aforementioned brain insulin resistance, develops over time and is 
associated with cognitive impairment and dementia (Kellar and Craft, 
2020). 

In the context of the MetS and astrocytes, two recent reports provide 
additional insight into this critical association. First, treating primary 
astrocytes with fatty acids to simulate dyslipidemia present in the MetS, 
lowers autophagic flux in astrocytes, a response likely dependent upon 
the brain region from which cells are isolated (Ortiz-Rodriguez and 
Arevalo, 2020). This response, along with blocking autophagy in as-
trocytes, is toxic, both to astrocytes and neurons. The second report 
highlights an intriguing response of the sympathetic nervous system to 
HFD animal models. HFD fed rats exhibit sympathetic neuron excito-
toxicity, with increased astrocyte leptin receptor expression and 
decreased glutamate receptor and transporter expression (Liu and 
Zheng, 2019). Interestingly, changes in sympathetic nervous system 
function are common in obesity, components of the MetS, and 
dysfunctional metabolism (Liu and Zheng, 2019). The link between 
elevated sympathetic activity, cognitive impairment, and increased 
astrocyte leptin receptor expression is an interesting one deserving of 
further study (Knight et al., 2020). These two studies open new avenues 
of research as the field pursues a deeper understanding of the metabolic 
crosstalk between astrocytes and neurons during the MetS. 

In comparison to the few studies outlined above, there is more 
established literature on the pathogenesis of AD and related dementias 
regarding changes in bioenergetics, mitochondrial function, and 
inflammation in astrocytes (Rodríguez-Arellano et al., 2016; Arranz and 
De Strooper, 2019). These changes in astrocyte physiology parallel those 
reported in astrocytes in response to obesity and systemic dysfunction, 
with well documented increases in inflammation and astrocyte reac-
tivity, coupled with changes in morphology and function (Tomassoni 
et al., 2013; Koga et al., 2014; Tomassoni et al., 2020). What is less well 
studied is astrocyte biology in the context of diabetes-mediated cogni-
tive impairment. While published research strongly supports our 
contention that diabetes will induce dysfunctional astrocyte-neuron 
metabolic coupling, there are only a few studies directly addressing 
this question. One such study is in the db/db mouse model of type 2 
diabetes. Zhang et al. report increases in brain lactate and alanine levels 
and speculate these findings may signal a breakdown of the lactate- 
alanine shuttle between astrocytes and neurons, while concurrent 
changes in TCA metabolites suggest a metabolic switch in neurons from 
oxidative metabolism to anaerobic glycolysis (Zheng et al., 2017. The 
authors also report a decrease astrocyte clearance of glutamate, which 
subsequently suppresses GABA transmission to neurons and impairs 
synaptic plasticity. These findings associate with cognitive impairment 
in the db/db animals, as assessed by the Morris water maze (Zheng et al., 
2017). 

In summary, accumulating data support the hypothesis that meta-
bolic imbalance between astrocytes and neurons promotes cognitive 
impairment in obesity and the MetS. Multiple preclinical and clinical 
studies also confirm that obesity, diabetes, and MetS components 

promote cognitive impairment, and that changes in astrocyte-neuron 
metabolic interactions are critical in other neurodegenerative diseases, 
including AD (Zulfiqar et al., 2019). Furthermore, several reports point 
to astrocyte-neuron metabolic coupling as critical for learning and 
memory under physiologic conditions. While more studies are needed to 
fully understand astrocyte-neuron metabolic interactions in cognitive 
impairment related to the MetS and metabolic dysfunction (Fig. 5), as-
trocytes are attractive therapeutic targets and the source of current and 
planned interventions for the treatment of cognitive impairment and 
associated dementias (Arranz and De Strooper, 2019). 

4.3. Microglia-neuron interactions 

Components of the MetS promote CNS neuroinflammation (Van 
Dyken and Lacoste, 2018), with microglial activation, elevated cytokine 
levels, oxidative stress, and blood-brain barrier disruption along with 
peripheral immune trafficking into the brain. Neuroinflammation con-
tributes to pathology through activated microglia interactions with hy-
pothalamic neurons leading to leptin and insulin resistance (Van Dyken 
and Lacoste, 2018; Robb et al., 2020) and with hippocampal neurons 
leading to cognitive decline (Cope et al., 2018). The role of microglia- 
neuron crosstalk in regulating metabolic disease is relatively well- 
established in the hypothalamus. However, the role of microglial 
metabolism and metabolic crosstalk in the hippocampus and on cogni-
tive performance is not as well described. 

Hypothalamic microglial pro-inflammatory activation contributes to 
neuronal stress and ultimately drives feeding behaviors and diet- 
induced obesity (Valdearcos et al., 2014; Valdearcos et al., 2017). 
Although the mechanism of the crosstalk remains elusive, Valdecaros 
et al. demonstrated that diphtheria toxin depletion of hypothalamic 
microglia prevents saturated fatty acid-induced neuronal stress (Val-
dearcos et al., 2014). Additionally, pharmacological microglial deple-
tion in the context of saturated fatty acid treatment increases neuronal 
leptin responses and decreases intake of chow. In a later study, the au-
thors show that inhibiting microglia-specific NF-κB inflammatory acti-
vation by genetic manipulation prevents HFD-induced hyperphagia and 
obesity (Valdearcos et al., 2017). Microglia, therefore, regulate systemic 
metabolic physiology by interacting with neurons in the medial basal 
hypothalamus (Robb et al., 2020). Along those lines, microglia also 
express leptin receptors, and knockout of myeloid leptin receptors re-
duces microglial morphological ramification in the hypothalamic par-
aventricular nucleus, disrupts hypothalamic neuronal circuitry, and 
induces hyperphagia and weight gain (Gao et al., 2018). This advocates 
a potential role for microglial leptin sensing in regulation of hypotha-
lamic neurons and subsequent systemic metabolism. Dysregulated 
mitochondrial metabolism has further been implicated in HFD-induced 
hypothalamic microglial activation and subsequent obesity (Kim et al., 
2019b). Finally, although microglia are the predominant activated im-
mune cell contributing to hypothalamic neuroinflammation (Boura- 
Halfon et al., 2019), macrophages, the peripheral equivalent of micro-
glia, also traffic into the CNS during the MetS (Van Dyken and Lacoste, 
2018; Yang et al., 2019), including the hypothalamus based on CD45high 

expression (Lainez et al., 2018). 
The influence of HFD consumption and obesity on microglia-neuron 

crosstalk in brain regions responsible for cognitive function and memory 
has not been as well studied as in the hypothalamus. The hippocampus, a 
limbic structure contributing to memory and learning tasks, displays 
microglial activation in mouse models of diet-induced obesity (Hao 
et al., 2016; Cope et al., 2018). Obesity is associated with hippocampal- 
dependent cognitive impairment in rodent models (Sobesky et al., 2014; 
Sims-Robinson et al., 2016; Cope et al., 2018). Moreover, microglia 
phagocytose synaptic spines, contributing to hippocampal-dependent 
cognitive impairment (Cope et al., 2018). While microglia play a role 
in obesity-induced cognitive impairment, the mechanisms of microglia- 
neuron crosstalk and the role of metabolism in this communication are 
unknown. Neuronal fractalkine and the microglial fractalkine receptor 
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are decreased in a cognitively impaired diet-induced obese mouse 
models, and this dysregulated microglia-neuron interaction may 
contribute to cognitive impairment (Kawamura et al., 2021). However, 
fractalkine receptor deficiency using CX3CR1+/− mice in a diet-induced 
obesity model prevents microglial activation and hippocampal depen-
dent deficits (Cope et al., 2018). Lastly, macrophages also infiltrate into 
the hippocampus and contribute to neuroinflammation (Buckman et al., 
2014; Erion et al., 2014). Obesity-induced activation of NLR family 
pyrin domain containing 3 (NLRP3), a macrophage inflammasome 
component, in peripheral visceral adipose depots stimulates hippo-
campal microglia, contributing to cognitive impairment (Guo et al., 
2020). 

While the data collectively support a critical role for microglia in 
cognition (Fig. 6), future studies are needed to assess the role of 
microglial-neuron metabolic interactions on cognitive impairment. 

5. Conclusions

Multiple clinical studies report diabetes, obesity, and MetS compo-
nents are associated with cognitive impairment ranging from MCI to 
dementias, such as AD (Mallorquí-Bagué et al., 2018). These findings 
underscore the importance of metabolism in maintaining healthy 
cognitive function. Under normal physiological conditions, glia perform 
various supportive functions for neurons ranging from myelination and 
lactate supplementation by oligodendrocytes (Philips and Rothstein, 
2017), replenishing of the neurotransmitter pool and energy storage and 
antioxidant supplementation by astrocytes (Bélanger et al., 2011), and 
synaptic pruning and immune functions by microglia (Mosser et al., 
2017). Further, since neurons cannot store a significant amount of en-
ergy, they rely on glia for continuous metabolic support. States of diet- 
induced obesity or dysregulated metabolism lead to multiple pathologic 
changes in glia, including oligodendrocyte loss and impaired myelina-
tion (Kim et al., 2020), changes in astrocyte autophagy (Ortiz-Rodriguez 
and Arevalo, 2020) and neurotransmitter release (Zheng et al., 2017), 
and microglial activation (Valdearcos et al., 2017). Collectively, these 
pathological alterations impair glia-neuron metabolic interactions and 
lead to a failure in the energy supply chain to neurons, which may 
potentially result in neuronal damage leading to cognitive impairment. 
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Hirrlinger, J., Kirchhoff, F., Nave, K.A., 2016. Oligodendroglial NMDA receptors 
regulate glucose import and axonal energy metabolism. Neuron 91 (1), 119–132. 

Saito, E.R., Miller, J.B., Harari, O., Cruchaga, C., Mihindukulasuriya, K.A., Kauwe, J.S., 
Bikman, B.T., 2021. Alzheimer’s disease alters oligodendrocytic glycolytic and 
ketolytic gene expression. Alzheimers Dement. 17 (9), 1474–1486. 

Schafer, D.P., Stevens, B., 2015. Microglia function in central nervous system 
development and plasticity. Cold Spring Harb. Perspect. Biol. 7 (10), a020545. 

Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., 
Ransohoff, R.M., Greenberg, M.E., Barres, B.A., Stevens, B., 2012. Microglia sculpt 
postnatal neural circuits in an activity and complement-dependent manner. Neuron 
74 (4), 691–705. 

Serrano-Pozo, A., Das, S., Hyman, B.T., 2021. APOE and Alzheimer’s disease: advances in 
genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 20 (1), 
68–80. 

Shen, J.X., Yakel, J.L., 2012. Functional α7 nicotinic ACh receptors on astrocytes in rat 
hippocampal CA1 slices. J. Mol. Neurosci. 48 (1), 14–21. 

Sims-Robinson, C., Bakeman, A., Bruno, E., Jackson, S., Glasser, R., Murphy, G.G., 
Feldman, E.L., 2016. Dietary reversal ameliorates short- and long-term memory 
deficits induced by high-fat diet early in life. PLoS One 11 (9), e0163883. 

Snaidero, N., Velte, C., Myllykoski, M., Raasakka, A., Ignatev, A., Werner, H.B., Erwig, M. 
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A B S T R A C T

The coronavirus disease 2019 (COVID-19) pandemic is responsible for 267 million infections and over 5 million 
deaths globally. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single- 
stranded RNA beta-coronavirus, which causes a systemic inflammatory response, multi-organ damage, and 
respiratory failure requiring intubation in serious cases. SARS-CoV-2 can also trigger neurological conditions and 
syndromes, which can be long-lasting and potentially irreversible. Since COVID-19 infections continue to mount, 
the burden of SARS-CoV-2-induced neurologic sequalae will rise in parallel. Therefore, understanding the 
spectrum of neurological clinical presentations in SARS-CoV-2 is needed to manage COVID-19 patients, facilitate 
diagnosis, and expedite earlier treatment to improve outcomes. Furthermore, a deeper knowledge of the 
neurological SARS-CoV-2 pathomechanisms could uncover potential therapeutic targets to prevent or mitigate 
neurologic damage secondary to COVID-19 infection. Evidence indicates a multifaceted pathology involving viral 
neurotropism and direct neuroinvasion along with cytokine storm and neuroinflammation leading to nerve 
injury. Importantly, pathological processes in neural tissue are non-cell autonomous and occur through a 
concerted breakdown in neuron-glia homeostasis, spanning neuron axonal damage, astrogliosis, microgliosis, 
and impaired neuron-glia communication. A clearer mechanistic and molecular picture of neurological pathol-
ogy in SARS-CoV-2 may lead to effective therapies that prevent or mitigate neural damage in patients contracting 
and developing severe COVID-19 infection.   

1. Introduction

Late in 2019, a new coronavirus emerged, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), triggering the coronavirus dis-
ease 2019 (COVID-19) pandemic. Globally, 267 million individuals have 
contracted SARS-CoV-2, which has killed over 5 million people, as of 
December 2021 (https://coronavirus.jhu.edu/map.html, n.d). SARS- 
CoV-2 is a single-stranded RNA beta-coronavirus, which causes a sys-
temic inflammatory response, multi-organ damage, and respiratory 
failure requiring intubation in serious cases. The virus is especially 
dangerous to older populations and patients with co-morbidities, such as 
obesity and diabetes (Feldman et al., 2020). The pathophysiology re-
mains incompletely understood; however, neurological involvement is 
increasingly evident. This has important health implications for SARS- 
CoV-2 survivors, due to the frequent long-lasting and potentially irre-
versible nature of neurologic sequalae. Moreover, as infections continue 

to rise, so will the burden of SARS-CoV-2-induced neurologic 
complications. 

Therefore, understanding the spectrum of neurological disorders in 
response to SARS-CoV-2 is needed to manage COVID-19 patients (Ellul 
et al., 2020). This will facilitate recognition of nervous system injury 
secondary to SARS-CoV-2, which could expedite earlier treatment to 
improve outcomes. Furthermore, a clearer understanding of the neuro-
logical SARS-CoV-2 pathomechanisms could uncover potential thera-
peutic targets. To date, the evidence suggests SARS-CoV-2-triggered 
neurological damage occurs through several avenues. First, the virus 
exhibits neurotropism, enabling direct invasion of neural tissue (Song 
et al., 2021). Second, systemic cytokine storm and a hyperactive in-
flammatory immune response secondary to viral infection, can cause 
nerve injury (Thepmankorn et al., 2021). Additionally, local induction 
of neuroinflammation within the central nervous system (CNS) also 
contributes to neuronal damage. Importantly, pathological processes in 
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neural tissue are non-cell autonomous and occur through a concerted 
breakdown in neuron-glia homeostasis. These processes span neuron 
axonal damage, astrogliosis, microgliosis, and impaired neuron-glia 
communication. 

This review will cover the topic of SARS-CoV-2-triggered loss of 
neuron-glial homeostasis. We will describe the breadth of neurological 
presentation in COVID-19 patients and describe evidence from clinical 
and autopsy studies of virally induced neuronal loss, endothelial astro-
gliosis, and neuroinflammation. We will also outline in vitro and animal 
research demonstrating putative viral entry routes and neurotropism, 
followed by a focus on neuron-glial interactions. Lastly, we will round 
up the discussion with potential therapeutic avenues based on currently 
known SARS-CoV-2 pathophysiology. 

2. Neurological manifestation in COVID-19 patients

The SARS-CoV-2 pandemic precipitated a now recognized global
increase in the prevalence of well-characterized and rare neurologic 
sequelae of the CNS and peripheral nervous systems (PNS) in response to 
viral illness (Mao et al., 2020). One United Kingdom (UK) study sys-
tematically documented the various neurologic syndromes experienced 
by COVID-19 survivors. Neurologic complications included encepha-
lopathy, encephalitis with documented CNS inflammatory changes, 
ischemic stroke, and Guillain-Barré Syndrome (GBS), among other 
miscellaneous syndromes (Paterson et al., 2020). The postulated SARS- 
CoV-2-mediated pathomechanisms for CNS and PNS injury comprise 
direct neurotropic invasion and parainfectious endothelial dysfunction, 
coagulopathy, hyperinflammation, and autoimmunity (Fig. 1A) (Mehta 

et al., 2020; Zubair et al., 2020). 
Regarding endothelial dysfunction and coagulopathy, a prospective 

Belgian study of post-mortem brain magnetic resonance (n = 62) revealed 
subcortical micro- and macrobleeds, likely due to blood-brain barrier 
(BBB) breakdown (Coolen et al., 2020). This endothelial dysfunction, 
with or without direct viral infection, may underlie SARS-CoV-2 medi-
ated CNS injury. SARS-CoV-2 related stroke syndromes tend to occur in 
the setting of markedly elevated D-dimer levels, frequently with con-
current large vessel and systemic venous thromboembolic events 
(Beyrouti et al., 2020). Notably, young patients suffer higher-than- 
expected stroke incidences, typically large vessel, which appears to 
implicate coagulopathy and endothelial dysfunction (Oxley et al., 
2020). Antiphospholipid antibody syndrome from hypercoagulability 
has occurred in some cases, likely linked to pro-inflammatory cytokine 
states (Zhang et al., 2020). 

In terms of immune response, post-mortem examination of six pa-
tients in Germany showed encephalitic and meningitic changes, with 
evidence of brainstem perivascular and inflammatory changes associ-
ated with neuronal loss (von Weyhern et al., 2020). Encephalitis, in 
particular, has figured prominently in SARS-CoV-2 mediated CNS injury. 
Acute demyelinating encephalomyelitis is a rare disorder lacking clear 
evidence of direct causality in SARS-CoV-2 injury. One autopsy study, 
however, illustrates some of the CNS inflammatory patterns seen in 
COVID-19-induced CNS injury, and sheds valuable insight into putative 
pathomechanisms. This post-mortem evaluation revealed hemorrhagic 
white matter lesions in the bilateral hemispheres, mostly subcortically, 
with macrophagic foci surrounding small vessels along with myelin 
breakdown and axonal damage (Reichard et al., 2020). Additionally, 

Fig. 1. SARS-CoV-2-induced neurological manifestations. 
(A) SARS-CoV-2-induced neurologic complications can affect the CNS and PNS. Damage to the brain stem and autonomic nervous systems can lead to respiratory and
cardiac dysfunction. Severe COVID-19 patients exhibit systemic inflammation, marked by elevated white blood cells and pro-inflammatory cytokines. Antibodies
specific to PNS injury can be detected in blood, including IgG, anti-GM1, anti-GD1a, and anti-GD1b. (B) SARS-CoV-2 binds to ACE2 (shown in figure) or NRP1
receptors, and a serine protease, e.g., TMPRSS2, cleaves the complex, leading to viral internalization. (C) The virus infects sustentacular cells of the nasal epithelium.
ACE2, angiotensin-converting enzyme 2; BBB, blood-brain barrier; CNS, central nervous system; GBS, Guillain-Barré Syndrome; NRP1, neuropilin-1; PNS, peripheral
nervous system; TMPRSS2, transmembrane serine protease 2. Created, in part, with BioRender.com.
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there was generalized widespread glial fibrillary acidic protein (GFAP) 
positive staining, indicative of astrogliosis, in white matter, but not in 
the hemorrhagic lesions. Furthermore, separate radiologic case reports 
of SARS-CoV-2-induced encephalitis document symmetric focal 
involvement of the bilateral thalami (Poyiadji et al., 2020) and the 
brainstem (Dixon et al., 2020). The neurologic UK study did not detect 
antibodies in COVID-19 patients with autoimmune encephalitis (Pater-
son et al., 2020). However, a number of studies have reported myelin 
oligodendrocyte glycoprotein (MOG)-associated demyelinating syn-
drome (Woodhall et al., 2020; Sinha et al., 2021), encephalitis (Peters 
et al., 2021), and optic neuritis (Sawalha et al., 2020) in the SARS-CoV-2 
setting. 

In the PNS, most neurological SARS-CoV-2-related clinical experi-
ence has focused on GBS, and numerous cases have been described 
(Padroni et al., 2020; Sedaghat and Karimi, 2020; Tiet and AlShaikh, 
2020). As with most pathogen-mediated GBS, autoimmune cross- 
reactivity or molecular mimicry is thought to underlie SARS-CoV-2- 
related GBS. Antibodies specific to PNS disease are present in GBS 
cases post SARS-CoV-2, including IgG, anti-GM1, anti-GD1a, and anti- 
GD1b (Civardi et al., 2020; Dufour et al., 2021). One case of Miller 
Fisher syndrome with increased pro-inflammatory cytokine markers and 
positive anti-GD1b-IgG levels has been reported, supporting immune- 
mediated pathomechanisms (Gutiérrez-Ortiz et al., 2020). 

Although it was initially thought that the pandemic would trigger a 
spike in GBS cases, data has shown otherwise. Instead, three studies 
found either stable incidence or a decline in GBS cases during the SARS- 
CoV-2 era (Keddie et al., 2021; Luijten et al., 2021; Umapathi et al., 
2021). As with other novel viral pathogens, like Zika, there is an 
incontrovertible and emerging, albeit small, body of evidence that 
suggests a temporal link between COVID-19 infection and GBS (Aladawi 
et al., 2022). This seemingly contradictory finding lacks a definitive 
explanation, although putative reasons have been put forth. One sug-
gestion for this discrepancy is the near-universal mask-wearing and stay- 
at-home orders of the pandemic (Foschi et al., 2021). It is postulated that 
this increased mask-wearing and limited social interaction reduced the 
incidence of non-SARS-CoV-2-related GBS, which would still constitute 
the bulk of total cases. Furthermore, it is possible that patients with 
milder GBS may not have sought medical attention to avoid a hospital 
setting. Limited hospital bed availability may have been another reason. 
Other explanations have also been explored (Foschi et al., 2021). 

Of all post SARS-CoV-2 neurologic consequences, post-acute 
sequelae SARS-CoV-2 (PASC), also called long-COVID syndrome, re-
mains the topic of greatest public interest, although the exact underlying 
pathomechanisms remain elusive. Patients report fatigue, cognitive 
slowing, and exertional intolerance, among many other symptoms. 
Some patients meet the criteria for orthostatic intolerance and postural 
tachycardia syndrome on formal autonomic testing (Shouman et al., 
2021). It is suspected that SARS-CoV-2 binding to angiotensin- 
converting enzyme 2 (ACE2) receptors may disrupt the renin- 
angiotensin-aldosterone system, which regulates sympathetic outflow 
(Goldstein, 2021). 

Therapeutic experience remains limited, although the neurologic UK 
study revealed that some encephalopathies improved without specific 
treatment (Paterson et al., 2020), while patients with inflammatory CNS 
syndromes improved with corticosteroids and/or immunoglobulin 
therapy. 

3. SARS-CoV-2 neurotropism

Early in the pandemic, it was shown SARS-CoV-2 leverages the ACE2
receptor to facilitate entry into host cells, like its predecessors, SARS- 
CoV and Middle East respiratory syndrome coronavirus (Yan et al., 
2020). Once the SARS-CoV-2 spike protein receptor-binding domain 
latches onto ACE2, proximal serine proteases, e.g., transmembrane 
serine protease 2 (TMPRSS2), cleave the spike-ACE2 complex, inter-
nalizing the virus (Fig. 1B) (Hoffmann et al., 2020). Tissue receptor 

expression dictates tropism; thus, widespread ACE2 expression across 
multiple tissues results in extensive SARS-CoV-2 tropism. ACE2 
expression level in the CNS is moderate (Li et al., 2020a, 2020b); 
however, since the discovery that SARS-CoV-2 binds ACE2, additional 
receptors have been identified, including neuropilin-1 (NRP1), a 
glycoprotein involved in neurogenesis (Zhang et al., 2021a, 2021b). 
ACE2 and NRP1 are widely expressed in the brain; however, ACE2 is 
most highly expressed in endothelial vasculature and circumventricular 
organs (Hernández et al., 2021), whereas NRP1 expression is especially 
enhanced in the hippocampus, endothelial cells, mural cells, peri-
vascular macrophages, and microglia (Davies et al., 2020). 

Several mechanisms have been proposed for viral penetration into 
the brain. One suggested viral entry route is by disrupting the choroid 
plexus, thereby compromising the BBB and providing SARS-CoV-2 ac-
cess to the CNS. The virus also triggers a pro-inflammatory response, 
which can render the BBB susceptible to damage, leading to immune cell 
infiltration into the brain along with viral penetration (Tremblay et al., 
2020; Solomon, 2021). A possible avenue for dissemination throughout 
the CNS, once the virus has gained passage into the brain, is through the 
microvasculature. Autopsy examination of frontal cortex tissue from 
COVID-19 patients (n = 17) reveals an increase of so-called string vessels 
versus control tissue (n = 23) (Wenzel et al., 2021). String vessels are 
empty basement membrane tubes lacking endothelial cells, which are 
signs of capillary loss. The study found that Mpro, the primary SARS-CoV- 
2 protease, cleaves host endothelial NEMO (nuclear factor (NF)-κB 
essential modulator), leading to endothelial cell apoptosis, local hyp-
oxia, and microglial and astrocytic reactivity (Wenzel et al., 2021). 
Therefore, microvascular pathology and endothelial dysfunction (Varga 
et al., 2020) in the brain may constitute a significant mode of viral 
dissemination and neuropathology in the brain. 

Anosmia is a prominent symptom of COVID-19 infection, even in 
relatively mild cases. This promoted a putative mechanism of viral entry 
into the CNS intranasally through the olfactory epithelium, which ex-
presses ACE2 (Fig. 1C) (Brann et al., 2020) and NRP1 (Cantuti-Cas-
telvetri et al., 2020). In this proposed mechanism, the olfactory bulb 
would then serve as a conduit to the CNS, including ACE2-expressing 
circumventricular organs, such as the subfornical organ (de Melo 
et al., 2021), which are particularly vulnerable because they are not 
protected by the BBB. A recent study by Khan et al. of olfactory mucosa 
and whole olfactory bulb tissue from recently deceased COVID-19 pa-
tients (n = 85) detected SARS-CoV-2 primarily in the sustentacular cells 
of the mucosa (Khan et al., 2021). The virus was not detected in olfac-
tory sensory neurons nor the olfactory bulb parenchyma (Khan et al., 
2021), like another study, which only found sparse pathology of olfac-
tory bulbs (Thakur et al., 2021). Thus, overall, an intranasal route into 
the CNS may be unlikely. 

Far fewer studies have investigated SARS-CoV-2 penetration into the 
PNS, although case reports of peripheral neuropathies are reported 
within the same timeframe of COVID-19 infection (Padroni et al., 2020; 
Sedaghat and Karimi, 2020; Tiet and AlShaikh, 2020). PNS damage 
could occur secondary to SARS-CoV-2-induced inflammation, as occurs 
in the CNS. Alternatively, drawing parallels to other viruses, SARS-CoV- 
2 could be internalized into neurons through the endocytic pathway and 
hijack axonal trafficking to spread along the PNS (Fenrich et al., 2020). 

Our understanding of SARS-CoV-2 neurotropism derives from both 
human, i.e., autopsy, and in vitro and mouse studies. Autopsy reveals 
invasion of the olfactory epithelium (Khan et al., 2021) and CNS 
(Mukerji and Solomon, 2021). Analysis of autopsy tissue from three 
COVID-19 patients demonstrated immunoreactivity against the viral 
spike protein in cortical neurons and endothelial cells, albeit to variable 
extents (Song et al., 2021). Cellular staining was perinuclear along with 
both intense puncta and diffuse cytoplasmic reactivity; subcortical 
microscopic ischemic infarcts were also present, which stained for viral 
proteins in the hyperacute stage. However, although neuroinflammation 
is a putative characteristic of severe COVID-19 infection, the areas that 
stained for viral protein were not infiltrated by lymphocytes or 
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leukocytes (Song et al., 2021), though another autopsy study noted some 
CD3+, CD4+, and CD8+ T cells in the parenchyma (Schurink et al., 
2020). 

Analysis of brain autopsy tissue (n = 21) for RNA detected the virus 
in eight samples, but only at low SARS-CoV-2 copies per cell (Puelles 
et al., 2020). Another study (n = 18 patients) similarly detected viral 
RNA in various brain regions in most samples (Solomon et al., 2020). 
Interestingly, viral protein was not detected in neurons, glia, endothe-
lium, or immune cells. A larger analysis (n = 40) found both viral RNA 
and protein in 8 (20%) of brain autopsy samples and either RNA or 
protein in 21 (53%) specimens (Matschke et al., 2020). One study 
detected viral RNA, but no protein, in most brain autopsy samples (n =
25), but levels were far lower than in mucosal samples (Thakur et al., 
2021). The authors concluded that direct viral neuroinvasion in the 
brain was unlikely due to the significantly lower viral RNA levels in the 
brain relative to the nasal epithelium, and that most CNS neuropa-
thology results from systemic inflammation, possibly compounded by 
local hypoxia and ischemia. It is worth noting that peripheral immune 
cell infiltration into the CNS has been detected in the brain, but also to 
variable extents (Schurink et al., 2020; Song et al., 2021), and primarily 
in the brain stem (Matschke et al., 2020; Thakur et al., 2021). 

Another point of consideration, which has limited our understanding 
of SARS-CoV-2 neurotropism in the brain from autopsy samples, is that 
sensitivity for detecting viral RNA may be higher than for viral proteins 
(Solomon et al., 2020; Thakur et al., 2021). However, RNA analysis from 
bulk brain tissue does not allow localization of the RNA to specific cell 
types, and the virus detected in the brain may be more prevalent in 
endothelial cells versus neurons or glia (Nuovo et al., 2021; Wenzel 
et al., 2021). However, this possibility requires further investigation and 
single-cell sequencing of brain autopsy tissue may be one path forward 
(Fullard et al., 2021). 

Regarding the PNS, consecutive autopsies (n = 35) from femoral 
nerve tissue revealed neuritis in nine COVID-19 patients without evi-
dence of direct SARS-CoV-2 invasion, likely indicating inflammatory- or 
immune-mediated PNS damage rather than tissue tropism (Suh et al., 
2021), though further studies are necessary. 

Beyond autopsy studies, brain organoids have also expanded our 
understanding of viral neurotropism (Ng et al., 2021). The first obstacles 
to viral penetration into the CNS are the BBB and blood-cerebrospinal 
fluid (CSF) barriers, which regulate entry of material into the brain. 
The blood-CSF barrier lines the choroid plexus, which produces CSF. 
Infection rate was significantly higher in choroid plexus (10–20%) 
versus cortical (<1.5%), hippocampal (<1.0%), hypothalamic (<1.5%), 
and midbrain (<1.5%) organoids generated from human induced 
pluripotent stem cells (hiPSCs) (Jacob et al., 2020). Similarly, analysis of 
cell cultures found choroid plexus epithelial cells were robustly infected 
with SARS-CoV-2, whereas neurons and astrocytes were sparsely infec-
ted. Another study of hiPSC-derived choroid plexus organoids observed 
higher ACE2 expression by mature choroid plexus cells but not by 
neurons or other cell types, which mirrored greater SARS-CoV-2 infec-
tivity of choroid cells (13%), but not of neurons or glia (Pellegrini et al., 
2020). Additionally, the live virus also structurally and functionally 
compromised the choroid plexus epithelial barrier, and preference for 
choroid plexus cells and glia by SARS-CoV-2 over neurons was also re-
ported by McMahon and colleagues (McMahon et al., 2021). Although 
human studies suggest that viral entry may proceed primarily from 
systemic inflammation (Solomon, 2021; Thakur et al., 2021), brain 
organoid studies suggests= that direct viral infection and/or destruction 
of choroid plexus may be feasible. However, if this pathway does occur 
in vivo, it may be to an insignificant extent. 

Some brain organoid studies have observed higher infection of 
neurons by SARS-CoV-2 (Song et al., 2021; Wang et al., 2021), especially 
mature, MAP2-positive neurons, leading to neuronal death and loss 
(Song et al., 2021). A single-cell RNA-seq study identified multiple 
clusters of neuronal, neuronal progenitor, and radial glial cell pop-
ulations (Song et al., 2021). Overlap of SARS-CoV-2 transcripts occurred 

with all cell-types, but to variable extents among the multiple clusters. 
Viral infection also induced a transcriptomic shift to a hypermetabolic 
and hypoxic cellular state, indicating that SARS-CoV-2 may be hijacking 
cellular metabolism to replicate. Differences among brain organoid 
studies may derive from maturation state of the organoid, since differ-
entiated neurons are more susceptible than neural progenitor cells (Song 
et al., 2021) and differentiation boosts infection of astrocytes (Wang 
et al., 2021). 

Alternatively, variation in the hiPSC genetic background in genes 
linked to SARS-CoV-2 susceptibility could give rise to differential 
infectivity of neurons and various cell-types observed across organoid 
studies. For instance, the ApoE4 allele is a risk for severe COVID-19 
infection (Kuo et al., 2020). Indeed, isogenic hiPSCs expressing ApoE3 
versus ApoE4 demonstrates that ApoE4 renders differentiated neurons 
more prone to SARS-CoV-2 infection (2.1% ApoE4 versus 1.4% ApoE3) 
and viral-mediated neurite degeneration (Wang et al., 2021). ApoE4 in 
differentiated astrocytes similarly predisposes them to viral infection 
and a decrease in soma and process length. Another possibility for 
discordance in studies of cellular infectivity preference of SARS-CoV-2 is 
the viral strain. A German study concluded that a Düsseldorf isolate of 
SARS-CoV-2 preferentially targets neurons versus neuronal progenitor 
in human derived brain organoids (Ramani et al., 2020). 

The striking differences between autopsy findings and in vitro brain 
organoids merits discussion. By and large, viral RNA or protein can be 
detected in brain tissue from COVID-19 patients, but only to low levels 
and their localization to specific cell types remains unclear, although 
endothelial cells may be a favored compartment versus neurons and glia 
(Nuovo et al., 2021; Wenzel et al., 2021). On the other hand, SARS-CoV- 
2 infection of neurons, glia, and choroid plexus cells is evident from 
brain organoid analysis. Several reasons may explain these disparate 
findings. If the virus does preferentially infect endothelial cells versus 
neurons and glia, microvasculature may be the preferred target in vivo. 
However, brain organoids are devoid of a comprehensive vasculature 
(Jacob et al., 2020; Song et al., 2021), and SARS-CoV-2 may invade 
neurons and glia in the absence of other targets, such as endothelial 
cells. Another possibility is differences in the viral load in vitro and in 
vivo. Brain organoids can be experimentally infected to a specified 
multiplicity of infection, at a burden that targets neurons and glia. 
However, the viral burden may be lower in vivo due to the BBB, despite 
damage from systemic inflammation, occurring at levels that do not 
infect neurons. Finally, viral attack is dynamic in vivo, and the temporal 
element is critical. COVID-19 patients may pass away before significant 
viral replication has occurred into the brain. 

Cumulatively, however, human, in vitro, and animal data support 
invasion into the CNS. Possibly in humans, the dominant pathway is 
from systemic inflammation, though this does not fully exclude other 
less significant entry modes. Moreover, endothelial dysfunction in the 
brain is an important aspect of neuropathology secondary to SARS-CoV- 
2 infection. Additionally, the determinants of tropism among specific 
CNS cell-type still requires clarification. Understanding the de-
terminants of infectivity could help identify patients at risk of devel-
oping COVID-19-mediated neurological disorders. If genetic 
background is a potential determinant of infection, it could explain 
variable susceptibly to SARS-CoV-2-induced neurological complications 
in COVID-19 patients. Finally, few studies have investigated neuro-
invasion into the PNS, though SARS-CoV-2 may induce peripheral nerve 
damage. 

4. SARS-CoV-2-induced disturbance in neuron-glial interactions

4.1. SARS-CoV-2 in the central nervous system

4.1.1. Astrocyte-neuron interactions
The brain is an incredibly complex organ; neurons are aided in their 

function by supportive glia, comprised primarily of oligodendrocytes, 
astrocytes, and microglia. Under homeostatic conditions, astrocytes 
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contribute structurally to BBB maintenance (Linnerbauer and Roth-
hammer, 2020) and are thus part of the brain’s first line of defense from 
invading pathogens, including SARS-CoV-2 (Fig. 2). Astrocytes also form 
tripartite synapses with neurons, providing support through neuro-
transmitter regulation and metabolic coupling. Virally induced disrup-
tion of astrocyte function could thus impair both neuronal transmission 
and metabolism (Cotto et al., 2019; Sher et al., 2019). 

Pathologic conditions, such as the presence of danger signals from 
viral invasion, called damage-associated molecular pattern molecules 
(DAMPs), induce astrogliosis, a neuroprotective phenotype character-
ized by morphological, transcriptomic, and biochemical reprogramming 
and glial fibrillary acidic protein (GFAP) upregulation (Fig. 3). However, 
astrogliosis can serve as a double-edged sword, promoting the disease 
process through a neurotoxic phenotype (Ding et al., 2021). In a longi-
tudinal study of COVID-19 patients (n = 47) with varying disease 
severity, moderate and serious COVID-19 infection correlated with 
elevated plasma GFAP, and severe disease correlated with increased 
plasma neurofilament light chain (NfL), a marker of intra-axonal 
neuronal injury (Kanberg et al., 2021). In severe COVID-19 cases, 
plasma GFAP peaked earlier in the infection course, indicating initial 
astrogliosis, whereas NfL was persistently elevated, possibly from 
longer-lasting neuronal damage. Another study of hospitalized COVID- 
19 patients with (n = 34) and without (n = 94) neurological symp-
toms found elevated serum NfL levels, independent of neurologic pre-
sentation and uncorrelated to CSF NfL levels, possibly reflecting 
peripheral nerve damage in severe infection (Paterson et al., 2021). 
Serum NfL levels were not increased in COVID-19 community cases, 
suggesting mild disease may not produce nerve injury. Unlike some 

studies, however, GFAP was not prominent in CSF of patients with 
serious COVID-19, implying astrogliosis-induced neuronal damage may 
not always be part of SARS-CoV-2 pathophysiology. It is possible, 
however, that discrepancies between studies also arise from the time 
course of GFAP release, which is higher earlier in infection, leading to 
different results depending on when plasma/serum GFAP is sampled. 
Possibly, astrogliosis may be easier to detect in brain autopsy tissue. 
Indeed, investigation of brain samples from deceased COVID-19 patients 
(n = 43) documented astrogliosis through GFAP staining in 37 (86%) of 
cases (Matschke et al., 2020). 

Another primarily astroglial protein, S100B, also has a putative role 
as a DAMP and correlates with various neural CNS injuries, from trau-
matic acute brain damage to neurodegenerative diseases (Michetti et al., 
2019). In a small longitudinal study of COVID-19 patients with neuro-
logical manifestations involving the CNS and cytokine storm (n = 5), 
elevated serum S100B was coincident with cytokine release in three 
patients with acute leukoencephalitis. Though small, the study does 
suggest that cytokine storm correlates with leukoencephalitis, which 
injures astrocytes and induces BBB leakage (Perrin et al., 2021). 

In addition to a shift in astroglial phenotypes, COVID-19 may lead to 
astrocytic and microglial proliferation, concomitant with a decrease in 
neuronal density, as noted in a small neurohistopathological study of 
brain autopsy material (n = 3 COVID-19, n = 3 control) (Boroujeni et al., 
2021). The astrocytes and microglia also adopted a pro-inflammatory 
phenotype, a scenario suggesting inflammation-induced neuronal loss. 

4.1.2. Microglia-neuron interactions 
Microglia are the resident immune cells of the CNS (Prinz et al., 

Fig. 2. Neuron-glia homeostasis in the healthy brain. 
Overview figure of the central nervous system (CNS) under homeostatic conditions. Brain neurons are supported by glia, astrocytes, microglia, and oligodendrocytes. 
Neurons (light blue): Functioning astrocytes and microglia support signal transmission in healthy neurons, which are wrapped with oligodendrocytes (grey). Blood 
vessels: Circulating species in blood vessels are separated from the brain by the blood-brain barrier (BBB; pink inset, A). The BBB is comprised of tight junctions 
between endothelial cells of the vasculature, along with structural reinforcement from the extracellular matrix from the basement membrane and astrocytic foot 
processes. The BBB regulates what species are permitted to traverse into the central nervous system (CNS). Astrocytes (purple): Contribute structurally to the BBB 
through astrocyte foot processes, which form a layer against the endothelial basement membrane, defending the brain from invading pathogens. Inset, blue, B: 
Astrocytes (purple) form tripartite synapses with neurons (light blue) to provide neurotransmitter and metabolic support. Microglia (dark blue): CNS resident immune 
cells, surveil for potentially harmful agents and clear the CNS of debris by phagocytosis. Inset, green, C: Microglia remodel neuronal circuits by pruning dendritic 
spines and synapses and promote myelin maintenance and remyelination. Created with BioRender.com. 
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2019). During homeostatic conditions in the adult brain, they surveil the 
CNS milieu for potentially harmful agents, e.g., infectious pathogens, 
tissue injury (Fig. 2). They also perform numerous “housekeeping” roles, 
such as clearing the CNS of debris by phagocytosis. Microglia also 
remodel neuronal circuits by pruning dendritic spines and synapses 
during learning and memory and participate in axonal myelin mainte-
nance and remyelination. Therefore, microglia have a direct impact on 
neuronal health. Under pathologic conditions during infection, micro-
glia launch an immune response in order to clear the invading pathogen 
from the CNS (Fig. 3) (Hatton and Duncan, 2019). This response is 
complex and involves variably activated microglia with anti- and pro- 
inflammatory phenotypes (Cherry et al., 2014). Unfortunately, in 
certain instances, an overly pro-inflammatory state can develop, which 
is toxic to neurons. 

A comparable situation may occur during SARS-CoV-2, with a 
microglial-mediated local inflammatory response within the CNS, which 
is compounded by the presence of systemic hyperinflammation that can 
also spread throughout the brain (Solomon, 2021). Post-mortem evalu-
ation of COVID-19 patients (n = 43) sheds light on this dual inflam-
matory process in the brain, which demonstrates both microglial 
activation and cytotoxic T lymphocyte infiltration, mostly in the 
brainstem and cerebellum (in up to 79% of cases) (Matschke et al., 
2020). Analysis of cerebral autopsy samples (n = 3) also demonstrates 
activation of the NLRP3 inflammasome (Cama et al., 2021), a sensor of 
pathogen-associated molecular patterns (PAMPs) involved in the anti-
viral response (Zhao and Zhao, 2020). NLRP3 colocalizes with CD68+
macrophages in the brain and the periphery (lung) of the deceased, 
implicating a role for NLRP3 in SARS-CoV-2 pathology (Cama et al., 
2021). 

Single-nucleus RNA sequencing of brain samples for COVID-19 pa-
tients that died from severe infection confirm immunohistological 
microglia analyses. The brain transcriptome in COVID-19 (n = 8 COVID- 
19; n = 13 controls) reveals choroid plexus barrier disruption along with 
signaling cues into the CNS (Yang et al., 2021). Peripheral T cell infil-
tration is present along with resident microglia, which have adopted a 
phenotype reminiscent of neurodegenerative disease. Another tran-
scriptomic analysis of three distinct brain areas (n = 5 COVID-19; n = 4 
controls) found an influx of monocytes and macrophages in the choroid 
plexus along with a signature in cortical microglia linked to cellular 
activation, mobility, and phagocytosis (Fullard et al., 2021). In both 
instances, molecular traces of SARS-CoV-2 were not detected (Fullard 
et al., 2021; Yang et al., 2021), possibly suggestive of persistent 
inflammation and longer-lasting neural injury, even after the virus has 
cleared. Using a paradigm of spatial profiling by imaging mass cytom-
etry at single-cell resolution, an evaluation was performed of autopsy 
brain stem and olfactory bulb (Schwabenland et al., 2021). Significant 
neuropathology was seen, involving axonal damage, astrocytosis, and 
BBB leakage, concomitant with viral antigens in ACE2+ vascular cells. 
Perivascular microglial nodules enriched with activated CD8+ T cells 
were also noted, which correlated with clinical measures of systemic 
inflammation. 

Research of in vitro and in vivo models paints a similar picture. 
Exposure of rodent BV-2 microglia to SARS-CoV-2 spike protein in-
creases tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-1β, 
and inducible nitric oxide synthase (iNOS)/ nitric oxide (NO) production 
(Olajide et al., 2021). Microglial contact with spike protein also 
enhanced NLRP3 inflammasome and caspase-1 activity. Similar obser-
vations were made following exposure of human HMC3 microglia to 

Fig. 3. Putative SARS-CoV-2-induced disruption of neuron-glia homeostasis. 
Overview figure of the CNS under SARS-induced pathologic conditions. Neurons (light blue): Excessive inflammation may cause neurons to degenerate. Inset, pink, A: 
SARS-CoV-2 may also potentially directly invade neurons, triggering apoptosis. Blood vessels: High levels of circulating pro-inflammatory cytokines (blue spheres) 
damage the BBB; peripheral cytotoxic T cells infiltrate the CNS, further augmenting pro-inflammatory cytokine levels. Circulating SARS-CoV-2 virions can also 
penetrate the CNS or hijack immune cells to enter. Microbleeds from SARS-CoV-2-induced endothelial dysfunction (asterisks) can also occur, causing CNS damage. 
Astrocytes (purple and red, activated): SARS-CoV-2 triggers astrogliosis, which raises production of damage-associated molecular pattern molecules, e.g., GFAP. 
Astrogliosis may also contribute to the breakdown in BBB integrity, e.g., through astrocytic foot processes detachment. Inset, blue, B: SARS-CoV-2 may infect as-
trocytes, possibly depending on the genotype. Microglia (orange): SARS-CoV-2 induces microgliosis, which elevates microglia-derived pro-inflammatory cytokines 
(red spheres). Both astrogliosis and microgliosis occur concomitant with neuronal loss. Created with BioRender.com. 
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SARS-CoV-2 spike protein, leading to heightened TNF-α, IL-8, IL-1β, and 
reactive oxygen species generation and increased NOS and caspase-3/7 
expression (Clough et al., 2021). This pro-inflammatory response was 
accompanied by microglial morphological changes along with mito-
chondrial fragmentation. In vivo, in SARS-CoV-2-infected K18-hACE2 
transgenic mice (cytokeratin-18 gene promoter driven human ACE2 
expression) and Syrian hamsters, microglia proliferated and increased 
TNF-α and IL-6 expression (Zhang et al., 2021b). 

CNS microglia may also be activated by exosomes carrying viral 
material, rather than the virus itself. Exosomes are extracellular vesicles 
that bud off from cells and carry cargo to recipient cells. This intercel-
lular communication mode can occur as part of normal physiologic 
function, or as a pathological process during disease states, including a 
viral infection. Circulating exosomes have been detected in patients in 
the context of SARS-CoV-2 infection, carrying cargo harboring SARS- 
CoV-2 RNA and a distinct proteomic signature strongly involved in 
host response to infection, immune processes, inflammation, and coag-
ulation (Barberis et al., 2021). It is conceivable that exosomes can 
penetrate the CNS and activate microglia; indeed, an in vitro study of 
exosomes derived from HEK293T cells transfected with SARS-CoV-2 
spike plasmid were found to transfect human microglial CHME3 cells 
(Mishra and Banerjea, 2021). Exosome cargo was enriched in micro-
RNAs (miR) 148a and miR-590-3p. microRNAs are small non-coding 
RNAs that negatively regulate expression of target genes. The exo-
somes suppressed ubiquitin specific peptidase 33 (USP33) and inter-
feron regulatory factor 9 (IRF9) expression in recipient microglia, the 
latter being involved in immune regulation. 

5. Summary

Overall, human, in vitro, and animal evidence suggests a recurrent
theme of astrogliosis and pro-inflammatory microglial activation in 
SARS-CoV-2 infection in the brain (Fig. 3). Some studies suggest these 
processes occur in tandem with neuron axonal damage and loss, possibly 
indicating neuronal injury arising secondary to a breakdown in neuron- 
glia homeostasis. Future studies are needed to better understand the 
molecular steps or mediators of neuron-glia or axo-glia communications 
during SARS-CoV-2 infection leading to brain damage, with the goal of 
developing mechanism-based therapies. Furthermore, understanding of 
potential neuron-oligodendrocyte interactions is lacking in the context 
of SARS-CoV-2. However, a study of another coronavirus, mouse hepa-
titis virus (MHV), suggests surviving oligodendrocytes post viral infec-
tion may prolong the inflammatory phase (Pan et al., 2020). 

5.1. SARS-CoV-2 in the peripheral nervous system 

In contrast to CNS studies, there is a paucity of reports in the PNS. 
However, PNS neurotropism is a facet of SARS-CoV-2 pathophysiology 
as evidenced by the emerging literature linking autoimmune peripheral 
neuropathies to COVID-19 infection (Padroni et al., 2020; Sedaghat and 
Karimi, 2020; Tiet and AlShaikh, 2020) and the presence of IgG, anti- 
GM1, anti-GD1a, and anti-GD1b antibodies (Civardi et al., 2020; 
Dufour et al., 2021). Elevated serum NfL hints at PNS damage during 
severe COVID-19 infection (Paterson et al., 2021). However, mecha-
nistic studies in SARS-CoV-2 are lacking, although clinical findings 
suggest an immune-mediated component, at least in part. 

Drawing from other neurotropic viruses, such as MHV, demyelin-
ating strains are transported in a retrograde fashion from the brain via 
axons, inducing optic neuritis with macrophage infiltration and axonal 
demyelination and loss (Shindler et al., 2011). Human coronavirus 
OC43 can also spread via neuron axonal transport machinery (Dubé 
et al., 2018). Thus, similar modes of spread like MHV and OC43 have 
been proposed for SARS-CoV-2 (Li et al., 2020b); however, this is 
speculative, and experimental evidence for SARS-CoV-2 is presently 
missing. One study reported direct nociceptor infection on dorsal root 
ganglia by SARS-CoV-2, which suggests potential PNS neurotropism 

(McFarland et al., 2021). SARS-CoV-2 attack of sensory dorsal root 
ganglia nociceptors implicates potential pathways for pain during severe 
COVID-19, and possibly into the PASC post-infection phase. 

Overall, more studies are needed and will likely evolve over time as 
we increase our understanding of PNS disorders secondary to SARS-CoV- 
2. 

6. Potential therapeutic avenues of SARS-CoV-2-mediated
neurologic injury

To our knowledge, there is no specific treatment protocol for pre-
venting neurological complications in COVID-19 patients. Some 
neurological conditions that develop from SARS-CoV-2 infection 
improve without specific treatment or can otherwise be treated per 
standard of care, e.g., corticosteroids or immunoglobulins for autoim-
mune encephalitis (Paterson et al., 2020). Overall, therapeutic experi-
ence remains limited. Fortunately, current understanding of SARS-CoV- 
2 pathomechanisms suggests potential therapeutic avenues. First, 
lowering systemic and neural inflammation through broad-acting anti- 
inflammatory corticosteroid therapy, for example, could mitigate brain 
vascular and neural damage. Dexamethasone is part of the present 
repertoire of therapies being used to treat COVID-19 patients. In an 
open-label trial, dexamethasone reduced 28-day mortality in hospital-
ized COVID-19 patients on respiratory support, e.g., invasive mechani-
cal ventilation, oxygen administration, but not in those off of respiratory 
support (Horby et al., 2021). Whether dexamethasone specifically pre-
vents neurological injury from SARS-CoV-2 remains to be seen. Other 
approaches to lowering systemic inflammation include immunomodu-
lating antibodies (Izda et al., 2021), e.g., tocilizumab, sarilumab. 

The second potential therapeutic target, that of SARS-CoV-2 invasion 
and/or neuroinvasion, may be mitigated by blocking viral replication 
and penetration into cells (Izda et al., 2021). Replication-inhibitors 
include antivirals, such as remdesivir. Preventing cellular entry can be 
achieved by binding to the virus spike protein or by blocking the ACE2- 
protease machinery, which grants the virus entry into cells. Casirivimab 
and imdevimab are monoclonal antibodies that bind to SARS-CoV-2 
spike protein and obstruct ACE-2 binding (Izda et al., 2021). The com-
bined casirivimab and imdevimab cocktail is effective in preventive and 
therapeutic paradigms and lowers the incidence and severity of COVID- 
19 infection (O’Brien et al., 2021; Weinreich et al., 2021). However, the 
efficacy of this casirivimab/imdevimab cocktail at preventing neuro-
logical complications has not been studied. Other approaches of pre-
venting SARS-CoV-2 entry into cells rely on pharmacological inhibition 
of ACE2-protease machinery (Zhang et al., 2021a). Such approaches 
have only had mixed success thus far, as with hydroxychloroquine. 

Preclinical and clinical research is ongoing, and the need is great for 
more definitive COVID-19 therapeutics, specifically those aimed at 
neural protection. 

7. Conclusion

It is now clear that SARS-CoV-2 induces a host of acute neurological
complications of varying clinical severity. In some instances, these 
neurologic sequelae evolve into long-term and irreversible complica-
tions. As the virus becomes endemic (Emanuel et al., 2022), this could 
have ramifications for many recovering from COVID-19 infection, 
although emerging variants my not trigger as much neurological dam-
age as the original and delta variants. Fortunately, the putative mech-
anism of COVID-19 induced acute neurologic injury is becoming more 
apparent, thus opening the window for therapeutic interventions. These 
pathologic mechanisms include systemically and locally induced in-
flammatory responses and/or endothelial dysfunction, potential direct 
viral neuroinvasion, astrogliosis, and pro-inflammatory microglial 
activation, all leading to neuronal injury. Thus, anti-inflammatories and 
monoclonal antibodies may help prevent or minimize neurologic dam-
age in the context of acute infection, although formal studies are needed. 
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Moreover, a clearer mechanistic and molecular picture of neurological 
pathology in acute SARS-CoV-2 infection may lead to more effective 
therapies for mitigating neural damage in patients developing PASC (or 
long covid syndrome) post infection. For these patients, the landscape 
remains poorly defined, and therapies to date are primarily supportive. 
In summary, as COVID-19 infections continue to rise, the burden of 
SARS-CoV-2-induced acute neurologic disorders and PASC will also in-
crease, necessitating a greater understanding of disease pathophysiology 
to enable the development of mechanism-based therapies targeting both 
the CNS and PNS. 
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Guillain-Barré syndrome. Brain. 144, e44. 

Fullard, J.F., Lee, H.C., Voloudakis, G., Suo, S., Javidfar, B., Shao, Z., Peter, C., 
Zhang, W., Jiang, S., Corvelo, A., Wargnier, H., Woodoff-Leith, E., Purohit, D.P., 
Ahuja, S., Tsankova, N.M., Jette, N., Hoffman, G.E., Akbarian, S., Fowkes, M., 
Crary, J.F., Yuan, G.C., Roussos, P., 2021. Single-nucleus transcriptome analysis of 
human brain immune response in patients with severe COVID-19. Genome Med 13 
(1), 118. 

Goldstein, D.S., 2021. The possible association between COVID-19 and postural 
tachycardia syndrome. Heart Rhythm. 18 (4), 508–509. 

Gutiérrez-Ortiz, C., Méndez-Guerrero, A., Rodrigo-Rey, S., San Pedro-Murillo, E., 
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Pöhlmann, S., 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is 
blocked by a clinically proven protease inhibitor. Cell 181 (2), 271–280.e278. 

Horby, P., Lim, W.S., Emberson, J.R., Mafham, M., Bell, J.L., Linsell, L., Staplin, N., 
Brightling, C., Ustianowski, A., Elmahi, E., Prudon, B., Green, C., Felton, T., 
Chadwick, D., Rege, K., Fegan, C., Chappell, L.C., Faust, S.N., Jaki, T., Jeffery, K., 
Montgomery, A., Rowan, K., Juszczak, E., Baillie, J.K., Haynes, R., Landray, M.J., 
2021. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 384 
(8), 693–704. 

https://coronavirus.jhu.edu/map.html. 
Izda, V., Jeffries, M.A., Sawalha, A.H., 2021. COVID-19: a review of therapeutic 

strategies and vaccine candidates. Clin. Immunol. 222, 108634. 
Jacob, F., Pather, S.R., Huang, W.K., Zhang, F., Wong, S.Z.H., Zhou, H., Cubitt, B., 

Fan, W., Chen, C.Z., Xu, M., Pradhan, M., Zhang, D.Y., Zheng, W., Bang, A.G., 

M.G. Savelieff et al.

2132022 Feldman Laboratory Publications

http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0005
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0005
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0005
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0010
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0010
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0010
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0010
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0010
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0015
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0015
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0015
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0015
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0020
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0020
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0020
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0020
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0020
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0025
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0025
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0025
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0025
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0025
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0025
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0030
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0030
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0030
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0030
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0030
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0030
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0030
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0035
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0035
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0035
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0035
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0035
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0035
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0035
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0040
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0040
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0045
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0045
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0045
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0050
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0050
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0050
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0050
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0055
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0055
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0055
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0055
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0060
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0060
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0060
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0065
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0065
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0065
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0065
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0070
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0070
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0070
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0070
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0070
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0075
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0075
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0075
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0080
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0080
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0080
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0080
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0085
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0085
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0085
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0090
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0090
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0090
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0095
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0095
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0095
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0100
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0100
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0105
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0105
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0105
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0110
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0110
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0110
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0115
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0115
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0115
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0120
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0120
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0120
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0120
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0120
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0120
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0125
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0125
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0130
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0130
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0130
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0130
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0135
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0135
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0135
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0140
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0140
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0140
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0140
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0145
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0145
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0145
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0145
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0150
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0150
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0150
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0150
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0150
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0150
https://coronavirus.jhu.edu/map.html
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0165
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0165
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0170
http://refhub.elsevier.com/S0969-9961(22)00107-3/rf0170


Neurobiology of Disease 168 (2022) 105715

9

Song, H., Carlos de la Torre, J., Ming, G.L., 2020. Human pluripotent stem cell- 
derived neural cells and brain organoids reveal SARS-CoV-2 Neurotropism 
predominates in choroid plexus epithelium. Cell Stem Cell 27 (6), 937–950.e939. 

Kanberg, N., Simrén, J., Edén, A., Andersson, L.M., Nilsson, S., Ashton, N.J., Sundvall, P. 
D., Nellgård, B., Blennow, K., Zetterberg, H., Gisslén, M., 2021. Neurochemical signs 
of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term 
follow-up. EBioMedicine 70, 103512. 

Keddie, S., Pakpoor, J., Mousele, C., Pipis, M., Machado, P.M., Foster, M., Record, C.J., 
Keh, R.Y.S., Fehmi, J., Paterson, R.W., Bharambe, V., Clayton, L.M., Allen, C., 
Price, O., Wall, J., Kiss-Csenki, A., Rathnasabapathi, D.P., Geraldes, R., 
Yermakova, T., King-Robson, J., Zosmer, M., Rajakulendran, S., Sumaria, S., 
Farmer, S.F., Nortley, R., Marshall, C.R., Newman, E.J., Nirmalananthan, N., 
Kumar, G., Pinto, A.A., Holt, J., Lavin, T.M., Brennan, K.M., Zandi, M.S., 
Jayaseelan, D.L., Pritchard, J., Hadden, R.D.M., Manji, H., Willison, H.J., Rinaldi, S., 
Carr, A.S., Lunn, M.P., 2021. Epidemiological and cohort study finds no association 
between COVID-19 and Guillain-Barré syndrome. Brain 144 (2), 682–693. 
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A B S T R A C T

Stem cell therapy is a promising and rapidly advancing treatment strategy for a multitude of neurologic disor-
ders. Yet, while early phase clinical trials are being pursued in many disorders, the mechanism of action often 
remains unclear. One important potential mechanism by which stem cells provide neuroprotection is through 
metabolic signaling with diseased neurons, glia, and other cell types in the nervous system microenvironment. 
Early studies exploring such interactions report normalization of glucose metabolism, induction of protective 
mitochondrial genes, and even interactions with supportive neurovasculature. Local metabolic conditions also 
impact stem cell biology, which can have a large impact on transplant viability and efficacy. Epigenetic changes 
that occur in the donor prior to collection of stem cells, and even during in vitro culture conditions, may have 
effects on stem cell biology that are carried into the host upon stem cell transplantation. Transplanted stem cells 
also face potentially toxic metabolic microenvironments at the targeted transplant site. Novel approaches for 
metabolically “preconditioning” stem cells prior to transplant harness metabolic machinery to optimize stem cell 
survival upon transplant. Ultimately, an improved understanding of the metabolic cross-talk between implanted 
stem cells and the local nervous system environment, in both disease and injury states, will increase the like-
lihood of success in translating stem cell therapy to early trials in neurological disease.   

1. Introduction

Therapeutic options for neurologic disorders affecting the central
nervous system (CNS) are at times hindered by the unknown or 
complicated mechanisms responsible for the underlying pathogenesis. 
While some CNS diseases have known genetic causes tied to a certain 
protein or pathway, many involve an intricate interplay between mul-
tiple cell types and metabolic processes within a complex microenvi-
ronment (Argueti-Ostrovsky et al., 2021; Guo et al., 2020; Le Gall et al., 
2020; Mejzini et al., 2019). Similarly, traumatic brain and spinal cord 
injury, or vascular events such as stroke, induce a cascade of detrimental 
events that impact neurologic health (Delage et al., 2021; Mira et al., 
2021; Uyeda and Muramatsu, 2020). As such, therapeutic approaches 

are required that offer multidimensional benefits to the diseased or 
injured nervous system. 

Stem cell transplantation represents a promising opportunity to 
approach the treatment of CNS diseases and injury in a comprehensive, 
multifaceted manner. Many types of stem cells, including embryonic 
stem cells (ESCs), neural stem cells (NSCs), mesenchymal stem cells 
(MSCs), and induced pluripotent stem cells (iPSCs), are being evaluated 
in vitro, in vivo, and in translational clinical studies for their potential 
utility for a range of neurologic conditions (Chen and Feldman, 2017). 
These and other stem cell subtypes have entered the realm of early 
clinical trials for a variety of neurologic conditions, capitalizing on their 
proliferative capacity and adaptable biology. For amyotrophic lateral 
sclerosis (ALS), for example, intraspinal NSC transplantation has been 

Abbreviations: ALS, amyotrophic lateral sclerosis; AMPK, AMP-activated protein kinase; CNS, central nervous system; COXIV, cytochrome c oxidase subunit 4; 
CREB, cAMP response element-binding protein; EPO, erythropoietin; ESC, embryonic stem cell; FAD, flavin adenine dinucleotide; FDG-PET, fluorodeoxyglucose- 
positron emission tomography; FOXO, forkhead box class O; GALE, urine diphosphate-galactose 4-epimerase; GLUT, glucose transporter; HIF, hypoxia-inducible 
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evaluated in Phase 1 and 2 clinical trials (Feldman et al., 2014; Glass 
et al., 2016; Goutman et al., 2018). Additionally, several other stem cell 
types and delivery strategies are in various stages of development and 
clinical translation for ALS as well as a range of neurodegenerative 
conditions, including Alzheimer's disease, Huntington's disease, Par-
kinson's disease, and epilepsy (Bonaventura et al., 2021; De Gioia et al., 
2020; Gonzalez et al., 2016; Goutman et al., 2019; Liu et al., 2021; Lunn 
et al., 2011; Reddy et al., 2020; Schweitzer et al., 2020; Zhao et al., 
2021). Likewise, stem cell-based therapies are advancing for traumatic 
CNS injury (Bonilla and Zurita, 2021; Schepici et al., 2020; Silvestro 
et al., 2020; Younsi et al., 2021) and stroke (Azad et al., 2016; Hamblin 
and Lee, 2021; Kawabori et al., 2020). 

For the majority of these clinical series, a precise mechanism of ac-
tion for stem cells is not well established (Neal et al., 2018). Evidence is 
rapidly accumulating in support for metabolic drivers of pathology in 
nearly every neurologic disease, and thus metabolic pathways represent 
a promising window for stem cells to exert beneficial effects (Piers et al., 
2020). Herein, we review the possible metabolic considerations associ-
ated with stem cell therapies, with particular emphasis on how stem 
cells impact the local environments and how metabolic implications of 
neurologic disease and injury states affect cell transplants. 

2. Types of stem cells

Insight into the potential metabolic implications of the various stem
cell classes used in transplantation research and translational applica-
tions first requires understanding of the origins and attributes of each 
stem cell type. ESCs are cells derived from the zygote or inner cell layer 
of the developing blastocyst, the former being totipotent (capable of 
differentiating to any cell type) and the latter being pluripotent (capable 
of differentiating to almost any cell type). In a similar vein, iPSCs are 
cultured cells (e.g., fibroblasts) that have been reprogrammed to express 
the Yamanaka factors (Oct3/4, Sox2, Klf4, c-Myc) and re-enter a state of 
pluripotency capable of differentiating into many cell types. NSCs, by 
contrast, are stem cells capable of proliferation but, upon differentiation, 
committed to neuroglial cell types. Similarly, MSCs are derived from a 
variety of tissues, such as bone marrow, and differentiate into meso-
dermal tissues, but have been coaxed into differentiating towards 
ectodermal and endodermal fates as well. Ultimately, the source and 
range of differentiation abilities should be considered when evaluating 
how stem cells may affect metabolic mechanisms in the host and vice 
versa. 

3. Metabolic mechanisms by which stem cell transplants affect
the host

The appeal of stem cells as a therapeutic tool is tied to the many 
complementary opportunities for neuroprotection made possible by 
their inherent properties. Stem cells proliferate, providing a self- 
renewing resource for therapeutic application. They can also differen-
tiate into a range of cell types, and experimental paradigms are also now 
available to generate many neuronal subtypes from stem cells, such as 
motor neurons or GABAergic neurons (Ben-Shushan et al., 2015; Gupta 
et al., 2018; Ren et al., 2021; Shen et al., 2021). Another clear benefit of 
stem cell-based strategies is the ability to affect the host by a multitude 
of mechanisms, simultaneously and in a sustained manner (Chen et al., 
2016; Pacheco-Herrero et al., 2021; Shinozaki et al., 2021; Wei et al., 
2017a). Of course, the “holy grail” of regenerative approaches is 
replenishing a damaged cell population using stem cells. However, 
particularly in the nervous system, the ability to restore and rewire 
native neural circuits currently faces insurmountable challenges. Alter-
natively, stem cell differentiation into interneurons, glia, astrocytes, and 
other supporting cells offers a means to harness the full biological ma-
chinery of a complete cell to attenuate the progression of neurologic 
diseases. In this regard, stem cells can be employed to support neuro-
modulation, clear toxins, alter the extracellular matrix, facilitate 

vascular interactions, and regulate the immune system (Fig. 1). Impor-
tantly, stem cells are also capable of direct cell-cell communication (gap 
junctions, synapses, etc.), offer paracrine signaling and trophic support 
via secreted proteins and extracellular vesicles, and can be readily 
manipulated in vitro or in vivo to enhance expression of neuroprotective 
factors (Guy et al., 2019; Herman et al., 2021; McGinley et al., 2016; 
Willis et al., 2020). 

One mechanism by which transplanted stem cells may benefit the 
host is by modulation or normalization of metabolic pathways. While 
the metabolic effects of stem cells have been explored in research fields 
such as cardiac, liver/pancreas, and hematopoietic stem cell transplants, 
they have not been well studied in the neurosciences. Limited reports, 
however, are beginning to provide insight into the implications of stem 
cells on glucose metabolism, mitochondrial function, and other neuro-
vascular interactions. 

3.1. Glucose metabolism 

At a very basic level, the effect of stem cells on CNS glucose meta-
bolism carries significant impact in the neurosciences. Neurons are 
known to rely chiefly on glycolysis and oxidative phosphorylation for 
their high energy demands, with minimal utilization of anaerobic forms 
of metabolism (Diaz-Garcia and Yellen, 2019). As a result, perturbations 
in glucose metabolism may have an outsized effect on neuronal function 
and survival. Transplanted stem cells, on the other hand, may normalize 
the glucose metabolism of neighboring cells and thus maximize 
neuronal survival in an otherwise hostile pathologic environment. 

Stem cell transplantation studies in neurologic diseases have 
benefitted from 18F-fluorodeoxyglucose positron emission tomography 
(FDG-PET) assessment of metabolic integrity. In a study of sub-
ventricular zone stem cells transplanted into Sprague-Dawley rats, 
striatal stem cell transplants were associated in increased FDG-PET 
signal, although inherent stem cell metabolism versus impact on sur-
rounding host cells could not be parsed (Cicchetti et al., 2007). Inter-
estingly, in a mouse model of temporal lobe epilepsy in which human 
ESCs were compared to GABAergic neuronal progenitors, restoration of 
glucose metabolism was only seen in ESC-implanted animals (Du et al., 
2019). This appeared to be associated with ESC ability to differentiate 
down an astrocyte/glial lineage, which may represent a therapeutic 
strategy for epilepsy and other conditions in which normalization of the 
neuronal microenvironment is a central goal. Similarly, in a rat model of 
Huntington's disease, transplanted mouse iPSCs resulted in improved 
FDG-PET signal, along with elevated expression of neuronal, astrocyte, 
and microglial markers (Mu et al., 2014). These studies highlight the 
advantages of generating diverse cell types to act on the metabolism of 
diseased host cells. 

Evidence for metabolic benefits in the CNS are seen in a handful of 
studies focused on stroke. In a middle cerebral artery occlusion (MCAO) 
rat model of ischemic stroke, transplantation of mouse iPSC and ESCs as 
well as rat NSCs into the ventricular space resulted in improved glucose 
uptake as measured by FDG-PET within the ischemic region (Wang 
et al., 2013; Zhang et al., 2015a). In a similar study, human NSCs pro-
moted a restoration of glucose metabolism as measured by FDG-PET 
signal, and these stem cells had better ability to reduce stroke volume 
when the ischemic area was more modest in size (Daadi et al., 2013). 
Metabolic imaging to assess stem cell transplantation in early human 
trials for stroke confirm transplant feasibility as well as use of FDG-PET 
as a promising, non-invasive method for probing transplant viability and 
efficacy (Kondziolka et al., 2000). 

Stem cell-associated changes in glucose metabolism are also seen in 
traumatic conditions. In a model of traumatic brain injury, intra-
parenchymal injections of rat hippocampal NSCs demonstrated resto-
ration of FDG-PET signal at the injury site (Zhang et al., 2008). By 
contrast, in a hemisection model of spinal cord injury, glucose content at 
and around the injury site more closely paralleled that of untreated 
controls. Instead, ATP and lactate levels appeared to diminish within the 
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injury site in animals receiving NSC transplants (Mautes et al., 2004). 
These changes were hypothesized to be a result of the metabolism of the 
transplanted cells themselves and their adaptation to the hostile, trau-
matized microenvironment. It is apparent that much remains unex-
plored when considering the effect of stem cells on the complex 
metabolic cascades following traumatic injury. 

In many of the above studies, it is unclear how much of the 
normalized PET signal is performed by the transplanted cells directly or 
due to effects on native tissue. Transplanted stem cells may themselves 
contribute to changes in metabolic readouts to some degree. Neverthe-
less, FDG-PET is often used as a marker for more large-scale regional 
brain metabolism, and restoration of this signal is suggestive of rescued 
neuroglial populations. This is supported by histological correlation in 
the above studies that demonstrate restoration of host neuron and glial 
counts, and that changes in FDG-PET are more globally measured when 
compared to cell-specific PET imaging (Daadi et al., 2013; Zhang et al., 
2008). 

Additionally, given that neurons are reliant on glucose and that 
perturbations in glucose metabolism are known to exacerbate pathology 
seen in most neurologic diseases, the changes in FDG-PET shown in 
these studies could be due to intrinsic metabolic changes induced by 
stem cell grafts. In other words, rather than being merely a byproduct of 
rescued host population cell numbers, elevated FDG-PET signal may 
result from stem cells altering gene expression to increase glucose up-
take in a more greatly elevated, hypercompensatory manner. Further 
mechanistic explorations are needed to elucidate how glucose normal-
ization is mediated (e.g., signaling that alters neuronal or glial meta-
bolism, alteration in microvascular blood flow, induction of glucose 
transporters, etc.) and better understand what downstream cellular 
components (e.g., mitochondrion) are involved in metabolic 
normalization. 

3.2. Mitochondrial function 

Stem cells may mediate normalization of glucose metabolism by 
altering mitochondrially expressed proteins in resident host cells. Using 
the MCAO stroke model in rats, a proteomic analysis identified 39 

differentially expressed proteins upon treatment with mouse iPSCs. 
These included many mitochondrial proteins, such as TOMM20 (trans-
locase of outer mitochondrial membrane 20) and GALE (urine diphos-
phate (UDP)-galactose 4-epimerase) (Chen et al., 2022). TOMM20 is a 
member of the mitochondrial translocase of the outer membrane, which 
functions to shuttle mitochondrial-targeted proteins to the mitochon-
drial matrix (Omura, 1998) and has been implicated in pathophysiology 
of Parkinson's disease (Franco-Iborra et al., 2018; Teixeira et al., 2016). 
GALE participates in the interconversion of UDP-galactose and UDP- 
glucose (Frey and Hegeman, 2013), important in the metabolism of 
galactose and generation of glucose substrates. Thus, transplanted iPSCs 
appear to directly affect mitochondrial physiology of host cells. 

Similarly, in the APP/PS1 mouse model of Alzheimer's disease, mu-
rine NSCs increased mitochondrial DNA and normalization of PGC-1α 
(peroxisome proliferator-activated receptor-gamma coactivator 1α), 
NRF-1 (nuclear respiratory factor 1), COXIV (cytochrome c oxidase 
subunit 4), and other mitochondrial proteins (Zhang et al., 2015b). PGC- 
1α and NRF-1 are central transcriptional regulators of mitochondrial 
biogenesis and cellular energy metabolism (Li et al., 2017), and this is 
confirmed by electron microscopy in NSC-treated animals showing 
normalized mitochondrial morphology and numbers. Parallel findings 
were likewise found using a model of Huntington's disease treated with 
human adipose stem cells. Here, although mostly GABAergic neurons 
were formed, there appeared to be a restoration of Akt and CREB (cAMP 
response element-binding protein) signaling as well as PGC-1α (Lee 
et al., 2009). While further studies are required to identify factors 
mediating these stem cell-associated changes in mitochondrial function, 
these studies provide insight into the mechanisms by which stem cells 
promote neuroprotection by influencing metabolic pathways. 

3.3. Neurovascular and other interactions 

Stem cells may exert beneficial effects by modulating the metabolic 
response to pathologic injury in many other ways. For example, in a rat 
model of neonatal hypoxic-ischemic brain injury, transplanted MSCs 
appeared to attenuate the proliferation and activation of reactive as-
trocytes (He et al., 2019). This effect appeared to be mediated by stem 

Fig. 1. Metabolic implications of stem cell 
therapies in the CNS. Although precise 
mechanisms have yet to be delineated, stem 
cells appear to have multimodal beneficial 
effects on neuronal metabolism. Stem cells 
may directly affect glucose metabolism and 
transport, which is often visualized using 
fluorodeoxyglucose-positron emission to-
mography (FDG-PET). Stem cells may also 
scavenge toxic metabolic byproducts. Mito-
chondrial proteins, which could mediate 
normalization of glucose metabolism and 
other pathways, represent a further down-
stream target of stem cell signaling. Secreted 
growth factors, such as VEGF, may also 
mediate metabolic repair via vascular 
remodeling.   
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cell secretion of IL-6, which suppressed 5′ adenosine monophosphate- 
activated protein kinase (AMPK) and mammalian target of rapamycin 
(mTOR) signaling in astrocytes. Importantly, these and the above dis-
cussed metabolic interactions could all occur simultaneously in a stem 
cell transplant treatment paradigm. 

Transplanted stem cells may also exert beneficial effects indirectly, 
by first chiefly affecting neurovascular structures and blood flow, with 
metabolic changes a secondary benefit. In Alzheimer's disease models, 
many studies have shown that stem cells are associated with increased 
vascular endothelial growth factor (VEGF) expression (Li et al., 2018). In 
turn, higher VEGF levels are associated with greater glucose metabolism 
and neuroprotective effects (Wang et al., 2018), which may be mediated 
by neovascularization (Garcia et al., 2014). Hence, secreted factors 
derived from transplanted cells impact the supportive structures of 
neuronal metabolism, and stem cells can thus provide neuroprotection 
by both direct and indirect mechanisms simultaneously. 

While the CNS is traditionally viewed as a privileged vascular envi-
ronment, the benefits of stem cell transplants may have impact sys-
temically as well. Metabolomic analysis in the MCAO model of ischemic 
stroke demonstrated that improvements after rat ESC transplants were 
associated with increased consumption of N,N-dimethylglycine, glucose, 
and formate, together with reduced excretion of lactate, alanine, 
glutamate, 3-hydroxybutyrate, glutathione, methionine, aspartate, fatty 
acyl chain, choline, glycerol, myoinositol, and glycerophosphocholine, 
as measured in peripheral serum (Gao et al., 2020). Whether these 
changes result from the stem cells directly and have a downstream 
impact on host neurons or whether these changes simply reflect rescue 
of native neuronal/glial populations is unclear, but these findings 
represent a metabolic signature which may have value as an accessible 
peripheral biomarker of disease and treatment response. 

4. Host effects on stem cell transplant metabolism

While it is often the expressed goal for stem cell transplants to impact
physiology of the host, the converse is emerging as an increasingly 
important area of study. With this in mind, the metabolic circumstances 
of donor tissue from which stem cells are derived become of great 
importance to the transcriptional and epigenetic signatures that are 

carried along with cell transplants. Once stem cells reach their desti-
nation, another consideration is how stem cells are impacted by the 
challenging microenvironment present in neurologic injury or disease 
(Frederiksen et al., 2020; Nguyen et al., 2019). While they can aid in 
detoxifying a potentially hostile disease microenvironment and confer 
several additional advantages, as mentioned above, stem cells must first 
be amenable to surviving within the immunologic and metabolic milieu 
that comprises that environment. Metabolic perturbations of the host, 
whether due to environmental factors (diet, exposures, etc.) or intrinsic 
neuropathologic disease processes, likewise impact the physiology of 
transplanted cells. Here we will summarize early work in understanding 
how destination metabolic microenvironments impact transplanted cells 
(Fig. 2), and approaches that build upon this knowledge to maximize the 
survival and therapeutic benefit of cell-based therapy. 

4.1. Metabolic contributors to stem cell quiescence, pluripotency, 
proliferation, and differentiation 

Metabolic disturbances can impact gene expression profiles of stem 
cells, and can thus influence the delicate balance between quiescence, 
self-renewal, and terminal differentiation. Interestingly, seemingly 
opposite dietary modifications, including both ketogenic/restricted 
calorie diets and high-fat diet, appear to increase stem cell self-renewal 
by convergent signaling onto common pathways engaged in fatty acid 
oxidation and peroxisome proliferator-activated receptors (Novak et al., 
2021). However, high-fat diet or models of the “Western diet” appear to 
also impart a tendency towards inappropriate stem cell proliferation and 
carcinogenesis. 

It is also clear that metabolic alterations have significant impact on 
stem cell epigenetic factors (Fawal and Davy, 2018; Ryall et al., 2015). 
Factors involved in oxidative phosphorylation act to modulate epige-
netic changes (Tay et al., 2021). Sirtuin 1 activity, for example, is crucial 
for maintenance of pluripotency, participates in histone deacetylation, 
and is regulated by nicotinamide adenine dinucleotide (NAD+) con-
centrations that reflect stem cell metabolism (Correia et al., 2017; Fang 
et al., 2019). Histone and DNA methylation/demethylation by DNA 
methyltransferases and lysine-specific demethylase 1 also depends on 
one‑carbon metabolism and the concentrations of flavin adenine 

Fig. 2. Environmental and host metabolic influence on stem cells. Stem cells are affected by metabolic processes both from their source (carrying resultant epigenetic 
changes), metabolic changes resulting from in vitro culture, and also face pathologic metabolic signaling in the target tissue. Relative levels of energy substrates 
appear to influence the biology of proliferation and maintenance of a pluripotency, versus commitment towards terminal differentiation. Many epigenetic alterations 
resulting from metabolic conditions may also be carried with transplantation and may influence downstream efficacy. “Preconditioning” of stem cells prior to 
transplant, for example using relative hypoxia, may be a way to improve resilience of transplanted cells and maximize therapeutic benefits. 
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dinucleotide (FAD), again impacting expression of pluripotency versus 
differentiation genes (Castex et al., 2017; Ryall et al., 2015). Also, em-
bryonic exposure to hyperglycemia appears to promote chromatin 
reorganization, histone H3 lysine 9 trimethylation, and global DNA 
methylation in NSCs (Shyamasundar et al., 2013). Thus, it is important 
to consider this metabolic “baggage” when establishing stem cell cul-
tures or iPSC lines. Moreover, understanding the metabolic history of 
cell lines may lead to optimized transplantation paradigms and down-
stream studies. 

Metabolic pathways additionally directly contribute to stem cell 
survival, maintenance of pluripotency, and the switch from quiescence 
to proliferation (Wanet et al., 2015). Signaling that involves forkhead 
box class O (FOXO), mTOR, AMPK, and sirtuin signaling pathways 
maintain a quiescent stem cell “pool” and minimize oxidative stress; 
however, the signaling of these pathways may be disrupted by changes 
in energy availability (Rafalski et al., 2012). Interestingly, fatty acid 
metabolism also appears to play a central role in stem cell biology. 
Malonyl-CoA reduces fatty acid oxidation which then promotes exit 
from quiescence into proliferation (Knobloch et al., 2017), and activity 
of fatty acid synthase also appears to promote adult neurogenesis and 
proliferation (Knobloch et al., 2013). The complexities of this area of 
study are only just beginning to be revealed, but knowledge of metabolic 
contributions to proliferation and differentiation may maximize stem 
cell survival and could be harnessed to improve treatment outcomes. 

4.2. The stem cell niche and metabolic responses to culture and 
transplantation 

The very act of in vitro culture and manipulation can impact stem 
cell metabolism and subsequent performance. Endogenous stem cells 
appear to exist in a specific niche with defined environmental factors 
and metabolic pathway utilization (Ottoboni et al., 2017; Rafalski et al., 
2012). For example, certain stem cell populations appear to rely on 
glucose and preferentially utilize glycolysis over oxidative phosphory-
lation (Salazar-Noratto et al., 2020). This occurs in the face of relative 
hypoxia, whereas the switch to oxidative phosphorylation is linked to 
terminal differentiation in normoxic settings (De Filippis and Delia, 
2011). The ability to expand and manipulate stem cell cultures in vitro 
prior to implantation is often cited as an advantage for stem cell-based 
approaches. However, keeping in mind the metabolic switch to oxida-
tive phosphorylation is critical when considering that most in vitro 
culture of stem cells occurs at atmospheric oxygen levels. This exposure 
to elevated oxygen levels and switch to aerobic respiration may result in 
fundamental changes that might prove detrimental when cells are 
transplanted again into damaged, hypoxic host tissues and expected to 
proliferate (Sandvig et al., 2017). 

Furthermore, the destination for cell transplants is often hostile, with 
altered blood flow, impaired nutrient and toxin shuttling, and inflam-
matory changes. A demonstration of these interactions was demon-
strated using NSC transplants performed in a compression-based model 
of spinal cord injury in mice (Zhang et al., 2022). At baseline, trans-
planted NSCs tended to differentiate towards astrocytes in the presence 
of an M1 proinflammatory phenotype of surrounding microglia. By 
contrast, spinal cord injury in aldose reductase inhibition or in aldose 
reductase deficient mice favored an M2 microglial phenotype, associ-
ated with differentiation of NSCs towards a neuronal phenotype and 
improved motor function. Aldose reductase catalyzes the conversion of 
excess glucose to sorbitol in the polyol pathway, and has been impli-
cated in activation of microglia (Chang et al., 2019). Thus, metabolic 
factors in stem cell transplant recipients clearly influence the inflam-
matory milieu, which in turn impacts the differentiation and survival of 
transplanted stem cells. These studies underscore the need for under-
standing stem cell interactions with host metabolic microenvironments 
in order to optimize the efficacy and translation of cell-based therapies. 

4.3. Stem cell preconditioning 

One domain in which metabolic contributors to stem cell perfor-
mance, and indeed metabolic manipulation, has had greater study is in 
the realm of ischemic stroke (Bernstock et al., 2017; Yu et al., 2013). It is 
known that stem cells enter a hostile environment of hypoxia, excito-
toxicity, and inflammation when transplanted acutely after stroke. As a 
result, there is a high degree of cell death for both endogenous and 
exogenous stem cells (Othman and Tan, 2020). Efforts to combat this are 
described as stem cell “preconditioning” using approaches such as ge-
netic modifications (Wei et al., 2017a; Xue et al., 2019) or engineered 
biomaterials (Moshayedi et al., 2016). Alternatively, simple exposure to 
hypoxic culture conditions appears to result in transcriptional changes 
that improve metabolic profiles (Wei et al., 2017b). The mechanism 
underlying this observation is currently under investigation and may be 
multifactorial. Certainly, the activation of hypoxia inducible factors HIF- 
1α and HIF-1β is logical, with many potential downstream metabolically 
active targets, including VEGF, erythropoietin (EPO), sodium‑calcium 
exchanger-1, protein kinase D1, lactate dehydrogenase A, and uncou-
pling protein 2 (Dehne and Brune, 2009; Greer et al., 2012; Semenza, 
2011; Zhang et al., 2019). Interestingly, given the central role of glucose 
in stem cell and neuronal metabolism, the glucose transporters GLUT3 
and glucose-6-phosphate transporter are also induced by HIF-1α after 
hypoxia (Thamotharan et al., 2013). Other mediators of stem cell pre-
conditioning include EPO (Theus et al., 2008; Wei et al., 2012) or 
involve an increase in the formation of connexin hemichannels and ATP 
release (Jaderstad et al., 2010). 

Further methods to induce stem cell preconditioning include expo-
sure to compounds such as minocycline (Sakata et al., 2012b), doxy-
cycline (Malik et al., 2013), interleukin-6 (Sakata et al., 2012a), adjudin 
(Zhang et al., 2017), resveratrol (Yao et al., 2021), or sodium butyrate/ 
nicorandil (Hosseini et al., 2018), or even direct electrical stimulation 
(George et al., 2017). Again, growth factor secretion and/or angiogen-
esis appears to be engaged in these processes and are under further 
study. Notably, the AMPK activator metformin also appears to impart a 
beneficial effect on stem cell transplants. In an endothelin-1 rat model of 
stroke, co-treatment with metformin and human iPSC-NSCs resulted in 
improved proliferation, differentiation, and reduction of human leuko-
cyte antigen (HLA)-A expression in stem cells (Ould-Brahim et al., 
2018). Reduction in HLA-A or other antigen presenting molecules may 
help prevent graft rejection. While detailed metabolic studies of met-
formin and effects on transplanted stem cells were not performed, this 
study underscores the complex interplay between metabolism in the 
periphery, the CNS, injured tissue, and stem cells. 

5. Conclusions

Stem cell therapies for neurologic conditions impart a range of
metabolic effects for the CNS as well as for the stem cells themselves 
(Figs. 1 and 2). At baseline, the interaction between normal metabolism, 
impaired metabolism, and neurologic diseases is complex and poorly 
understood. Adding in stem cells, with their metabolic interactions with 
both local microenvironments as well as systemic processes, increases 
the combinatorial complexity of underlying metabolic and pathologic 
pathways. However, achieving therapeutic impact on host metabolism 
using the cellular capabilities of stem cells is a promising paradigm to 
address a wide range of neurologic conditions. Furthermore, emerging 
understanding regarding local environmental effects on stem cell 
metabolism may optimize the efficacy of stem cell treatments. It is 
apparent that much more detailed, high-quality research in this field is 
needed, and ongoing study is certain to yield great steps forward in 
enabling the translation of stem cell therapy for neurologic diseases and 
injury states. With this increased understanding of the interplay between 
stem cells and metabolic parameters in the brain, the success of stem cell 
therapy can ultimately be improved. 
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Search terms 

A query in PubMed utilizing search terms “stem cell therapy” and 
“metabolism” and “nervous system” excluding “cancer” was performed 
screening for manuscripts describing use of stem cells as a therapeutic in 
CNS disorders with a potential metabolic mechanism of action. In rele-
vant articles references were also screened for additional relevant 
papers. 
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Chapter 13

Systems Biology to Address Unmet Medical Needs
in Neurological Disorders

Masha G. Savelieff, Mohamed H. Noureldein, and Eva L. Feldman

Abstract

Neurological diseases are highly prevalent and constitute a significant cause of mortality and disability.
Neurological disorders encompass a heterogeneous group of neurodegenerative conditions, broadly char-
acterized by injury to the peripheral and/or central nervous system. Although the etiology of neurological
diseases varies greatly, they share several characteristics, such as heterogeneity of clinical presentation,
non–cell autonomous nature, and diversity of cellular, subcellular, andmolecular pathways. Systems biology
has emerged as a valuable platform for addressing the challenges of studying heterogeneous neurological
diseases. Systems biology has manifold applications to address unmet medical needs for neurological illness,
including integrating and correlating different large datasets covering the transcriptome, epigenome,
proteome, and metabolome associated with a specific condition. This is particularly useful for disentangling
the heterogeneity and complexity of neurological conditions. Hence, systems biology can help in uncover-
ing pathophysiology to develop novel therapeutic targets and assessing the impact of known treatments on
disease progression. Additionally, systems biology can identify early diagnostic biomarkers, to help diagnose
neurological disease preceded by a long subclinical phase, as well as define the exposome, the collection of
environmental toxicants that increase risk of certain neurological diseases. In addition to these current
applications, there are numerous potential emergent uses, such as precision medicine.

Key words Alzheimer’s disease, Amyotrophic lateral sclerosis, Diabetes, Inclusion body myositis,
Neurodegenerative disease, Motor neuron disease, Obesity, Parkinson’s disease, Peripheral
neuropathy

1 Introduction

Neurological diseases constitute a significant burden of illness in
the population. Worldwide, in 2016, neurological illnesses were the
second most frequent cause of mortality, and first most significant
contributor to disability [1]. Neurological disorders encompass a
wide spectrum of neurodegenerative conditions, broadly character-
ized by injury to the peripheral and/or central nervous system
(Fig. 1). Nerve damage can occur from aging, systemic diseases
like diabetes, heritable genetic mutations, environmental
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exposures, or mechanical trauma. Although there are broad clinical
and molecular differences, both within and between neurological
diseases, complexity of pathogenesis is a unifying thread. It is also
the principal reason that systems biology has gained traction in the
recent decade as an important and central research tool for under-
standing neurological disease pathophysiology.

Disease complexity is evident in the heterogeneity of clinical
presentation, breadth of etiology, non–cell autonomous nature,
and cellular, subcellular, and molecular pathway diversity of each
neurological illness. For example, amyotrophic lateral sclerosis
(ALS) is a fatal neurodegenerative disease, characterized by motor
neuron degeneration and consequent muscle wasting [2]. Regard-
ing clinical presentation, ALS can manifest as bulbar or spinal onset,
which influences the progression rate. Bulbar onset ALS presents as
difficulty speaking, swallowing and breathing, and is fast progres-
sing, whereas spinal onset initially presents as limb weakness, and is
usually slow progressing [2, 3]. ALS phenotypes are dictated by

Fig. 1 Types of neurological diseases. Neurological diseases are characterized by damage to central and
peripheral nervous tissue. Broadly, some categories of neurological disease include, (a) central neurodegen-
erative diseases, (b) motor neuron diseases, (c) peripheral neuropathies (PN). Central neurodegenerative
diseases are characterized by neuronal loss in various areas of the brain, the cortex in Alzheimer’s disease
(blue shading; ai) and substantia nigra in Parkinson’s disease (blue shading; aii). Motor neuron diseases lead
to neurodegeneration of neuromuscular junctions (bi), which can lead to atrophy of limb and diaphragm
muscles. Nerve damage (ci) in PN usually occurs in a symmetric, length-dependent manner (blue coloring;
starting in the feet and progressing to the hands upon reaching the calves), including in the most common
metabolically acquired diabetic PN. Sensory neuron degeneration also shown, distally (from axon termini) to
proximally (toward cell body and dendrites). There can be overlap between these categories of neurological
disease; for instance, a subset of patients with the motor neuron disease, amyotrophic lateral sclerosis, can
also have central frontotemporal dementia in 15–20% of cases. (Created, in part, with BioRender.com)
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multiple patient clinical and genetics characteristics [4]. Addition-
ally, although progression of symptomatic disease is relatively rapid,
ALS has a long subclinical prodromal phase.

With regards to breadth of etiology, ALS is associated with
close to 30 genetic mutations [5]; however, a known genetic muta-
tion is present in only around 15% of ALS individuals. Thus,
polygenic risk [6, 7], environmental exposure [8–10], and potential
gene–environment interactions [11] have been proposed to
account for cases lacking a known monogenic cause. In terms of a
non–cell autonomous nature, although ALS is widely regarded as a
motor neuron disease, there is a central neurodegenerative compo-
nent, frontotemporal dementia, in around 15–20% of cases
[2]. Additionally, immune system involvement is documented in
ALS [12–17], which correlates with disease progression [14] and in
a sex-dependent manner [15, 16].

Lastly, ALS is characterized by molecular heterogeneity in
genetic [5–7], epigenetic [18–22], transcriptomic [23, 24], and
metabolomic [25–27] signatures. Multiple biological processes
are also involved, centered on excitotoxicity [28], mitochondrial
dysfunction [29], and oxidative stress [30].

Although outlined here specifically for ALS, this level of het-
erogeneity and complexity of disease processes occurs in most
neurological diseases, especially those of non-monogenic etiology.
Clearly, appropriate analytical platforms are needed to uncover and
dissect the numerous aspects present in these complex, multifacto-
rial disorders. Systems biology can be leveraged to address this
need, by agnostically querying molecular pathways in ach aspect
of disease pathogenesis. This can shed light on mechanisms, corre-
late molecular signatures, that is, genomic, transcriptomic, epige-
nomic, proteomic, metabolomics, or multiomics, to clinical
presentation to refine disease classification and diagnosis, and iden-
tify potential drug targets. This is especially essential for most
neurological disorders, which remain recalcitrant to treatment.
Technological advances also enable single-cell resolution, which is
useful for non–cell autonomous diseases. Further, bioinformatics
analysis can integrate multiomics datasets to gain additional insight.

This chapter will be subdivided by disease to illustrate how
systems biology has advanced our understanding of neurological
disorders in the recent decade. First, each subsection will provide an
overview of the neurological disease, highlighting the complexity,
which systems biology can help address. Second, each subsection
will discuss the most salient studies shedding light specifically on
the points stated above, namely, pathomechanisms, diagnosis/clas-
sification, and drug target identification. Rather than a comprehen-
sive review, this chapter will highlight studies that deliver
overarching messages, identify future areas of investigation, and
serve as a guide to researchers leveraging or planning to leverage
systems biology in their research endeavors. Additionally, the
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chapter will emphasize metabolically acquired peripheral neuropa-
thy and ALS, which are our areas of expertise, but will still illustrate
systems biology examples in other neurological illnesses.

2 Peripheral Neuropathies

Peripheral neuropathies (PN) are a class of neurological diseases,
which incur damage to the peripheral nerves [31]. The most com-
mon clinical presentation is a distal symmetric neuropathy, begin-
ning in both feet, progressing distally to the calves, at which point it
commences in the fingers and progresses distally to encompass both
hands. Alternatively, PN can manifest focally as a mononeuropathy
or a plexopathy, or to the autonomic nervous system as autonomic
neuropathy. This chapter will refer to distal symmetric neuropathy
as PN. The most frequent PN cause is metabolically acquired,
secondary to either diabetes, prediabetes, or the metabolic syn-
drome [32]. Other causes include genetic mutations, chemother-
apy, toxin exposure, infectious disease, vasculitis, mechanical injury,
vitamin deficiencies, and immune-mediated disorders [33],
although the cause is unknown in around 40% of PN cases,
known as idiopathic PN [32]. This subsection will focus on meta-
bolically acquired PN, as the most prevalent PN.

2.1 Metabolically

Acquired Neuropathies

Diabetes, an elevated fasting blood glucose (hyperglycemia), and
prediabetes, a state of impaired glucose tolerance, are extremely
prevalent metabolic disorders. Diabetes itself can be subdivided
into type 1 (T1D) diabetes, constituting around 5% of patients
who lose pancreatic β-cells and no longer produce insulin. Patients
with the more prevalent type 2 diabetes (T2D) develop insulin
resistance and can no longer regulate glucose. In 2019, 463 million
individuals had T2D globally, with 374 million individuals with
prediabetes [34]. The metabolic syndrome, a constellation of obe-
sity, dyslipidemia (abnormal blood lipid profile), and hypertension
[35], also constitutes a massive and rising global epidemic
[36, 37]. Up to 50% and 30% of T2D and prediabetes patients,
respectively, develop PN [31]. PN also develops in obese indivi-
duals [38–53], even independent of hyperglycemia, and in propor-
tion to the number of metabolic syndrome components [45, 47,
54, 55]. Frequently, however, T2D is comorbid with obesity and
the metabolic syndrome [39, 56].

Metabolically acquired PN pathophysiology is complex,
encompassing abnormal glucose- and lipid-centric pathways
[31, 57], bioenergetics and mitochondrial defects [58, 59], oxida-
tive stress [60], and inflammatory processes [61]. Moreover, PN
progression may be non–cell autonomous, through a breakdown in
neurometabolic coupling and crosstalk between axons and their
supporting glia cells [62, 63]. Thus, PN development is highly
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complex, advocating a systems biology approach to gain a deeper
understanding of pathophysiology to develop mechanism-based
treatments.

Indeed, we have conducted extensive informatics studies of PN
in both mouse and human neuropathic nerve to identity recurrent
pathways and possible routes to disease-modifying drugs. We have
employed several mouse models of metabolically acquired PN
[64]. Streptozotocin (STZ) destroys pancreatic β-cells, mirroring
the T1D scenario. The ob/ob and db/db mice harbor spontaneous
mutations to satiety regulating leptin and the leptin receptor,
respectively, leading to over-eating, obesity, and a T2D phenotype.
Alternatively, the high-fat diet (HFD) low-dose STZ mouse model
of T2D was developed to more closely mirror diet-induced T2D
with comorbid obesity in humans. Omitting STZ, and solely feed-
ing mice HFD leads to an obese prediabetes model. Equipped with
these models, we have leveraged systems biology approaches to
address multiple questions.

2.1.1 What Is PN

Pathophysiology?

Early studies employing gene expression microarray technology
were conducted on human sural [65] and mouse sciatic nerve
[66] (Fig. 2a). The human study was of sural biopsies from both
T1D and T2D participants with PN, categorized as “progressors”
(decrease in myelinated fiber density [MFD] as a measure of PN)
versus “non-progressors” (no MFD change) over the course of a
52-week clinical trial [65]. Progressors differed in 532 differentially
expressed genes (DEGs) from non-progressors; functional enrich-
ment of DEGs identified pathways involving inflammatory
responses and lipid metabolism, centered on apolipoprotein E
(APOE), leptin, peroxisome proliferator-activated receptor
gamma (PPARγ), JUN, and serpin family E member 1 (SER-
PINE1). A follow-up human study took a closer look at a subset
of “regenerator” participants, which increased MFD during 1 year,
indicative of nerve regeneration and improvement in PN
[67]. Microarray analysis found regenerator sural nerves were upre-
gulated in genes related to cell-cycle and myelin sheath functions,
and downregulated in those related to immune/inflammatory
pathways.

These findings were echoed in sciatic nerve from db/db T2D
mice with PN, which revealed dysregulation of genes responsible
for lipid and carbohydrate metabolism, PPAR signaling, apoptosis,
and axon guidance [66]. Promoter sequence analysis demonstrated
these changes were coregulated, indicative of structural changes of
axonal degeneration involving lipid metabolism. PN is progressive
and evolves over time. Gene expression microarray analysis of ob/ob
T2D mice at earlier 5-week and later 13-week time points found
1503 and 642 DEGs, respectively, which were overrepresented in
immune/inflammatory functions, especially at 5 weeks, suggesting
an early and contributory role to PN onset [68]. Analysis of
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multiple transcriptomic datasets underscored inflammation as a
recurrent theme in diabetic PN, particularly through toll-like recep-
tor (TLR) signaling [69]. Knocking out TLR2/4 from a prediabe-
tes HFD model slows the onset of PN, affirming immune system
involvement early in pathogenesis.

2.1.2 What Are Shared

and Unique

Pathophysiology Aspects in

T1D Versus T2D PN?

PN phenotype, that is, slowed nerve conduction velocities (NCV)
in large fibers and intraepidermal nerve fiber (IENF) loss of small
fibers, is similar in T1D and T2D. However, glucose control is
more effective for slowing T1D versus T2D PN [70], suggesting
possible pathophysiological differences (Fig. 2b). Transcriptomic
analysis is an ideal tool for agnostically querying pathway differ-
ences and similarities between T1D and T2D PN. Comparison of

Fig. 2 Select systems biology applications to metabolically acquired peripheral neuropathy. Systems biology
has manifold applications to address unmet medical needs for peripheral neuropathy (PN). (a) What is PN
pathophysiology? Tissue samples (sural or sciatic nerve from mouse (animal model) or human with T2D, type
2 diabetes, versus WT, wild-type, in this example) are profiled by an omics platform (transcriptomics in this
example). Next, differential species are identified (DEGs, differentially expressed genes, in this example).
Pathway enrichment analysis of differential species lends biological insight. Thus, systems biology can
uncover pathomechanisms, which can suggest therapeutic avenues. (b) What are shared and unique
pathophysiology aspects in T1D versus T2D PN? Systems biology can differentiate pathomechanisms in
T1D versus T2D PN, which can lead to tailored treatment regimens. (c) How does anti-type 2 diabetic drug
treatment affect nerve health? Systems biology can shed insight on why current anti-type 2 diabetic drugs
(PIO, pioglitazone, in this example) do not prevent PN onset and development (worsens PN by increasing
expression of DEGs related to pathology, improves PN by decreasing or expression of DEGs related to
pathology). (d) What new therapeutic targets for PN can systems biology identify? Multiomics systems biology
can identity strong candidate targets for drug development (circles omics platform 1; squares omics platform
2). (Created, in part, with BioRender.com)
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microarray results from STZ T1D versus db/db T2D sciatic nerve
and kidney tissue from animals with PN and diabetic kidney disease,
known as nephropathy, identified exceptionally high concordance
among DEGs in diabetic nephropathy (94% of 2433 genes), but
not in diabetic PN (54% of 1558 genes) [71]. These findings
support the concept that distinct pathophysiology may underlie
PN in T1D versus T2D, although transcriptional network analysis
suggests the inflammatory Janus kinase (JAK)-signal transducer
and activator of transcription (STAT) pathway is shared, regardless
of diabetes type. Expanding comparison of T1D versus T2D to
include human sural (progressors and non-progressors) as well as
mouse sciatic nerve (STZ T1D, db/db and ob/ob T2D), a total of
eight microarray datasets were used to generate a merged transcrip-
tional network with centrality analysis, which identified top and
universally shared DEGs [72]. Pathway analysis discovered these
shared DEGs to be connected to pathways involving liver X recep-
tor (LXR)/retinoid X receptor (RXR) activation, adipogenesis, and
glucocorticoid receptor signaling, as well as, as anticipated, multi-
ple cytokine and chemokine pathways. However, although patho-
logical pathways are shared, directionality of DEGs differed in
human versus mouse samples. This may be related to the time
course and PN stage, source tissue location (sural, which is more
distal and affected earlier in disease course in humans, versus sciatic,
which is more proximal and affected later in mice), or control
comparisons (progressors versus non-progressors against neuro-
pathic versus non-neuropathic) in humans versus mice.

Overall, however, these analyses identified highly recurrent
pathways cross-species and in both T1D and T2D PN, as well as
divergent pathways, which differed in T1D versus T2D.

2.1.3 How Does Anti-

type 2 Diabetic Drug

Treatment Affect Nerve

Health?

There are several classes of anti-type 2 diabetic drugs; among them,
thiazolidinediones are PPARγ agonists, which boost transcription
of genes controlling glucose and lipid metabolism and improve
insulin sensitivity [73]. In mice, pioglitazone and rosiglitazone,
examples of thiazolidinediones, may improve some PN outcomes
associated with T1D and T2D, though through an unknown
mechanism. Systems biology is ideal for elucidating the mechanism
of treatment-induced PN improvements (Fig. 2c). In an STZ T1D
model, rosiglitazone (3 mg/kg) does not reverse hyperglycemia,
but does lower nerve oxidative stress [74]. Regarding PN, it does
not improve function of large myelinated nerve fibers assessed by
measuring sural or sciatic NCVs, but does prevent loss of small
unmyelinated fibers. This preservation of function is assessed by
measuring thermal hypoalgesia (loss of sensation to heat) and
anatomical quantitation of small unmyelinated intraepidermal
nerve fiber density (IENFD). Gene expression microarrays identi-
fied 318 DEGs between T1D versus rosiglitazone-treated T1D
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mouse sciatic nerve; analysis of DEGs collectively upregulated or
collectively downregulated by rosiglitazone identified two tran-
scription factor motifs linked to PN development. These transcrip-
tion factor motifs were related to insulin-stimulated glucose
metabolism, neurite outgrowth, growth factors, apoptosis, and
survival, implicating these pathways in rosiglitazone’s mechanism
of action in PN.

We have also investigated the effect of pioglitazone on PN in
db/db T2D mice. In this model, pioglitazone (15 mg/kg) nor-
malizes fasting blood glucose, glycated hemoglobin (HbA1c), and
triglycerides, and lowers plasma oxidative stress, but increases body
weight [75]. Pioglitazone also prevents small fiber IENFD loss, but
does not affect large fiber sural or sciatic NCVs. There were 4537
DEGs in sciatic nerve between db/db versus db/db pioglitazone
using microarrays, and pathway analysis revolved around adipogen-
esis, adipokine signaling, and lipoprotein signaling. These pathways
suggest nerve lipid accumulation, a possible reason for the blunted
therapeutic response on large fiber PN. Bulk RNA sequencing
(RNA-seq) of nerve and kidney followed by self-organizing maps
found pioglitazone reversed mitochondrial dysfunction in both
tissues, but only rescued cell death and inflammation in kidney
[76]. In fact, pioglitazone may have even been detrimental to the
inflammatory nerve response. Pathway crosstalk perturbation net-
work modeling of this RNA-seq nerve dataset further identified
glycolysis, gluconeogenesis, and carbohydrate metabolism as con-
tributing to the return to health upon pioglitazone treatment [77].

Overall, our data implies inflammation may underlie large fiber
dysfunction, since pioglitazone does not improve NCV nor reverse
nerve inflammatory pathways. On the other hand, mitochondrial
dysfunction may drive small fiber dysfunction in T2D PN, since
pioglitazone improves IENFD and influences DEG expression
related to mitochondria. The differential impact of pioglitazone
on PN and diabetic nephropathy also upholds an important tenet
in diabetes complications research, which states T2D induces dis-
tinct tissue-specific metabolic changes [78]. This suggests it may
also require tissue-specific therapeutic solutions, rather than a “one
size fits all” approach, which may have deleterious impact in one
tissue, while improving another. These studies also highlight the
power of systems biology to draw important and biologically rele-
vant insight with potentially translational implications.

Although gene expression microarrays and bulk RNA-seq have
been very instrumental to elucidating PN pathophysiology, the
heterogeneity of cells in peripheral nerves presents limitations to
these studies. To further unravel the cell-specific transcriptome and
the cellular communications, single-cell RNA-seq (scRNA-seq) and
spatial transcriptomics should be performed in future studies.
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2.1.4 What New

Therapeutic Targets for PN

Can Systems Biology

Identify?

Despite intensive research, PN remains untreatable. Effective anti-
type 2 diabetic drugs improve glucose handling and systemic meta-
bolic health; but none to date prevent PN onset and progression
clinically in humans. Systems biology may aid in the discovery of
potential PN therapeutics through agnostic query. Moreover,
adopting a multiomics approach, by considering dysregulation on
multiple levels, can strengthen identified candidates (Fig. 2d). Sys-
tems biology can also aid in the development of new drugs or
repurposing of approved drugs by integrating gene expression
datasets to develop connectivity maps, which correlates dysregu-
lated transcriptome with drug databases [79]. Lipidomics of sciatic
nerve of HFD-STZ T2D and HFD prediabetes mice found triacyl-
glycerol and, to a lesser extent, diacylglycerol accumulation in
neuropathic nerve, which was reversed upon a switch back to a
regular diet [80]. Transcriptomics revealed “fat digestion and
absorption” and “glycerophospholipid metabolism” as important
pathways; integrated lipidomics-transcriptomics centered especially
on three candidates, CD36 (lipid transport), LPL (lipoprotein
hydrolysis), and DGAT2 (triacylglycerol synthesis). The study also
confirmed DGAT2 was elevated in sural nerve biopsies from hyper-
lipidemic versus non-hyperlipidemic T2D participants. Although
not in development for PN, inhibiting DGAT2 have been consid-
ered for treating non-alcoholic fatty liver disease [81], a common
comorbid condition of obesity.

An epigenetic (DNA methylation) and transcriptomic analysis
of human sural nerve biopsies from T2D PN participants by high
versus low HbA1c found overlap between DEGs and differentially
methylated genes, which integrated functional and network analysis
found were related to immune response, extracellular matrix regu-
lation, and PI3K-Akt signaling [82]. This study, for the first time,
demonstrated that DNAmethylation could constitute a mechanism
regulating gene expression in PN, revealing a gene–environment
interaction by integrating epigenomics with transcriptomics. Gene–
environment interaction can be also investigated by integrating
scRNA-seq with the assay for transposase-accessible chromatin-
seq [83].

Both studies share the same weakness, namely, that causality
cannot be inferred from these cross-sectional analyses. Thus, longi-
tudinal bioinformatics analysis of nerve coupled with validation by
knockout in mouse models will be required to select the best
therapeutic candidates. Additionally, any developed drugs will
require optimal pharmacological profiles to penetrate the nerve.
Collectively, however, these studies demonstrate the power of sys-
tems biology to identify targets for therapeutic development.
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2.1.5 What New PN

Research Avenues Can

Systems Biology Open?

In addition to the aforementioned established avenues systems
biology has investigated in metabolically acquired PN, it is poised
to shed light on emergent and future novel avenues. Although PN
is primarily considered metabolically acquired in T2D, prediabetes,
and obesity, a growing number of genome-wide association studies
are identifying risk loci and generating polygenic risk scores to
predict the chance of developing T2D PN [84, 85] (Fig. 3a). A
systems biology approach of the microbiome through
metagenome-wide association studies found some dysbiosis in
T2D participants, which correlated with decreased universal
butyrate-producing bacterial abundance and increased opportunis-
tic pathogens [86]. Although far less investigated for PN (Fig. 3b)
[87], butyrate is also key in obesity-driven PN [88]. The gut
microbiome may modulate PN in STZ T1D rats [89] and enteric
nerves in HFD prediabetic mice [90].

Fig. 3 Emergent and future systems biology research avenues in metabolically acquired peripheral neuropa-
thy. Systems biology is poised to shed light on emergent and future novel research avenues in PN. (a)
Genome-wide association studies to identify risk loci and generate polygenic risk scores (PRS) for PN. Genome
sequencing a population and correlating to individuals with PN (dark grey figures) versus without (light grey)
identifies risk loci and single nucleotide polymorphisms (SNPs). Low PRS (few risk SNPs) means a low chance
to develop PN; high PRS (several risk SNPs) means a high chance to develop PN. (b) Metagenome-wide
association studies to evaluate the contribution of the microbiome to PN. Microbiome can be sequenced by
16S profiling to identify microorganisms. Microorganisms and the gut secrete metabolites, which might affect
the brain through the microbiome–gut–brain axis, or peripheral organs through the gut–organ axis. (c)
Pharmacogenetics to identify patients that will respond to pain medications for painful PN. Genome sequenc-
ing a population can match identified SNPs with specific drugs. (Created, in part, with BioRender.com and
ACD/ChemSketch)

256 Masha G. Savelieff et al.

2322022 Feldman Laboratory Publications



An additional possible avenue for systems biology is in the
search for effective treatments for painful PN (Fig. 3c), which
occurs in a subset of T2D patients, who experience oftentimes
debilitating pain over the course of neuropathy progression. Cur-
rently, only one in seven individuals get relief from the current
standard treatments available for painful PN [32, 91]. One
approach is to match PN sensory profiles with specific drug mecha-
nism of actions, but this process is empirical and time consuming
[32]. An unexplored avenue is pharmacogenetics, the intersection
of genetic profiling with drug response [92]. In T2D, certain single
nucleotide polymorphisms modulate antidiabetic drug efficacy
[93, 94], and this may be the scenario in diabetic PN or painful
PN. Indeed, in a small pilot study of amitriptyline, a tricyclic
antidepressant, first-line painful PN treatment, participants with
normal or ultrarapid metabolizer phenotypes had fewer side effects
versus individuals with lower cytochrome p450 2D6 (CYP2D6)
activity [95]. Thus, this is an unexplored and potentially valuable
research avenue for selecting drugs in a precision systems biology–
driven approach, which might bring relief to patients with
painful PN.

2.2 Other

Neuropathies

Although impaired metabolism is the most frequent PN cause,
there are multiple other etiologies as outlined in the Subheading
1. In a sciatic transection model of nerve damage in rats, scRNA-
seq disclosed that the main source of nerve factors following injury
are Schwann cells and, unexpectedly, nerve mesenchymal cells,
including from the endoneurium [96]. Integrated scRNA-seq-pro-
teomic systems biology modeling predicted novel nerve mesenchy-
mal cell-derived factors, which could potentially stimulate
peripheral axon growth. In vitro validation of predicted factors in
cultured sympathetic axons identified three factors, angiopoietin
1 (ANGPT1), C-C motif chemokine 11 (CCL11), and vascular
endothelial growth factor C (VEGFC), which effectively stimulated
outgrowth. This approach could make important discoveries for
potential neuroregenerative therapies.

In a model of chronic autoimmune neuritis, an inflammation of
the peripheral nerves, scRNA-seq was used to characterize immune
cell populations [97]. Under homeostatic conditions in control
mouse sciatic nerve, immune populations comprised nerve-resident
homeostatic myeloid cells, which were transcriptionally distinct
from central nervous system microglia. In contrast, scRNA-seq
profiling of autoimmune neuritis sciatic nerve found that homeo-
static myeloid cells were outnumbered by infiltrating lymphocytes,
which restructured the local immune cell-to-cell interactome rather
than single immune cell types. This discovery suggests a potential
treatment targeting peripheral rather than resident lymphocytes or
a therapeutic approach disrupting the dysregulated immune net-
work, rather than specific immune populations.
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Thus, systems biology can lend insight into the pathogenesis of
various peripheral neuropathies, as attested by these two examples,
unlocking possible therapeutic avenues.

3 Central Neurodegenerative Diseases

The most common neurodegenerative disorders of the central
nervous system can be classified based on neuropathological pro-
tein aggregates, which cause nerve damage and neuronal loss.
Broadly, they encompass amyloidoses, tauopathies, synucleinopa-
thies, and TDP-43 proteinopathies, which occur in various brain
regions and lead to neuronal loss and subsequent loss of nervous
system function [98]. Most are incurable and treatment entails
symptom management and palliative care, although there are new
candidates in the preclinical and clinical pipeline [99, 100], such as
gene therapy [101].

3.1 Alzheimer’s

Disease

Alzheimer’s disease (AD) is the most common dementia, affecting
1 in 10 individuals 65 years and older [102]. In 2020, around 5.8
million people were living with AD in the USA, a number projected
to increase to 13.8 million by 2050. It is familial and heritable in
around 1–3% of cases, and sporadic in the other>95% [103]. AD is
slowly progressive, with a long prodromal phase, sequentially fol-
lowed by mild cognitive impairment, before frank mild, moderate,
and severe dementia [102]. Monogenic and polygenic AD risks
have been identified [104], as well as numerous modifiable
[105, 106] and potential exposome [107, 108] risks. AD histopa-
thology is defined by insoluble deposits of extracellular amyloid-β
and intracellular hyperphosphorylated tau protein with oligomeric
neurotoxic forms [109, 110]. Additionally, AD pathomechanisms
include metabolic [111–113] and mitochondrial [114] derange-
ments, protein aggregates [110], autophagy [115], neurotransmis-
sion breakdown [116], inflammation [117, 118], and oxidative
stress [119]. There is also a non–cell autonomous component,
and the brains’ resident immune cells, microglia, may actively par-
ticipate in AD pathogenesis [117, 118].

Systems biology has been widely used in AD research, for
instance through precision medicine by leveraging genetic variants
linked to neuroinflammation [120]. Herein, we will discuss four
vignettes from transcriptomic, proteomic, metabolomic, and meta-
genomic perspectives, which uncovered exciting research avenues.
Microglia and neuroinflammation have long been considered AD
hallmarks; however, microglia appear to adopt a protective role,
which ultimately fails, leading to neurodegeneration [118]. To
shed deeper insight, Keren-Shaul et al. leveraged scRNA-seq to
investigate microglia from transgenic AD mice with versus without
knockout of an immune cell receptor triggering receptor expressed
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on myeloid cells 2 (TREM2) [121]. TREM2 mutations signifi-
cantly increase the risk of AD [122]. Indeed, scRNA-seq identified
a microglia phenotype the authors referred to as “disease-associated
microglia” (DAM), which are activated in a sequential two-step
TREM2-independent and TREM2-dependent process
[121]. DAMs localize near and phagocytose amyloid plaques, slow-
ing disease progression. Thus, this analysis revealed heterogeneity
in microglia phenotypes [123], in addition to evolution of their
roles over time.

Bai et al. employed proteomics and phosphoproteomics of
autopsy brain samples from AD patients along a spectrum of disease
progression [124]. Mass spectrometry profiled 14,513 proteins
and 34,173 phosphoproteins, of which 173 candidates in 17 path-
ways correlated with AD progression. These hits were validated in
two independent cohorts, and comparison with cerebrospinal fluid
suggested possible biomarker candidates. A similar metabolomic
analysis in AD participants over time found correlations between
specific lipid species with disease progression, amyloid burden in
cerebrospinal fluid, and magnetic resonance imaging parameters
[125]. Finally, gut microbiome dysbiosis has also been linked to
neurodegenerative disease [126], although confounding para-
meters, such as diet, poses challenges. However, novel correlations
between metagenome and ketogenic diet with mild cognitive
impairment, a phase preceding frank dementia, suggests possible
lifestyle and dietary interventions for slowing cognitive decline in
AD [127, 128].

Thus, this overview exemplifies how systems biology can be
capitalized to generate pathophysiological insights, generate bio-
marker panels, and unlock novel and paradigm-shifting therapeutic
approaches in AD. The topic is discussed in greater detail in these
recent reviews [120, 126, 129–131].

3.2 Parkinson’s

Disease

Parkinson’s disease (PD) is a neurodegenerative disease character-
ized by dopaminergic neurons loss in the substantia nigra and a
classical motor deficit phenotype [132]. It is the second most
common neurodegenerative illness after AD, with 10–1500 preva-
lence per 100,000. However, clinical presentation is highly hetero-
geneous, and can also involve cognitive impairment, sleep, mood,
and psychiatric disorders, autonomic dysfunction, pain, and
fatigue. Monogenic [132] and polygenic [133–135] PD risks
have been identified, as well as numerous modifiable and potential
toxic environmental exposure risks [108, 132]. Histologically,
Lewy bodies of α-synuclein deposits are present in various areas of
the nervous system, which spread over the course of this slowly
progressive disease [136]. As with AD, and even with peripheral
neuropathies, such as metabolically acquired PN, mitochondrial
dysfunction, inflammation, and oxidative stress [132, 137], as
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well as protein aggregates and autophagy [115] are major patho-
logical aspects. Additionally, PD pathogenesis progresses in a non–
cell autonomous manner via astroglia [138].

As with AD, numerous system biology techniques have been
applied to investigate PD and usher in precision medicine [139]. Of
interest, lipid dysregulation has emerged as an important PD facet.
Although lipid dysregulation is linked to neurodegenerative disease
broadly, it has very direct links in PD through mutations to genes
involved in lipid metabolism, such as glucosylceramidase beta
(GBA), sphingomyelin phosphodiesterase 1 (SMPD1), galactosyl-
ceramidase (GALC), phospholipase A2 group VI (PLA2G6), and
sterol regulatory element binding transcription factor 1 (SREBF1)
[140]. Indeed, integrated proteomics/metabolomics and metabo-
lomics analysis of plasma from PD participants indicate lipid dysre-
gulation may also be key in sporadic cases [141, 142].

Metagenomic studies of PD have also been launched, due to
the presence of α-synuclein fibril accumulation in the gastrointesti-
nal tract [143], suggesting a possible causal relationship with
microbiome dysbiosis. 16S ribosomal RNA profiling found associa-
tions of PD with increased Akkermansia, an intestinal mucin layer-
degrading species, and decreased Roseburia and Faecalibacterium,
short-chain fatty acid-producing species.

Though not comprehensive, these sample studies illustrate
some applications of systems biology in PD, which are detailed
extensively in these recent reviews [126, 144–147].

4 Motor Neuron Diseases

Motor neuron diseases are a broad class of disorders secondary to
loss of motor neuron function in the brain and spinal cord. There
are multiple well-knownmonogenic motor neuron diseases, such as
spinal muscle atrophy; however, some, such as ALS, exhibit more
complex genetic architectures, with risk factors from interactions
with the exposome [148]. Like other neurodegenerative diseases of
the central nervous system, motor neuron diseases are heteroge-
neous in clinical presentation. Additionally, there is overlap
between motor neuron diseases and central neurodegenerative dis-
ease, such as ALS with frontotemporal dementia. Motor neuron
diseases are also mostly lacking effective therapies, although many
novel genetic approaches have recently emerged for monogenic
cases [149].

The most common motor neuron disease is ALS. The clinical
and molecular phenotype of ALS were outlined in the introduction
to this chapter. It is a relatively rare disease, with an incidence of 1–2
per 100,000 per year, but is becoming increasingly prevalent as the
population ages; ALS incidence is projected to rise by approx. 70%
by 2040 [150]. It has a long prodromal period, but is relatively
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rapidly progressive upon symptom onset and diagnosis, leading to
death within 2–4 years. Thus, this highly heterogeneous fatal dis-
ease lacks early diagnostics and is without effective treatments.
Numerous systems biology studies have been launched to address
this unmet medical need. These studies are uncovering molecular
pathways, to pinpoint actionable drug targets [151] and seek early
plasma diagnostic biomarkers [152] and modifiable environmental
risk factors [148], since certain environmental exposures increase
ALS risk.

4.1 What Is ALS

Pathophysiology?

Targeted molecular studies have identified important pathological
aspects in ALS, which are highly shared with central neurodegener-
ative diseases. In ALS, this includes altered TDP-43 protein aggre-
gates, autophagy, excitotoxicity, impaired metabolism,
dysfunctional mitochondria, inflammation, and oxidative stress
[27, 30, 153, 154]. Many studies have employed the mutant
superoxide dismutase 1 (SOD1) mouse model (SOD1G93A). How-
ever, mutant SOD1 is only present in around 12% of familial and
1–2% of sporadic ALS patients [5]. Thus, although the SOD1G93A

mouse recapitulates many ALS features, it is limited, as are other
genetic models, since only 15% of ALS cases have a known genetic
etiology. Therefore, systems biology approaches can help agnosti-
cally query pathophysiology in sporadic ALS, in addition to genetic
models (Fig. 4a).

Despite the breadth of identified genetic mutations
(ca. 40 known mutations) in 15% of ALS cases and the fact that
85% cases are sporadic, TAR DNA-binding protein 43 (TDP-43)
inclusion bodies are an almost universal finding in ALS histopathol-
ogy [3]. TDP-43 regulates transcription, pre-mRNA splicing, and
mRNA translation, as well as microRNA (miRNA) biosynthesis
[155, 156]. Therefore, many omics studies have concentrated on
dysregulation of the epigenome and transcriptome in ALS, includ-
ing miRNAs [18], which have been a significant focus. miRNAs are
short ~22 nucleotide-long noncoding RNAs, which degrade target
mRNAs, blocking their expression and downstream effects in ALS,
such as neuromuscular junction structure and function, neurogen-
esis, and inflammation [157].

Environmental exposure directly affects the cellular epigenome
reflected in altered DNA methylation and histone acetylation. We
investigated epigenetic regulation through DNA methylation in
postmortem spinal cord tissue from sporadic ALS participants
[158]. Global methylated (5mC) and hydroxymethylated (5hmC)
cytosine were elevated in ALS spinal cord versus controls, indicat-
ing epigenome dysregulation. When we examined DEGs and dif-
ferentially methylated genes by microarray, we found 251 shared
hits, of which ~70% were hypermethylated, as aligned with global
5mC. Of 251, 112 were concordant, that is, hypomethylated/
upregulated (51 genes) or hypermethylated/downregulated
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(61 genes), and were enriched in biological pathways related to
immune response, defense response, neuron adhesion, and plasma
membrane part. Importantly, of the 112 candidates, 53 genes were
cited at least once in PubMed, demonstrating the power of systems
biology in one experiment to identify candidates from multiple
publications. Our results additionally suggested myeloid or natural
killer cell influx into ALS spinal cord, aligned with our findings in
ALS participant blood samples [13, 15, 16].

Fig. 4 Select systems biology applications to amyotrophic lateral sclerosis. Systems biology has manifold
applications to address unmet medical needs for amyotrophic lateral sclerosis (ALS). Biosamples that can be
analyzed include (left to right) blood, plasma, cerebrospinal fluid from consented participants, as well as
postmortem spinal cord tissue. Biosamples from animal models can also be analyzed. Omics platforms
include genomics (mutations, monogenic or polygenic, which correlate with ALS risk), epigenomics (DNA
methylation, microRNA), transcriptomics (mRNA, long noncoding RNAs), proteomics (including phosphopro-
teins), and metabolomics and lipidomics. (a) What is ALS pathophysiology? Systems biology, by Omics
analysis of ALS biosamples, can uncover pathomechanisms, which can suggest therapeutic avenues. In
ALS, this includes altered mitochondrial and lipid metabolism (shown; AC, acylcarnitines; DAGs, diacylglycer-
ols as examples), among other pathways (not shown). (b) Can we identify early ALS diagnostic biomarkers?
ALS diagnoses are preceded by a long subclinical prodromal phase. Treatment may be more effective if
initiated early; thus, systems biology, by omics analysis of ALS biosamples, can help by identifying early
disease biomarkers using classifiers, shown for a receiver operating characteristic curve. (c) Can we define
the ALS exposome? Systems biology can uncover environmental toxicants, which increase ALS risk,
suggesting possible modifiable avenues. Examples include air pollution (PM2.5, particulate matter 2.5 μm),
metals, microbiome, POPs (persistent organic pollutants), pesticides, and fertilizer. This cumulative exposome
over time interacts with genetic predisposition (polygenic risk), to alter ALS patient epigenome, transcriptome,
proteome, and metabolome/lipidome, leading to disease onset and progression. (Created, in part, with
BioRender.com)
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We also analyzed miRNAs in sporadic ALS spinal cord by array
profiling [20]. Globally, we saw reduced mature species levels, but
no differences in immature transcripts, in ALS versus control,
indicating impaired miRNA processing, which may be linked to
TDP-43 lesions. Indeed, TDP-43 mislocalization to the cytoplasm
alters miRNA profiles [19]. In sum, there were 90 differential
miRNAs in ALS spinal cord versus control, 88 down- and 2 upre-
gulated, which are annotated for pathways related to cell death,
immune response, and brain development [20]. Enrichment analy-
sis of biological functions of target mRNAs, both known and
putative, corroborated immune and defense response, highlighting
immune involvement in ALS [12].

In an exciting transcriptomic application, Maniatis et al. con-
ducted spatiotemporal RNA profiling in spinal cord from
SOD1G93A versus wild-type SOD1 mice at presymptomatic,
onset, symptomatic, and end-stage time points to investigate the
mechanism of “spread” in ALS neurodegeneration [23]. They
found that microglial dysfunction preceded symptom onset and
astroglial dysfunction in ALS, which occurred proximally to
motor neurons. To complement their mouse work, they conducted
a parallel analysis in human cervical and lumbar spinal cord tissue
from sporadic ALS patients with bulbar (n ¼ 4) and lower limb
(n ¼ 3) onset disease. As in mice, transcriptomic dysregulation was
more pronounced near the site of symptom onset. Pathway analysis
identified numerous biological processes, among them “ECM
(extracellular matrix)–receptor interaction,” “cell adhesion mole-
cules,” “axon guidance,” and multiple immune “cytokine–cytokine
receptor interaction,” “chemokine signaling pathway,” and “com-
plement and coagulation cascades” in mouse and/or human, in
alignment with our transcriptomics findings. Additionally, several
metabolic pathways emerged, including “sphingolipid signaling
pathway,” “cholesterol metabolism,” and “phosphatidylinositol
signaling system.” Indeed, impaired metabolism is an ALS hallmark
and correlates with changes in basal metabolic rates in ALS
cases [27].

Thus, we have also conducted a metabolomics analysis of ALS
participant plasma versus controls [25]. Metabolites represent the
cumulative effect of genetics, epigenetics, transcriptomics, and
proteomics regulation, and also lend insight on potential environ-
mental exposure through xenobiotics. Pathway analysis demon-
strated that impaired lipid metabolism was a strong undercurrent
in ALS, especially in complex “sphingomyelins,” “ceramides,” and
“hexosylceramides” and β-oxidation intermediate “fatty acid
metabolism (acyl carnitine, polyunsaturated)” species. Additionally,
“creatine metabolism” was a top pathway, but is likely secondary to
muscle wasting in ALS, as was xenobiotics “benzoate metabolism.”

Moving forward, these studies will need validation in indepen-
dent ALS cohorts and longitudinal profiling. However, they
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underscore the ability of systems biology for putting into focus
possible pathways, which may lead to therapeutic developments.
Additionally, corroboration in model systems will be required to
establish causality of any putative candidates.

4.2 Can We Identify

Early ALS Diagnostic

Biomarkers?

Although ALS lacks effective treatment, earlier intervention may
help outcomes [159]. Unfortunately, ALS patients are generally
diagnosed after symptom onset, sometimes even months following
the initial symptoms. Therefore, earlier diagnosis could benefit
patients if they can access treatment earlier. Along these lines,
numerous studies have assessed potential ALS biomarkers in acces-
sible biofluids, either cerebrospinal fluid or blood/plasma (Fig. 4b)
[152]. Among candidates are neurofilament proteins, inflamma-
tory molecules, and cystatin C, as well as molecules related to
protein aggregates (TDP-43, SOD1) and genetic mutations
(C9orf72 dipeptide repeats). Omics can also be employed to iden-
tify miRNA biomarkers; however, there is no consensus on a diag-
nostic miRNA panel, although manifold investigations have
identified differential miRNAs in heredity and sporadic ALS versus
healthy controls [22]. Metabolomics has similarly been proposed as
a diagnostic toll; yet, again there is no consensus on a diagnostic
metabolite panel, although altered lipid metabolism is a recurrent
theme [25].

Most omics investigations of ALS biofluids have shared the
same weakness, namely, that analyses were performed on samples
from patients that had already developed symptoms and been diag-
nosed with ALS. One notable exception is a plasma metabolomics
investigation by Bjornevik et al. of 5 large cohorts comprising over
318,000 participants with banked blood samples [160]. Partici-
pants that developed ALS after their blood sample had been banked
were identified (n ¼ 275), consented, and enrolled in the metabo-
lomics analysis against matched controls (n ¼ 549). The study
found 31 differential metabolites in ALS versus controls, including
many lipid species spanning diacylglycerols, triacylglycerols, phos-
phatidylcholines, cholesteryl ester, and sphingomyelin, as we had
observed [25]. When participants were stratified by time of blood
draw, there were 63 and 41 differential metabolites in samples
collected less or more than 5 years, respectively, from the time of
ALS diagnosis [160]. However, none of these metabolites
remained significant after accounting for multiple comparisons,
although penalized regression methods (lasso and elastic net) iden-
tified several metabolites, frequently lipids, which predicted ALS
with moderate areas under the curve values ranging from 0.58 to
0.74. The authors suggested several study weaknesses, among them
the large number of detected metabolites (n ¼ 404) versus the
relatively smaller sample size (n ¼ 275), which limited statistical
power. However, the study does illustrate a way forward for lever-
aging Omics to identify early ALS biomarkers, though the rarity of
ALS poses significant challenges.
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4.3 Can We Define

the ALS Exposome?

There are well-documented ALS mutations [5]; however, the vast
majority of ALS cases lack a known genetic etiology, despite numer-
ous genome-wide association studies, whole genome studies, and
exome sequencing studies. This has led to the emergence of the
gene–time–environment hypothesis of ALS, which posits that
cumulative environmental toxic exposures over time superimposes
on genetic susceptibility to trigger disease onset and progression
[11]. Thus, there has been significant interest in defining the ALS
exposome, the collective of environmental exposures, which
increases risk of disease (Fig. 4c) [148]. Indeed, our targeted
environmental studies of potential environmental toxicants indi-
cated a risk of ALS from pesticide, fertilizer, and persistent environ-
mental pollutant exposures [8–10]. In our analysis of metals in
teeth from ALS versus controls, we used laser ablation–inductively
coupled plasma mass spectrometry to assess early exposure to
metals [161]. Metal levels were elevated in cases versus controls,
after adjusting for sex, smoking, occupational exposures, and ALS
family history, findings corroborated for copper in teeth from
SOD1G93A mice [162].

Exposome studies of ALS remain in the nascent stages. How-
ever, a high-profile metagenomic study in SOD1G93A versus wild-
type SOD1mice provided important insight on a possible causative
role of gut microbiome on disease progression [163]. Longitudinal
analysis revealed early gut dysbiosis occurred in ALS versus healthy
mice, which centered around multiple species. Honing in on
11 candidates, Blacher et al. decolonized the gastrointestinal tract
of SOD1G93A mice with antibiotics and inoculated mice individu-
ally with each of these focused species. Remarkably, inoculating
SOD1G93A mice with Akkermansia muciniphila slowed disease
progression and significantly increased survival. In addition to pin-
pointing the microbial species associated with disease severity,
Omics (metabolomics) also elucidated a possible mechanism by
identifying pathways centered on nicotinamide metabolism. Similar
findings were corroborated in human ALS participants, whose
microbiome could be differentiated from healthy controls by prin-
cipal coordinate analysis, as were serum and cerebrospinal fluid
analyses of nicotinamide levels. We have also conducted longitudi-
nal microbiome investigations of SOD1G93A mice, similarly observ-
ing early gut dysbiosis, including of Akkermansia muciniphila
[164]. Furthermore, gut dysbiosis correlated with immune cell
infiltration into the brain and spinal cord.

Thus, systems biology can uncover how the exposome can
exert an influence on ALS progression, with examples through
the microbiome. However, broader studies involving additional
candidate environmental pollutants, for example, air pollution,
untargeted pollutant detection, are needed to fully define the ALS
exposome.
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5 Conclusions and Future Directions

In this chapter, we illuminated several recent studies, which
employed systems biology in neurological disease for multifactorial
goals, spanning pathophysiology, treatment response, therapeutic
candidate identification, biomarker discovery, and exposome
research. These studies demonstrate the ability of systems biology
for advancing our understanding of neurologic diseases and suggest
prospects for drug development, which is especially crucial since
most diseases lack effective treatments.

Critically, more longitudinal studies are needed to identify the
earliest pathological changes, which would allow therapeutic tar-
geting of upstream events for disease-modifying treatments, rather
than downstream events (palliative care) (Fig. 5a). This is challeng-
ing in human studies, especially during the prodromal phase [160],
but can be readily accomplished in animal models [23, 163,
164]. Although the field of neurology is adopting these powerful
Omics platforms, it lags behind the field of oncology, for example;
however, it also ushers in the opportunity to learn from cancer
research, clinical trials, and precision medicine for adoption in
neurology. For example, Omics profiling has become well-
entrenched in cancer research, where individuals with cancer are
assigned specific treatments based on identified tumor mutations,
and also participate in multiple novel clinical trials [165], a practice
which could be adopted in neurological diseases, including the use
of basket and umbrella trials (Fig. 5b). Indeed, investigators are
implementing newer clinical trial designs, such as platform trials,
for neurological diseases [166, 167], though this is lagging behind
oncology trials.

Omics/multiomics profiling can be employed to develop
molecular-based, rather than phenotype-based, diagnostic criteria
and treatment selection for neurological illnesses (Fig. 5c).
Although there are robust molecular tests for inherited PN, molec-
ular tests for other neurological diseases, for example C9orf72
expansion in ALS, could also have diagnostic and treatment related
implications. For instance, rather than bulbar versus spinal onset
ALS, a molecular classification might additionally provide guide-
lines for future targeted treatment. This also includes generating
molecular insight into idiopathic and sporadic neurological dis-
eases. Finally, earlier studies during prodromal phases are needed
to develop biomarkers or biomarker panels for early diagnostics of
neurological illnesses (Fig. 5d). Omics/multiomics could bring the
promise of precision medicine to bear in neurological diseases by
matching patient profiles to approved drugs likely to be effective,
for example, pain medications for painful PN (Fig. 5d). Thus,
systems biology applications in neurological illnesses has a track
record of success and a bright future for novel upcoming directions.
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INTRODUC TION

Neuropathy is a highly prevalent condition that results in pain, falls, 
and lower quality of life (1). Although diabetes has long been known 
to be the leading cause of neuropathy (2– 4), obesity has recently 

emerged as an important risk factor (5– 14). Furthermore, obesity 
is likely sufficient to cause neuropathy even in those with normal 
glucose control (7,9). In addition to hyperglycemia and obesity, 
other individual components of metabolic syndrome (hyperten-
sion, hypertriglyceridemia, and low high- density lipoprotein [HDL] 

Received: 17 March 2021  | Revised: 5 May 2021  | Accepted: 30 May 2021

DOI: 10.1002/oby.23246  

O R I G I N A L  A R T I C L E

E p i d e m i o l o g y / G e n e t i c s

Dietary weight loss in people with severe obesity stabilizes 
neuropathy and improves symptomatology

Brian C. Callaghan1  |   Evan L. Reynolds1 |   Mousumi Banerjee2 |   Gulcin Akinci1,3  |   
Ericka Chant1 |   Emily Villegas- Umana1 |   Amy E. Rothberg4 |   Charles F. Burant4 |    
Eva L. Feldman1

See Commentary, pg. 1990 (Dietary management of obesity- associated neuropathy: implications for clinical practice and trial design).  

1Department of Neurology, University of 
Michigan, Ann Arbor, Michigan, USA
2School of Public Health, University of 
Michigan, Ann Arbor, Michigan, USA
3Division of Pediatric Neurology, Dr. 
Behcet Uz Children's Hospital, Izmir, 
Turkey
4Division of Metabolism, Endocrinology, 
and Diabetes, Department of Medicine, 
University of Michigan, Ann Arbor, 
Michigan, USA

Correspondence
Brian Callaghan, University of Michigan, 
109 Zina Pitcher Place, 4021 Biomedical 
Science Research Bldg., Ann Arbor, MI 
48104, USA.
Email: bcallagh@med.umich.edu

Funding information
This project was was supported by a NIH 
K23 grant (NS079417). BCC is currently 
funded by a NIH NIDDK R- 01 award 
(DK115687). ELR is supported by NIH 
T32 (NS0007222). ELF was supported by 
an NIH NIDDK DP3 award (DK094292) 
and is currently funded by NIH NIDDK 
(R24082841 and R21 NS102924) and the 
Novo Nordisk Foundation Center for Basic 
Metabolic Research (NNF14°C0011633). 
BCC, ELR, and ELF receive support 
from the NeuroNetwork for Emerging 
Therapies and the A. Alfred Taubman 
Research Institute at the University of 
Michigan.

Abstract
Objective: The aim of this study was to determine the effect of dietary weight loss on 
neuropathy outcomes in people with severe obesity.
Methods: A prospective cohort study of participants attending a medical weight- 
management program was followed. Weight loss was achieved with meal replacement 
of 800 kcal/d for 12 weeks and then transitioning to 1,200 to 1,500 kcal/d. The co-
primary outcomes were changes in intraepidermal nerve fiber density (IENFD) at the 
distal leg and proximal thigh. Secondary outcomes included nerve conduction studies, 
Michigan Neuropathy Screening Instrument questionnaire and exam, Quality of Life 
in Neurological Disorders, and quantitative sensory testing.
Results: Among 131 baseline participants, 72 (mean [SD] age: 50.1 [10.5] years, 51.4% 
female) completed 2 years of follow- up. Participants lost 12.4 (11.8) kg. All metabolic 
syndrome components improved with the exception of blood pressure. IENFD in the 
distal leg (0.4 [3.3], p = 0.29), and proximal thigh (0.3 [6.3], p = 0.74) did not signifi-
cantly change. Improvements were observed on the Michigan Neuropathy Screening 
Instrument questionnaire, two Quality of Life in Neurological Disorders subdomains, 
and quantitative sensory testing cold threshold.
Conclusions: Dietary weight loss was associated with improvements in all metabolic 
parameters except blood pressure, and both IENFD outcomes remained stable after 2 
years. Given that natural history studies reveal decreases in IENFD over time, dietary 
weight loss may halt this progression, but randomized controlled trials are needed.
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cholesterol) have also been shown to be associated with neuropathy 
(13). Unfortunately, despite multiple potentially modifiable risk fac-
tors, the only established disease- modifying therapy for neuropathy 
is glycemic control, which prevents neuropathy to a much larger de-
gree in type 1 than in type 2 diabetes (14). We contend that newer 
interventions are needed to treat and prevent neuropathy.

Few studies, to our knowledge, have evaluated the effects of 
weight loss on neuropathy. Two uncontrolled studies have shown 
the potential for lifestyle interventions to improve neuropathy, 
but both primarily focused on exercise with only minimal weight 
loss (15,16). The most rigorous investigation to date, the Action for 
Health in Diabetes (Look AHEAD) study, randomized 5,145 par-
ticipants with diabetes to 9 to 11 years of a lifestyle intervention 
designed to achieve and maintain weight loss compared with a dia-
betes support group (17). They found that the Michigan Neuropathy 
Screening Instrument (MNSI) questionnaire, but not the examination 
score, improved in those in the lifestyle intervention group, and that 
changes in weight, hemoglobin A1c (HbA1c), HDL cholesterol, and 
triglycerides were associated with changes in the MNSI question-
naire. No studies, to our knowledge, have investigated the effects 
of significant dietary weight loss on neuropathy outcomes in pop-
ulations without diabetes or used the best quantitative measure of 
small fiber nerve injury, intraepidermal nerve fiber density (IENFD), 
as the primary outcome.

In a population with obesity with and without diabetes, we 
aimed to determine the effects of 2 years of a dietary weight- loss 
intervention on extensive neuropathy outcomes with the coprimary 
outcomes defined as IENFD at the distal leg and proximal thigh.

METHODS

Population

From November 2010 to December 2014, we recruited partici-
pants with obesity attending the University of Michigan Weight 
Management Program and followed them for 2 years after start-
ing a dietary weight- loss intervention. Inclusion criteria included 
being aged 18 years or older and having BMI ≥ 35 kg/m2 or ≥ 32 
kg/m2 if they had one or more comorbidities (18). The interven-
tion consisted of a very low- energy diet in the form of liquid meal 
replacement plus 2 cups of nonstarchy vegetables (~800 kcal/d) for 
approximately 12 weeks to promote a 15% weight reduction from 
the pre- dietary intervention weight. Participants were then slowly 
transitioned to a 1,000-  to 1,200- kcal/d partial meal replacement 
diet until their desired weight loss was achieved. This consisted of 
three replacement products and 400 kcal of conventional food, 
consisting of half a plate of nonstarchy vegetables, 3 to 4 oz of 
lean protein, and half a cup of whole grain or fruit. Participants 
were counseled to perform 40 min/d of moderate activity includ-
ing cardio and light strength training during the initial intensive di-
etary phase and then 60 min/d during the weight- loss maintenance 
phase.

This study was approved by the University of Michigan Institutional 
Review Board and registered on ClinicalTrials.gov (NCT02043457), 
and all participants signed informed consent documents.

Metabolic phenotyping

Participants underwent glucose tolerance testing (except those with 
a previous diagnosis of diabetes) and a fasting lipid panel at base-
line and after 2 years. Participants also had blood pressure, height, 
weight, waist circumference, and BMI measurements taken monthly 

Study Importance

What is already known?

► Obesity is a consistent risk factor for neuropathy across
many studies in different populations around the world.

► Metabolic syndrome and its individual components are
also associated with neuropathy.

► Dietary weight loss has been demonstrated to improve
questionnaire assessments of neuropathy in patients
with diabetes but not in patients without diabetes, and
no studies, to our knowledge, have used more compre-
hensive neuropathy phenotyping.

What does this study add?

► After 2 years, successful dietary weight loss in those
with severe obesity leads to stable neuropathy as meas-
ured by our primary outcome (intraepidermal nerve
fiber density).

► Successful dietary weight loss leads to improvements in
secondary outcomes such as the Michigan Neuropathy
Screening Instrument questionnaire, two Quality of Life 
in Neurological Disorders subdomains, and quantitative
sensory testing cold threshold.

► Dietary weight loss also leads to stable cardiovascular
autonomic neuropathy.

How might these results change the direction of 
research or the focus of clinical practice?

► Future randomized clinical trials are needed to confirm
that dietary weight loss can stabilize neuropathy.

► If successful, dietary weight loss would become the sec-
ond disease- modifying therapy for neuropathy along
with glycemic control.

► Furthermore, studies are needed to compare the effec-
tiveness of dietary weight loss, surgical weight loss, and
exercise to allow clinicians to focus on the best inter-
vention to prevent neuropathy.
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throughout the study. Participants with diabetes also had a HbA1c test. 
Diabetes and prediabetes were defined at baseline and after 2 years 
using HbA1c and glucose tolerance testing, according to the American 
Diabetes Association (19).

Polyneuropathy definition (primary outcome)

Our coprimary outcome measures were the IENFD measured at the 
distal leg and proximal thigh. IENFD was evaluated using bright- field 
immunohistochemistry using an established protocol (20).

Secondary neuropathy outcomes

Our secondary outcome measures included 17 nerve conduction study 
(NCS) parameters from six different nerves (sural sensory, median sen-
sory, ulnar sensory, peroneal motor, tibial motor, and median motor). 
NCS was performed using Viking on the Nicolet EDX electrodiagnostic 
system (CareFusion, San Diego, California). The MNSI questionnaire and 
examination (performed by a neuromuscular specialist) were completed 
as previously described (21). Quantitative sensory testing (QST) meas-
urements of vibration and cold detection thresholds were performed 
using the Computer Aided Sensory Evaluator (CASE) IV (WR Medical 
Electronics Co., Maplewood, Minnesota). Quantitative sudomotor axon 
reflex testing (QSART) measurements were performed at the foot, dis-
tal leg, proximal leg, and arm using the Q- Sweat quantitative sweat 
measurement system (WR Medical Electronics). Monofilament testing 
was performed with a Semmes- Weinstein 5.07/10- g monofilament on 
the dorsum of the dominant great toe. Monofilament testing was nor-
mal if the participant felt eight or more out of ten responses, reduced 
for one to seven responses, and absent for zero responses. Clinical 
neuropathy was defined using the Toronto Consensus definition of 
probable polyneuropathy, which requires two or more of the following: 
neuropathy symptoms, abnormal sensory examination, and abnormal 
reflexes as determined by one of four neuromuscular specialists (22).

Patient- oriented neuropathy outcomes

The validated Quality of Life in Neurological Disorders (Neuro- QoL) 
instrument was used to measure neuropathy- specific quality of life, 
with higher numbers reflecting a worse quality of life (23). The vali-
dated short- form McGill Pain Questionnaire was employed to meas-
ure pain with a visual analog scale, a six- point rating scale of present 
pain intensity (PPI) score, and a four- point rating scale of 15 different 
neuropathic pain descriptors (McGill Pain score) (24).

Cardiovascular autonomic neuropathy outcomes

All cardiovascular autonomic neuropathy (CAN) tests were per-
formed using the ANX 3.0 device (The Ansar Group, Inc., Philadelphia, 

Pennsylvania). Outcomes included three cardiovascular reflex tests 
(expiration to inspiration [E:I] ratio, 30:15 ratio, and the average of two 
Valsalva ratios), which are associated with mortality (25) and are con-
sidered the gold standard tests for autonomic neuropathy (26). Other 
measurements that were recorded included the resting median heart 
rate, frequency- domain measures (low- frequency area [LFA, measure 
of sympathetic activity], respiratory frequency area [RFA, measure 
of parasympathetic activity], and LFA/RFA [measure of sympathova-
gal balance]), time- domain measures (standard deviation [SD] of the 
normal- to- normal interval [sdNN]), and root mean square of succes-
sive differences of the normal- to- normal interval (rmsSD).

Statistical analysis

Descriptive statistics were used to characterize participants in terms 
of demographics, metabolic phenotyping, and neuropathy outcomes 
at baseline and after 2 years of follow- up. For continuous measure-
ments, we determined the within- participant change during the 
study by subtracting baseline measurements from measurements 
taken after 2 years of follow- up.

We compared demographic information between participants 
who completed follow- up and those who did not using two- sample t 
tests for continuous covariates and Pearson χ2 tests or Fisher exact
tests for categorical covariates. Paired t tests were used to compare 
within- patient differences in continuous metabolic factors and all 
outcomes during follow- up. For ordinal outcomes, the Wilcoxon 
signed rank test was used to determine within- patient change during 
follow- up.

All analyses were completed using R version 3.4.2 (R Foundation, 
Vienna, Austria).

RESULTS

Population

During recruitment, the University of Michigan Weight 
Management Program enrolled 532 participants, including 394 
who consented to be contacted about research studies and 131 
who consented to our study. Of the 131 participants who com-
pleted baseline assessments, 72 completed assessments at 2 
years. Reasons for attrition included the following: 16 participants 
decided to opt out of the study, 2 moved out of state, 1 died, 30 
did not respond to multiple contacts, and 10 stopped participa-
tion for unclear reasons. Of the 59 who did not complete the neu-
ropathy outcomes, 12 completed 2 years of follow- up with the 
weight- management program but did not want to complete the 
neuropathy outcomes. Of the remaining patients, median (inter-
quartile range) follow- up in the weight- management clinic was 370 
days (179- 528 days).

Several outcome variables had missing information at baseline (V1) 
or at 2 years (V2): IENFD leg (V1:1,V2:6); IENFD thigh (V1:1,V2:8); 
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NCS parameters, including sural (V1:1), peroneal F wave (V2:1), 
median motor F wave (V2:2), and median motor conduction veloc-
ity (V2:1); QST cold threshold (V1:2, V2:2); QST vibration threshold 
(V1:1,V2:1); QSART parameters, including arm (V1:2,V2:3), proximal 
leg (V1:1,V2:7), distal leg (V1:1,V2:2), and proximal foot (V1:3,V2:4); 
MNSI questionnaire (V2:1); monofilament (V2:1); Neuro- QoL param-
eters, including social (V2:1), emotional (V2:1), and total (V2:2); CAN 
measures including E:I ratio (V2:2), 30:15 ratio (V1:1,V2:4), Valsalva 
ratio (V1:1,V2:3), RFA (V2:2), LFA (V2:2), sdNN (V2:2), rmsSD (V2:2), 
and resting median heart rate (V2:2); waist circumference (V2:7); tri-
glycerides (V1:1,V2:7); HDL cholesterol (V1:1, V2:7); low- density lipo-
protein (LDL) cholesterol (V1:2,V2:7); and fasting glucose (V1:12,V2:8). 

All patients had at least one measure of glycemic status at baseline, 
but three patients had no measure of glycemic status at 2 years.

Among those with complete follow- up, 19 (26.4%) had clinical 
neuropathy at baseline, and 14 (19.4%) had clinical neuropathy after 
2 years. No difference in the dropout rate between those with and 
without neuropathy at baseline was observed (p = 0.4).

Demographics

At baseline, the mean (SD) age was 49.1 (10.6) years, and 55.0% 
of participants were female (Table 1). No significant demographic 

TA B L E  1  Demographics of primary cohort and those lost during follow- up

All participants (n = 131) Completed follow- up (n = 72) Lost to follow- up (n = 59) p value

Age, mean (SD) 49.1 (10.6) 50.2 (10.2) 47.8 (11.0) 0.19

Sex, n (%) female 72 (55.0%) 37 (51.4%) 35 (59.3%) 0.47

Race, n (%) 0.59

Asian 1 (0.8%) 0 (0.0%) 1 (1.7%)

Black 10 (7.6%) 7 (9.7%) 3 (5.1%)

White 118 (90.1%) 64 (88.9%) 54 (91.5%)

Unknown 2 (1.5%) 1 (1.4%) 1 (1.7%)

Ethnicity, n (%)

Hispanic/Latino 2 (1.5%) 1 (1.4%) 1 (1.7%) 1

Smoking status, n (%) 0.39

Current smoker 3 (2.3%) 3 (4.2%) 0 (0.0%)

Ex- smoker 42 (32.6%) 22 (31.0%) 20 (34.5%)

Never smoker 84 (65.1%) 46 (64.8%) 38 (65.5%)

Marital status, n (%) 0.52

Divorced 7 (5.6%) 4 (5.9%) 3 (5.3%)

Married 94 (75.2%) 53 (77.9%) 41 (71.9%)

Single 21 (16.8%) 11 (16.2%) 10 (17.5%)

Separated 2 (1.6%) 0 (0.0%) 2 (3.5%)

Widowed 1 (0.8%) 0 (0.0%) 1 (1.8%)

Education, n (%) 0.09

Professional or graduate degree 51 (39.2%) 33 (45.8%) 18 (31.0%)

College degree 54 (41.5%) 25 (34.7%) 29 (50.0%)

Some college or vocational college 23 (17.7%) 14 (19.4%) 9 (15.5%)

High school or less 2 (1.5%) 0 (0.0%) 2 (3.4%)

Employment status, n (%) 0.03

Employed 101 (77.7%) 50 (69.4%) 51 (87.9%)

Retired 19 (14.6%) 16 (22.2%) 3 (5.2%)

Seeking work 2 (1.5%) 1 (1.4%) 1 (1.7%)

Keeping house 4 (3.1%) 2 (2.8%) 2 (3.5%)

Other 4 (3.1%) 3 (4.2%) 1 (1.7%)

Insurance, n (%) 0.59

Blue Care Network (HMO) 77 (59.7%) 41 (56.9%) 36 (63.2%)

Other 52 (40.3%) 31 (43.1%) 21 (36.8%)

Abbreviation: HMO, health maintenance organization.
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differences were observed between those who completed follow-
 up compared with those who did not, with the exception of employ-
ment status (69.4% vs. 87.9%, p = 0.03).

Change in metabolic risk factors

With the exception of systolic blood pressure and LDL cholesterol, 
all metabolic parameters significantly changed after 2 years (Table 2). 
Among those with complete follow- up, 22.2% had diabetes, 37.5% 
had prediabetes, and 40.3% had normoglycemia at baseline. After 
2 years, 14.7% had diabetes, 27.9% had prediabetes, and 57.4% had 
normoglycemia (p < 0.01). The median (interquartile range) weight 
loss comparing baseline with the end of the study was 5.5% (5.0%- 
14.7%) (Figure 1). At maximum weight loss, participants had lost 16.4% 
(13.0%- 22.4%) of their weight. Comparing minimum weight to the end 
of the study, participants regained 8.5% (5.4%- 13.9%) of their weight.

Change in coprimary outcomes

IENFD did not change significantly in the distal leg (0.4 [3.3] fibers/
mm, p = 0.29) or proximal thigh (0.3 [6.3] fibers/mm, p = 0.74) after 
2 years (Figure 2).

Change in secondary neuropathy outcomes

Of the 17 NCS parameters, significant changes were observed only 
in the ulnar sensory peak latency (0.1 [0.4] milliseconds, p < 0.01) and 
median sensory peak latency (0.2 [0.4] milliseconds, p < 0.01), which 
both worsened after 2 years (Table 3). The MNSI questionnaire (−0.6 

[1.4], p < 0.01) improved, but there were no significant changes in 
the MNSI examination (0.04 [1.2], p = 0.76). The QST cold threshold 
(−2.0 [4.9] just noticeable difference, p < 0.01) improved, but there 
was no change in the QST vibration threshold (0.2 [4.2] just notice-
able difference, p = 0.77). Monofilament and QSART measures were 
unchanged.

Change in patient- oriented neuropathy outcomes

The Neuro- QoL (−0.3 [1.4], p = 0.06), visual analog scale pain scores 
(−1.8 [29.3] mm, p = 0.60), McGill Pain scores (−0.8 [4.7], p = 0.15), 
and PPI (17.1% worsened, 12.9% improved, p = 0.75) were un-
changed after 2 years (Table 3). However, the Neuro- QoL subdo-
mains of pain (−0.4 [1.1], p = 0.01) and emotion (−0.7 [2.2], p = 0.01) 
were improved.

Change in CAN outcomes

No significant changes were seen in any of the CAN outcomes, in-
cluding E:I ratio, 30:15 ratio, Valsalva ratio, RFA, LFA, RFA/LFA ratio, 
sdNN, rmsSD, or resting median heart rate (Table 3).

DISCUSSION

A successful dietary weight- loss intervention in those with severe 
obesity was associated with no change in our coprimary neurop-
athy outcomes (IENFD of the distal leg and proximal thigh). This 
sharply contrasts with the natural history of IENFD decline in those 
with small fiber neuropathy of any cause, including prediabetes 

TA B L E  2  Change in metabolic factors after dietary weight- loss intervention

Baseline 2- year follow- up Change
p value 
(paired t test)

Weight (kg) 120.7 (23.0) 108.3 (22.3) −12.4 (11.8) <0.01

Height (cm) 171.7 (10.3) 171.8 (10.4) 0.1 (3.1) 0.86

BMI 40.8 (6.0) 36.5 (5.8) −4.3 (3.8) <0.01

Waist circumference (cm) 123.1 (15.0) 114.7 (15.7) −9.0 (9.7) <0.01

Systolic blood pressure (mmHg) 126.4 (11.0) 126.9 (13.9) 0.5 (12.5) 0.74

Diastolic blood pressure (mmHg) 64.4 (7.3) 68.2 (9.0) 3.8 (9.0) <0.01

Triglycerides (mg/dL) 153.4 (78.3) 127.8 (65.1) −27.1 (55.6) <0.01

HDL (mg/dL) 45.3 (11.1) 51.0 (11.5) 5.2 (7.9) <0.01

LDL (mg/dL) 97.5 (23.6) 98.1 (28.0) 1.1 (18.4) 0.64

Cholesterol (mg/dL) 172.2 (30.0) 174.6 (33.9) 0.7 (25.1) 0.83

Fasting glucose (mg/dL) 101.7 (23.9) 99.3 (23.6) −7.5 (22.9) 0.02

2- hour glucose (mg/dL) 134.8 (57.3) 110.9 (34.4) −21.8 (43.5) <0.01

HbA1c (%) 6.0 (0.9) 5.8 (0.7) −0.3 (0.6) 0.01

Data given as mean (SD).
Abbreviations: HbA1c, hemoglobin A1c; HDL, high- density lipoprotein; LDL, low- density lipoprotein.
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and diabetes (27), but it is not as impressive as the improvements 
that have been reported with exercise intervention studies 
(15,16,28,29). Importantly, the natural history of IENFD decline in 
populations with obesity is unknown. Some secondary outcomes 
revealed improvements, specifically the MNSI questionnaire, QST 
cold threshold, and two subdomains of the Neuro- QoL, but NCS 
parameters and other secondary outcomes remained unchanged. 
Similar to neuropathy outcomes, CAN measures were also stable 
after 2 years.

This study is the second, to our knowledge, to evaluate the ef-
fects of a lifestyle intervention that was focused on dietary weight 
loss on neuropathy outcomes. The Look AHEAD study random-
ized more than 5,000 participants who had type 2 diabetes and 
overweight or obesity to a dietary weight- loss intervention for 9 
to 11 years (17). Our study is complementary in that we were able 
to study a population with obesity that included those with nor-
moglycemia and prediabetes in addition to those with diabetes. 
We also performed much more detailed neuropathy phenotyping. 

F I G U R E  2  Change in IENFD (primary outcome) of the distal leg and proximal thigh after 2 years of a dietary weight- loss intervention. 
IENFD, intraepidermal nerve fiber density

F I G U R E  1  Change in obesity measures over 2 years. Longitudinal measures of waist circumference (A) and weight (B) during 2 years of 
follow- up after a dietary weight- loss intervention [Color figure can be viewed at wileyonlinelibrary.com]
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TA B L E  3  Changes in outcomes following weight loss

Baseline 2- year follow- up Change
p value 
(paired t test)

Neuropathy outcomes

IENFD leg (fibers/mm) 4.1 (2.5) 4.6 (3.0) 0.4 (3.3) 0.29

IENFD thigh (fibers/mm) 9.4 (4.6) 9.7 (4.8) 0.3 (6.3) 0.74

NCS outcomes

Ulnar peak latency (ms) 3.4 (0.4) 3.5 (0.4) 0.1 (0.4) <0.01

Ulnar amplitude (µV) 28.0 (13.9) 25.0 (12.7) −3.0 (12.5) 0.05

Peroneal distal motor latency (ms) 4.9 (0.9) 5.0 (0.7) 0.1 (0.8) 0.41

Peroneal amplitude (µV) 5.4 (2.6) 5.2 (2.9) −0.2 (2.2) 0.38

Peroneal F (ms) 50.6 (5.8) 50.9 (5.7) 0.1 (5.9) 0.85

Peroneal CV (m/s) 44.7 (5.2) 44.0 (5.3) −0.9 (5.7) 0.21

Sural peak latency (ms) 3.8 (0.4) 3.9 (0.4) 0.1 (0.4) 0.08

Sural amplitude (µV) 12.3 (6.9) 13.1 (8.8) 0.9 (7.9) 0.38

Tibial distal motor latency (ms) 4.8 (0.9) 5.1 (0.8) 0.2 (1.0) 0.08

Tibial amplitude (µV) 9.1 (5.3) 8.5 (4.5) −0.5 (4.2) 0.30

Tibial F (ms) 53.1 (6.5) 52.3 (6.0) −0.4 (6.6) 0.65

Median distal motor latency (ms) 3.9 (0.7) 3.9 (0.8) 0.001 (0.5) 0.98

Median motor amplitude (µV) 7.7 (3.3) 7.9 (3.3) 0.2 (3.6) 0.60

Median motor F (ms) 29.0 (2.7) 29.0 (3.6) 0.2 (2.8) 0.56

Median motor CV (m/s) 52.6 (5.2) 53.2 (6.3) 0.5 (6.2) 0.47

Median sensory peak latency (ms) 3.8 (0.6) 3.9 (0.6) 0.2 (0.4) <0.01

Median sensory amplitude (µV) 28.8 (15.4) 28.0 (16.1) −0.7 (5.8) 0.29

QST

QST cold threshold 13.1 (4.8) 10.8 (4.4) −2.0 (4.9) <0.01

QST vibration threshold 17.8 (3.7) 17.9 (4.2) 0.2 (4.2) 0.77

QSART

QSART arm 1.2 (1.1) 1.9 (6.7) 0.7 (6.9) 0.43

QSART proximal leg 0.5 (0.5) 1.4 (9.3) 1.0 (9.4) 0.41

QSART distal leg 0.5 (0.4) 1.3 (6.9) 0.9 (7.0) 0.31

QSART proximal foot 0.5 (0.5) 0.9 (4.7) 0.5 (4.8) 0.45

MNSI

MNSI questionnaire 2.8 (2.5) 2.2 (2.2) −0.6 (1.4) <0.01

MNSI exam 1.0 (1.5) 1.1 (1.6) 0.04 (1.2) 0.76

Monofilament

Normal 65 (90.3%) 66 (93.0%) Worsened: 2 (2.8%) 1.00#

Reduced 5 (6.9%) 2 (2.8%) Stable: 65 (91.6%)

Absent 2 (2.8%) 3 (4.2%) Improved: 4 (5.6%)

Patient- oriented outcomes

McGill Pain score

McGill total 4.7 (6.0) 3.9 (5.7) −0.8 (4.7) 0.15

McGill sensory 4.0 (5.0) 3.3 (4.6) −0.7 (4.0) 0.12

McGill affective 0.6 (1.3) 0.5 (1.4) −0.1 (1.3) 0.58

VAS total 19.6 (24.6) 17.8 (22.8) −1.8 (29.3) 0.60

PPI

No pain 54 (77.1%) 52 (72.2%) Worsened: 12 (17.1%) 0.75#

Mild 9 (12.9%) 14 (19.4%) Stable: 49 (70.0%)

(Continues)
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Both Look AHEAD and our study found that dietary weight loss 
was associated with improvements on the MNSI questionnaire 
but not the MNSI examination. The consistency of these results 
provides more evidence for the benefits of dietary weight loss for 
peripheral nerves, but it also highlights the limitations of this in-
tervention. Subjective measures such as the MNSI questionnaire 
improved, which we also observed for two Neuro- QoL subdo-
mains. In contrast, objective measures of neuropathy, such as the 
MNSI examination, were largely stable. Our study included IENFD 
and NCS parameters that also demonstrated stability. Taken to-
gether, these studies indicate that dietary weight loss can halt the 
progression of neuropathy, if not lead to mild improvements, but 
that different interventions are likely needed if more dramatic 
improvement is the goal. Importantly, the natural history of small 
fiber neuropathy, regardless of cause, is to decline at a predictable 
rate (27); therefore, any intervention that leads to stability should 
be considered a success.

Other potential interventions to improve multiple metabolic 
risk factors and neuropathy outcomes include surgical weight loss, 
medication- induced weight loss, and exercise. To our knowledge, 
surgical weight loss was evaluated only in one small study of 12 

participants before and after Roux- en- Y gastric bypass with a hint of 
efficacy (30). Medication- induced weight loss has not been studied, 
to our knowledge. In contrast, exercise has been the most studied of 
these interventions, including three uncontrolled studies and one ran-
domized study (15,16,28,29). Two of these studies also had a dietary 
component, but weight loss was minimal: 0.1 and 1.1 decrease in BMI 
compared with 4.3 decrease in our study (15,16). Three of these ex-
ercise studies demonstrated improvements in IENFD outcomes, and 
the randomized trial revealed improvements in NCS and vibration 
thresholds. Taken together, the previous exercise studies indicate an 
improvement in neuropathy outcomes, whereas dietary weight loss 
demonstrates stability or mild improvement in subjective outcomes. 
However, more definitive studies comparing the effects of exercise 
and different weight- loss strategies (dietary, surgical, and medication 
induced) are needed before strong clinical recommendations can be 
made favoring one of these interventions. Given the modest effect 
size and adherence issues with dietary weight loss, future interven-
tions may need to combine exercise and dietary weight loss or include 
dietary adjustments designed to improve adherence and/or to im-
prove neuropathy through limiting certain metabolites that may lead 
to nerve injury.

Baseline 2- year follow- up Change
p value 
(paired t test)

Discomforting 7 (10.0%) 6 (8.3%) Improved: 9 (12.9%)

Neuro- QoL

Neuro- QoL total 2.3 (1.8) 2.0 (1.1) −0.3 (1.4) 0.06

Neuro- QoL pain 2.3 (1.8) 2.0 (1.5) −0.4 (1.1) 0.01

Neuro- QoL reduced sensation 2.1 (2.3) 2.0 (2.4) −0.1 (1.9) 0.65

Neuro- QoL sensory motor 1.9 (1.6) 2.0 (1.8) 0.04 (1.3) 0.80

Neuro- QoL social 2.1 (1.6) 2.0 (1.0) −0.03 (1.9) 0.90

Neuro- QoL emotional 2.4 (2.6) 1.7 (1.0) −0.7 (2.2) 0.01

Neuro- QoL activities of daily living 3.2 (3.0) 2.9 (2.1) −0.3 (2.7) 0.34

CAN outcomes

E:I ratio 1.13 (0.08) 1.19 (0.40) 0.07 (0.41) 0.17

30:15 ratio 1.40 (0.64) 1.38 (0.53) −0.02 (0.46) 0.71

Valsalva ratio 1.48 (0.34) 1.54 (0.51) 0.07 (0.60) 0.35

RFA 10.5 (65.5) 26.5 (196.2) 15.8 (208.4) 0.53

LFA 7.5 (45.1) 57.9 (446.0) 50.2 (449.2) 0.35

LFA/RFA 3.1 (4.1) 5.4 (17.5) 2.2 (18.0) 0.31

sdNN 53.9 (31.1) 54.1 (40.2) 0.5 (48.7) 0.93

rmsSD 35.3 (32.7) 38.7 (49.4) 3.9 (59.5) 0.58

Median heart rate 66.8 (11.9) 67.6 (13.9) 0.5 (16.6) 0.80

Data given as mean (SD) unless otherwise indicated.
Abbreviations: CAN, cardiovascular autonomic neuropathy; CV, conduction velocity; E:I, expiration to inspiration; IENFD, intraepidermal nerve 
fiber density; LFA, low- frequency area, measure of sympathetic activity; LFA/RFA, low- frequency area/respiratory frequency area, measure of 
sympathovagal balance; MNSI, Michigan Neuropathy Screening Instrument; PPI, present pain intensity; NCS, nerve conduction study; Neuro- 
QoL, Quality of Life in Neurological Disorders, neuropathy- specific quality of life instrument; QSART, quantitative sudomotor axon reflex testing; 
QST, quantitative sensory testing; RFA, respiratory frequency area, measure of parasympathetic activity; rmdSD, root mean square of successive 
differences of the normal- to- normal interval; sdNN, SD of the normal- to- normal interval.
#p value represents results from Wilcoxon signed rank test.

TA B L E  3  (Continued)
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Although IENFD and NCS parameters did not change after di-
etary weight loss, the MNSI questionnaire, two Neuro- QoL subdo-
mains, and the QST cold threshold all demonstrated improvement 
after 2 years. This is an important finding because using more sen-
sitive measures of neuropathy improvement has the potential to 
lead to more efficient clinical trials. We looked at several secondary 
outcome measures; therefore, these results should be considered 
hypothesis generating rather than definitive. On the other hand, the 
Look AHEAD study also demonstrated improvement in the MNSI 
questionnaire over the first couple of years as well as after 9 to 11 
years of dietary weight loss (17). These results provide stronger jus-
tification for using the MNSI questionnaire as a sensitive measure 
of neuropathy improvement. Interestingly, the Neuro- QoL may also 
be a sensitive indicator of improvement, which could be important 
as this is also a patient- oriented outcome. Future studies are needed 
to determine whether the Neuro- QoL demonstrates sensitivity to 
neuropathy improvement. Despite these encouraging results, more 
sensitive biomarkers are needed to detect earlier changes in patients 
with neuropathy, which would enable more efficient clinical trials. 
Furthermore, the MNSI questionnaire and Neuro- QoL are more sub-
jective neuropathy measures compared with IENFD and NCS, which 
may account for the differences observed with these outcomes.

Similar to neuropathy, CAN also demonstrated stability 2 years 
after dietary weight loss on all nine measures. Only one randomized 
trial, to our knowledge, investigated the effects of dietary weight 
loss in combination with exercise on CAN outcomes, and this was 
in a population of individuals with type 2 diabetes (31). The investi-
gators found no improvement on the E:I ratio in the overall popula-
tion, although diet and exercise did lead to improvement in women. 
Analogously to neuropathy, the natural history of CAN is to worsen 
over a 2- year period in those with diabetes (32). Therefore, the sta-
bility in CAN measures after dietary weight loss in both this study 
and our current study provides supporting evidence for a positive 
effect, but future randomized studies are needed especially because 
the natural history of CAN in populations with obesity is unknown. 
Comparable to neuropathy, most of the intervention studies have 
focused on the effects of exercise on CAN (33). These studies have 
generally showed improvement in CAN outcomes, but they are uni-
formly small, with varying outcomes and exercise regimens, which 
limits interpretability (28,34– 38). Just like with neuropathy, studies 
that compare the effects of exercise with different weight- loss strat-
egies are needed to guide clinical recommendations.

Interestingly, the improvement in neuropathy outcomes that we 
observed in humans with obesity after a dietary intervention has 
also been observed in obese mice. Mice on a high- fat diet developed 
neuropathy that was completely normalized after dietary reversal 
(39). Although we did not observe such robust results in humans, the 
dietary reversal was not nearly as complete as in the murine models, 
and the metabolic impairments were present for far longer in humans. 
Importantly, lipidomic analyses have shed light on potential biologic 
mechanisms of obesity- related neuropathy. Nerves from high- fat- 
fed mice with neuropathy contained an increase in triglycerides 
containing saturated fatty acids compared with nerves from control 

mice (40). Mice fed a high- fat diet consisting of saturated fatty acids 
developed neuropathy that was completely reversed by switching to 
a high- fat diet consisting of monounsaturated fatty acids (41). The 
monounsaturated fatty acid oleate also prevented defects in axonal 
mitochondrial transport and membrane potential that were present 
in sensory neurons treated with the saturated fatty acid palmitate. 
These results indicate that nerve- lipid signaling is an important fac-
tor in peripheral nerve injury (42).

Limitations of this study include the small sample size, which 
limits our power to detect small changes. However, we did observe 
significant changes in multiple secondary outcomes. We also had 
significant loss to follow- up, but only employment status was signifi-
cantly different between the whole cohort and those who followed 
up after 2 years. We were unable to investigate longer- term effects 
of dietary weight loss on outcomes after 2 years, but our results are 
consistent with the Look AHEAD study, which followed participants 
for 9 to 11 years (17). Our pre- post intervention design does not 
allow for causal inferences. Generalizability to other populations, 
particularly those with different race/ethnicity and educational sta-
tus, is unclear. Strengths of this study include the comprehensive 
metabolic and neuropathy phenotyping before and after a success-
ful dietary weight- loss intervention.

After a dietary weight- loss intervention, participants with severe 
obesity had large improvements in multiple metabolic risk factors. 
Neuropathy, as measured by IENFD, and CAN were stable after 2 
years, which is an improvement from the known natural history of 
decline in those with small fiber neuropathy from any cause (28). 
Randomized trials are needed to definitively address the effects of 
dietary weight loss on neuropathy and compare and contrast with 
other weight- loss measures and/or exercise.O
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Inflammation, Hyperglycemia,
and Adverse Outcomes in
Individuals With Diabetes
Mellitus Hospitalized for
COVID-19
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OBJECTIVE

Diabetes mellitus (DM) is a major risk factor for severe coronavirus disease 2019
(COVID-19) for reasons that are unclear.

RESEARCH DESIGN AND METHODS

We leveraged the International Study of Inflammation in COVID-19 (ISIC), a multicen-
ter observational study of 2,044 patients hospitalized with COVID-19, to characterize
the impact of DM on in-hospital outcomes and assess the contribution of inflamma-
tion and hyperglycemia to the risk attributed to DM. We measured biomarkers of
inflammation collected at hospital admission and collected glucose levels and insulin
data throughout hospitalization.The primary outcomewas the composite of in-hospi-
tal death, need for mechanical ventilation, and need for renal replacement therapy.

RESULTS

Among participants (mean age 60 years, 58.2% males), those with DM (n = 686,
33.5%) had a significantly higher cumulative incidence of the primary outcome
(37.8% vs. 28.6%) and higher levels of inflammatory biomarkers than those without
DM. Among biomarkers, DM was only associated with higher soluble urokinase plas-
minogen activator receptor (suPAR) levels in multivariable analysis. Adjusting for
suPAR levels abrogated the association between DM and the primary outcome
(adjusted odds ratio 1.23 [95% CI 0.78, 1.37]). In mediation analysis, we estimated
the proportion of the effect of DM on the primary outcome mediated by suPAR at
84.2%. Hyperglycemia and higher insulin doses were independent predictors of the
primary outcome, with effect sizes unaffected by adjusting for suPAR levels.

CONCLUSIONS

Our findings suggest that the association between DM and outcomes in COVID-
19 is largely mediated by hyperinflammation as assessed by suPAR levels, while
the impact of hyperglycemia is independent of inflammation.

As of October 2021, there have been >44 million confirmed cases and 700,000
deaths attributed to coronavirus disease 2019 (COVID-19) in the United States (1).
The ongoing COVID-19 pandemic disproportionately affects individuals with diabetes
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mellitus (DM) (2). More than 40% of
hospitalized individuals with COVID-19
have DM, which is a major risk factor for
adverse outcomes in this patient popula-
tion (2–7). The reasons underlying the
susceptibility of individuals with DM to
severe COVID-19 remain unclear.
DM is characterized by chronic low-

grade inflammation (8), which promotes
insulin resistance and hyperglycemia, pro-
cesses important in the development of
chronic complications (9). This chronic
inflammatory state is thought to stimulate
stronger immune and inflammatory
responses in individuals with DM exposed
to COVID-19 compared with those without
DM, promoting cytokine release and hyper-
glycemic surges (2). Hyperglycemia further
upregulates inflammatory and oxidative
stress markers in a vicious cycle (10,11).
The interplay between inflammatory cyto-
kines and hyperglycemia may be a major
factor in the development of multiorgan
damage and mortality in individuals admit-
ted for COVID-19 (12). Understanding the
relationship among DM, inflammation, and
hyperglycemia in individuals hospitalized
for COVID-19 is instrumental in devising
targeted strategies for improving outcomes
in this high-risk patient population.
To that end, we leveraged the Interna-

tional Study of Inflammation in COVID-19
(ISIC), a large, multicenter, observational
study of individuals admitted specifically
for COVID-19 in whom inflammatory bio-
markers were measured on admission.
Our study objectives were to characterize
the impact of DM on COVID-19–related
outcomes in relation to inflammation,
identify the determinants of risks in indi-
viduals with DM, and examine the inter-
play among inflammatory biomarkers,
hyperglycemia, insulin use, and in-hospi-
tal outcomes.

RESEARCH DESIGN AND METHODS

ISIC
ISIC is a multicenter observational study
with the primary objective of characteriz-
ing the role of inflammatory biomarkers

in COVID-19–related adverse outcomes
(13). Participating centers and site investi-
gators are listed in the Supplementary
Material. Institutional review board
approvals and consent procedures were
obtained separately at each site accord-
ing to local institutional policies.

Study Design and Patients
Individuals were eligible if they met the
following inclusion criteria: 1) adult
($18 years old) hospitalized specifically
for COVID-19, 2) confirmed severe acute
respiratory syndrome coronavirus 2
(SARS-CoV-2) infection by RT-PCR testing
of nasopharyngeal or oropharyngeal
samples, and 3) at least one blood sam-
ple collected during hospitalization. Indi-
viduals with a positive SARS-CoV-2 test
who were hospitalized for non–COVID-
19 reasons were excluded. All patients
were monitored until hospital discharge
or death. Extensive clinical data were
collected through electronic health
records using established data mining
tools and reviewed for accuracy by at
least two reviewers per site. All data
were entered into the secure web-
based repository REDCap.
Data collected were medical history,

including DM type (type 1 or type 2);
demographics; laboratory tests; medica-
tions; clinical characteristics; inpatient
medical therapy; hospitalization course;
and outcomes. DM was defined as a
documented diagnosis in the medical
record, treatment with hypoglycemic
agents, or a hemoglobin A1c (HbA1c)
$6.5% within 1 year before admission.
Estimated glomerular filtration rate
(eGFR) was calculated using the Chronic
Kidney Disease Epidemiology Collabora-
tion equation.

The Michigan Medicine COVID-19
Cohort
The Michigan Medicine COVID-19 Cohort
(M2C2) is the largest ISIC subcohort.
The M2C2 comprises consecutive, sys-
tematically enrolled adults ($18 years)

with confirmed SARS-CoV-2 infection
hospitalized specifically for COVID-19 at
the University of Michigan from 1 Feb-
ruary 2020 to 1 June 2021. In addition
to the variables collected for ISIC, serial
laboratory measurements, frequently
monitored blood glucose levels, and
daily insulin dose administered through-
out hospitalization were collected for
M2C2 as part of a standardized inpatient
management protocol for hyperglycemia
(14).

Biomarkers of Inflammation
Blood samples were collected and ana-
lyzed for several inflammatory bio-
markers, including soluble urokinase
plasminogen activator receptor (suPAR),
interleukin-6 (IL-6), C-reactive protein
(CRP), D-dimer, ferritin, lactate dehydro-
genase, and procalcitonin levels within
48 h of admission. CRP, ferritin, D-dimer,
lactate dehydrogenase, and procalcito-
nin levels were measured by the central
laboratory at the respective institution
of enrollment at the request of the clini-
cal team. Residual samples were col-
lected for suPAR and IL-6 measurement,
which were measured in batches using
a commercially available ELISA (suPAR-
nostic ELISA [ViroGates, Birkerød, Den-
mark], Human IL-6 Quantikine QuicKit
[R&D Systems, Minneapolis, MN]).
Serum samples used for suPAR and IL-6
measurements were collected and kept
frozen at �80�C until the time of mea-
surement, which was no longer than 3
months. Samples underwent up to two
thaw cycles. Both suPAR and IL-6 are
highly stable in frozen samples stored
for >5 years and are not affected by
repeated freeze/thaw cycles. Techni-
cians performing assays were blinded to
clinical data.

Outcome Definitions
The primary outcome was the compos-
ite end point of in-hospital death, need
for mechanical ventilation, and need for
renal replacement therapy. Secondary
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outcomes included each individual com-
ponent of the primary outcome.

Statistical Analysis
We included individuals hospitalized for
COVID-19 during the period of 1 Febru-
ary 2020 to 1 June 2021, the date the
database was locked (N = 2,044). We
report clinical characteristics for the
overall cohort stratified by DM history
using categorical variables expressed as
a number and percentage and continu-
ous variables expressed as mean (SD)
and median (25th–75th interquartile
range) for normally and nonnormally
distributed continuous data, respec-
tively. The characteristics between indi-
viduals with and without DM were
compared using x2 tests for categorical
variables and unpaired t tests or Mann-
Whitney U tests for normal and nonnor-
mal continuous variables, respectively.
The incidences of the individual out-
comes (in-hospital death, need for
mechanical ventilation, and need for
renal replacement therapy) were com-
pared between individuals with and
without DM at admission using x2 tests.

DM and Biomarkers of Inflammation

To determine whether DM history was
independently associated with higher
thromboinflammation marker levels,
separate linear regression models were
created, with each biomarker as the
dependent variable and DM, age, sex,
BMI, race, hypertension, coronary artery
disease, and heart failure as indepen-
dent variables. Each model variable was
standardized by subtracting the mean
of each variable and dividing by its SD,
resulting in a distribution with mean = 0
and SD = 1. Standardization was per-
formed to compare the effect sizes for
DM across each biomarker.

DM as a Risk Factor in Hospitalized Individ-

uals With COVID-19

We examined the association between
DM and the composite outcome using
stepwise logistic regression models.
Model 0 was unadjusted. Model 1
included age, sex, and race. Model 2
included the variables in model 1 as well
as clinical characteristics, including BMI,
history of hypertension, coronary artery
disease, congestive heart failure, and
admission eGFR. Model 3 included the
variables in model 2 as well as suPAR,
which was log2 transformed (interpreted

as per 100% increase) given the nonnor-
mal distribution. We repeated this analy-
sis to explore the association between
DM and each outcome individually. We
then performed mediation analysis to
assess whether the effect of DM on the
composite outcome is mediated by
suPAR, after adjusting for the clinical var-
iables in model 3 (age, sex, race, BMI,
and history of hypertension, coronary
artery disease, congestive heart failure,
and admission eGFR) (15).

In-Hospital Outcome Predictors in Individu-

als With DM and COVID-19

We used logistic regression to identify
risk factors for the composite outcome
among individuals with DM (n = 686).
We first examined the association of
each clinical characteristic and the com-
posite outcome in univariable analysis. In
addition to variables associated with the
outcome in the univariable analysis, we
included the following variables in the
multivariable analysis on the basis of
biologic plausibility and clinical knowl-
edge: age, sex, race, BMI, smoking sta-
tus, hypertension, coronary artery
disease, heart failure, chronic kidney
disease, admission eGFR, and glucose
range at admission (<54–69, 70–180,
181–250, and >250 mg/dL). Bio-
markers of inflammation (log2 trans-
formed) were each examined in the
multivariable risk model separately.
We also explored risk factors for each
individual outcome using the same mul-
tivariable risk model. Finally, we calcu-
lated the relative importance of clinical
characteristics, biomarkers of inflamma-
tion, and glucose levels for predicting
the composite outcome on the basis of
the Gini index using a random forest
approach (16).

Glucose, Insulin Use, and In-Hospital

Outcomes

We used the M2C2 subset of ISIC (n =
1,608), in which serial data were col-
lected, to determine whether glucose
levels and insulin administered during
hospitalization were associated with
inflammatory biomarkers and outcomes.
We assessed the following exposures:
glucose level on admission, coefficient of
variation for glucose during hospitaliza-
tion, percentage of glucose measure-
ments in target glucose range (70–180
mg/dL) during hospitalization per patient,
percentage of glucose measurements

>180 mg/dL during hospitalization per
patient, and average daily amount of
insulin administered during hospitaliza-
tion per patient adjusted for body
weight. The coefficient of variation is
expressed as the SD divided by the mean
of all glucose measurements during hos-
pitalization. The average amount of insu-
lin administered was calculated as the
total insulin dose (units) divided by
patient weight (kilograms) multiplied by
the total number of in-hospital days. We
used Spearman rank correlation to
examine the correlation between each
biomarker of inflammation with glucose
coefficient of variation and the average
insulin dose received during hospitaliza-
tion. To assess the association between
each exposure and the composite out-
come, we used multivariable regression
models. Each variable was modeled con-
tinuously and as a categorical variable
using the following categories as refer-
ences for each variable: 0 for glucose
coefficient of variation, 100% for glucose
values in the normal range, 0% for glu-
cose values in the high range, and 0
units/kg/day for average insulin dose.
For glucose variables, the coefficients
are expressed as a 10-unit difference,
whereas insulin dose is expressed as a
difference in 0.1 unit/kg/day. Models
were adjusted for age, sex, race, BMI,
and history of hypertension, coronary
artery disease, and congestive heart fail-
ure. Separate models were additionally
adjusted for suPAR within 48 h of admis-
sion and corticosteroid use.
We performed a complete case anal-

ysis for multivariable models. There
were no missing data for any demo-
graphic or clinical characteristic. A two-
sided P < 0.05 was used to determine
statistical significance. All analyses were
performed using R 4.1.0 statistical soft-
ware (R Foundation for Statistical Com-
puting, Vienna, Austria).

RESULTS

Study Cohort Characteristics
The overall cohort had a mean (SD) age
of 60 (16) years, 42% were female, and
20.5% were Black. One-third of the
cohort (n = 686, 33.6%) met the criteria
for DM, of whom 98.5% had type 2 DM
and 1.5% had type 1 DM. Compared
with individuals without DM, those with
DM were older (mean age 64 vs. 58
years) and were more likely to be Black
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(27.6% vs. 16.9%), to be obese (mean
BMI 33 vs. 31 kg/m2), and to have a
greater comorbidity burden, including
hypertension (81.2% vs. 45.7%), coro-
nary artery disease (24.6% vs. 8.9%),
heart failure (17.2% vs. 7.7%), and
chronic kidney disease (26.8% vs.
10.8%; P < 0.001 for all) (Table 1). On
hospital admission, individuals with
DM were less likely to present with
fever (59.6% vs. 65.8%) but more likely
to present with altered mental status
(13.4% vs. 6.5%) compared with those
without DM (P < 0.001).

DM and Biomarkers of Inflammation
in Individuals With COVID-19
In unadjusted analyses, the levels of sev-
eral inflammatory biomarkers, including
suPAR, CRP, procalcitonin, and D-dimer,
were higher on admission in individuals
with DM than in those without DM
(Table 1). In multivariable analyses, only
suPAR levels were indepen-dently asso-
ciated with DM (standardized b = 0.10
[95% CI 0.05, 0.15]) (Supplementary
Table 1). On average, participants with
DM had 20.7% higher suPAR levels than
those without DM.

Associations Between DM and In-
Hospital Outcomes
Overall, the primary composite outcome
was observed in 647 (31.7%) individu-
als. There was a total of 288 (14.1%) in-
hospital deaths, 550 (26.9%) individuals
who required mechanical ventilation,
and 182 (8.9%) individuals who required
renal replacement therapy. In unad-
justed analyses, individuals with DM
had a significantly higher cumulative
incidence of the primary composite out-
come (37.8% vs. 28.8%; P < 0.001) as
well as the individual components of in-
hospital death (16.9% vs. 12.7%; P =
0.01), need for mechanical ventilation
(31.6% vs. 24.5%; P = 0.001), and
need for renal replacement therapy
(12.4% vs. 7.1%; P < 0.001) compared
with those without DM (Table 1). In
multivariable analyses, adjusting for
demographics (model 1) and clinical
characteristics (model 2) heavily atten-
uated the association between DM
and the primary outcome (adjusted
odds ratio [aOR] 1.23 [95% CI 1.00,
1.52]), which became nonsignificant
after including suPAR in the model
(aOR 1.03 [95% CI 0.78, 1.37]) (Fig. 1).
When these outcomes were examined

individually, a similar pattern was seen
(Fig. 1).
In mediation analysis, the average

causal mediation effect (also known as
indirect effect) of DM on the primary out-
come through suPAR was significant (P =
0.008), while the average direct effect of
DM on the primary outcome was not sig-
nificant (P = 0.73). The proportion of the
effect of DM on the primary outcome
mediated by suPAR was 84.2%.

Predictors of the Composite
Outcome in Individuals With DM and
COVID-19
When examining predictors of the com-
posite outcome in the subgroup of indi-
viduals with DM (n = 686), we found
that higher BMI (aOR 1.18 [95% CI 1.06,
1.31]), lower eGFR (aOR 1.07 [95% CI
1.03, 1.10]), and admission glucose
levels >180 mg/dL (aOR 1.85 [95%
CI 1.20, 2.83]) were associated with the
primary composite outcome (Supp-
lementary Table 2). We found similar
associations when examining outcomes
individually, with a few notable excep-
tions (Supplementary Table 3). Older
age was strongly associated with in-hos-
pital death (aOR 1.44 [95% CI 1.17,
1.77]), and male sex was associated
with the need for renal replacement
therapy (aOR 2.33 [95% CI 1.31, 4.12]).
Type 1 DM, prior insulin use, and medi-
cations for hyperglycemia were not
associated with an increased odds in
the primary outcome. Levels of all
inflammatory biomarkers were associ-
ated with an increased odds of the
primary outcome when examined sepa-
rately in a multivariable model adjusted
for demographic and clinical risk factors
(Supplementary Table 2).
We identified suPAR level as the

most important variable associated with
the primary outcome in individuals with
DM and COVID-19, followed by BMI,
admission glucose, and age in descend-
ing order of importance (Fig. 2). Individ-
uals with DM with a suPAR level <5.94
ng/mL (first quartile) had a 23.9% inci-
dence of the primary outcome com-
pared with 53.8% in individuals with
suPAR $14.8 ng/mL (fourth quartile).

Glucose, Insulin, and Outcomes in
Individuals With COVID-19
Among the M2C2 subset with longitudi-
nal serial glucose and insulin data, we
found only modest correlations between

biomarkers of inflammation and both
glucose coefficient of variation (r =
0.05–0.02) and average insulin dose (r =
0.09–0.02) during hospitalization (Supple-
mentary Table 4). We also examined
whether glucose ranges, glucose varia-
tion, and insulin requirements were asso-
ciated with the primary outcome. The
glucose coefficient of variation in individ-
uals with DM was 17.0%, with an aver-
age of 53.9% of glucose measurements
falling in the target range (70–180 mg/
dL) and 44.8% of glucose values >180
mg/dL. The glucose coefficient of varia-
tion, a greater percentage of glucose val-
ues outside the target range, a greater
percentage of high glucose values, and a
higher required insulin dose were all
associated with a greater odds of the pri-
mary outcome in individuals with DM
(Fig. 3 and Supplementary Fig. 1). Per
each 10% higher glucose coefficient of
variation, the odds of the primary out-
come was 1.30 (95% CI 1.11, 1.54])
(Supplementary Fig. 1). Per every 0.1
unit/kg/day of insulin administered, the
odds of the primary outcome was 1.18
(95% CI 1.11, 1.25). Including suPAR or
corticosteroid use in the models did not
affect estimates significantly (Suppl-
ementary Table 5).

CONCLUSIONS

In this in-depth examination of the
interplay among DM, inflammation,
hyperglycemia, and outcomes in indi-
viduals hospitalized for COVID-19, we
found that the impact of DM on out-
comes is tightly linked to heightened
inflammation. First, individuals with
DM had a greater incidence of in-hos-
pital outcomes and higher levels of
inflammatory markers (notably suPAR)
compared with those without DM. The
association between DM and out-
comes was abrogated, however, by
including suPAR in the model, with
mediation analysis suggesting that the
effect of DM on outcomes is largely
mediated by suPAR. Among individuals
with DM, suPAR, BMI, admission glu-
cose levels, and age were the most
important risk factors (in that order).
The correlation between inflammatory
markers and hyperglycemia was mod-
est at best, while hyperglycemia and
higher insulin requirements during
hospitalization were associated with
worse outcomes. This association was
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Table 1—Demographic and clinical characteristics by DM status

Variable
Overall cohort
(N = 2,044)

Without DM
(n = 1,358)

With DM*
(n = 686) P

Age (years), mean (SD) 60 (16) 58 (17) 64 (14) <0.001

Male sex, n (%) 1,191 (58.2) 783 (57.7) 408 (59.5) 0.46

BMI (kg/m2), mean (SD) 32 (9) 31 (9) 33 (9) <0.001

Black race, n (%) 419 (20.5) 230 (16.9) 189 (27.6) <0.001

History of tobacco use, n (%) 886 (43.3) 566 (41.7) 320 (46.6) 0.08

Comorbidities, n (%)

Hypertension 1,177 (57.6) 620 (45.7) 557 (81.2) <0.001
Coronary artery disease 290 (14.2) 121 (8.9) 169 (24.6) <0.001
Congestive heart failure 223 (10.9) 105 (7.7) 118 (17.2) <0.001
Chronic kidney disease 330 (16.1) 146 (10.8) 184 (26.8) <0.001
End-stage renal disease on dialysis 56 (2.7) 17 (1.3) 39 (5.7) <0.001
COPD 208 (10.2) 129 (9.5) 79 (11.5) 0.18
Asthma 288 (14.1) 201 (14.8) 87 (12.7) 0.22
Liver disease 61 (3.0) 34 (2.5) 27 (3.9) 0.10
Active malignancy 101 (4.9) 80 (5.9) 21 (3.1) 0.01

Admission eGFR (mL/min/1.73 m2), mean (SD) 71 (32) 78 (30) 56 (31) <0.001

Presenting symptoms, n (%)

Fever 1,283 (62.8) 893 (65.8) 390 (56.9) <0.001
Shortness of breath 1,466 (71.7) 976 (71.9) 490 (71.4) 0.88
Diarrhea 553 (27.1) 380 (28.0) 173 (25.2) 0.20
Altered mental status 180 (8.8) 88 (6.5) 92 (13.4) <0.001

Laboratory data,† mean (SD)

Hemoglobin (g/dL) 12.9 (2.4) 13.1 (2.5) 12.5 (2.3) <0.001
White blood cell count (×103/mL) 7.4 (4.6) 7.2 (4.6) 7.8 (4.5) 0.010
Absolute neutrophil count (×103/mL) 5.6 (3.5) 5.5 (3.5) 5.9 (3.4) 0.006
Absolute lymphocyte count (×103/mL) 1.1 (2.4) 1.1 (2.5) 1.1 (2.3) 0.92
AST (IU/L) 63.8 (186) 66.4 (223.9) 58.7 (65.8) 0.40
ALT (IU/L) 51.6 (244.5) 55.3 (297.0) 44.2 (56) 0.34
Total bilirubin (mg/dL) 0.72 (1.09) 0.73 (1.24) 0.71 (0.72) 0.61
Glucose (mg/dL) 144 (84) 117 (37) 195 (118) <0.001
HbA1c†† (%) 7.0 (2.4) 5.9 (1.3) 8.0 (2.7) <0.001

Glucose range at admission (mg/dL), n (%) <0.001

<54 5 (0.2) 3 (0.2) 2 (0.3)
54–69 12 (0.6) 8 (0.6) 4 (0.6)
70–180 1,504 (73.6) 1,137 (83.7) 367 (53.5)
181–250 171 (8.4) 34 (2.5) 137 (20.0)
>250 136 (6.7) 13 (1.0) 123 (17.9)

Inflammatory markers, median (IQR)

SuPAR (ng/mL) 7.12 (5.24–10.54) 6.61 (4.99–9.54) 8.64 (5.97–12.11) <0.001
CRP (mg/dL) 8.1 (4.2–15.4) 7.3 (3.8–14.5) 9.3 (5.2–17.2) <0.001
Lactate dehydrogenase (IU/L) 373 (279–510) 373 (275–508) 375 (283–518) 0.76
IL-6 (pg/mL) 18.4 (12.5–96.5) 14.0 (12.5–94.8) 24.7 (12.5–99.3) 0.15
Procalcitonin (ng/mL) 0.17 (0.09–0.44) 0.15 (0.08–0.34) 0.23 (0.11–0.74) <0.001
Ferritin (ng/mL) 680 (289–1,368) 670 (282.8–1,353.0) 694.5 (298–1,739) 0.52
D-dimer (FEU mg/L) 0.94 (0.54–1.92) 0.89 (0.52–1.77) 1.08 (0.59–2.2) 0.001

Outcomes, n (%)

Composite outcome 647 (31.7) 388 (28.6) 259 (37.8) <0.001
Need for mechanical ventilation 550 (26.9) 333 (24.5) 217 (31.6) 0.001
Need for renal replacement therapy 182 (8.9) 97 (7.1) 85 (12.4) <0.001
In-hospital death 288 (14.1) 172 (12.7) 116 (16.9) 0.011

COPD, chronic obstructive pulmonary disease; FEU, fibrinogen-equivalent units; IQR, interquartile range. *Includes 30 (1.5%) individuals with
type 1 DM and 275 (40.1%) individuals who required insulin. †First value within 48 h of presentation. ††HbA1c measured within 1 year of
hospital admission was available in 694 individuals (309 without DM and 385 with DM).
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not attenuated after adjusting for
suPAR, implying that hyperglycemia
affects COVID-19–related outcomes
through noninflammatory processes.
DM is a well-established risk factor

for COVID-19 (2,17); however, the
underlying mechanisms are unclear. In
susceptible individuals, SARS-CoV-2
infection is thought to trigger a pro-
longed hyperinflammatory response,
dubbed the cytokine storm (4,18–22).
DM, as a chronic inflammatory condi-
tion, may predispose individuals to a
heightened inflammatory response
(23,24). Mitochondrial disruption, rather
than changes to glucose metabolism,
has been found to lead to altered T-cell
cytokine production (notably by T-
helper 17 cells) in type 2 DM (23). Con-
sistently, we found that individuals with
DM had higher levels of inflammatory
biomarkers, including suPAR, CRP, pro-
calcitonin, and D-dimer. After adjusting
for comorbidities, we noted a singular

BA

C D

Figure 1—Risk of in-hospital outcomes in individuals with COVID-19 and with and without DM. The bar graphs depict the ORs comparing individuals
with DM with individuals without DM (reference) and 95% CIs for the composite outcome (A) and the individual outcomes of in-hospital death (B),
need for mechanical ventilation (C), and need for dialysis or continuous renal replacement therapy (D). Four different models were used: model 0
(unadjusted); model 1 (demographics) adjusted for age, sex, and race; model 2 (clinical characteristics) additionally adjusted for BMI and history of
hypertension, coronary artery disease, and congestive heart failure (clinical characteristics); and model 3 (inflammation) further adjusted for suPAR
level. *P < 0.05.

Figure 2—Variable importance plot to predict composite outcome in individuals with DM and
COVID-19. The variable importance plot is based on the Gini index using a random forest
approach. Shown are data from model 3 (adjusted for age, sex, race, BMI, admission suPAR,
and history of preexisting coronary artery disease, hypertension, and heart failure) for predict-
ing the composite outcome of in-hospital death, need for mechanical ventilation, and need for
renal replacement therapy.
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association between DM and suPAR,
suggesting that suPAR represents the
inflammatory biomarker most reflective
of the hyperinflammatory state in DM
and COVID-19. Our mediation analysis
supports this finding in that we found
that suPAR levels accounted for 84.2%
of the effect of DM on the outcomes.
Conversely, another study found that
CRP accounted for only 32.7% (12).
SuPAR is an immune-derived signal-

ing glycoprotein, which is notorious for
its role in kidney disease (25–27), car-
diovascular disease (28–30), and most
recently, COVID-19 (13,31). Blood suPAR
levels are notably high in individuals
with type 1 or type 2 DM, even in the
nonacute setting, and are strongly pre-
dictive of DM-related outcomes, such as
nephropathy and atherosclerotic events
(28,32,33). Several studies have identi-
fied a correlation between T-helper 17
cells and suPAR levels (34,35), which
may explain the predilection for individ-
uals with DM to have higher suPAR

levels (23,36). SuPAR differs from other
biomarkers of inflammation in that it
is not an acute-phase reactant: Levels
remain stable in highly proinflammatory
situations, such as acute myocardial
infarction or cardiac surgery (27). An
increased suPAR level, however, is trig-
gered by specific stimuli, such as smok-
ing and RNA viruses (e.g., SARS-CoV-2),
and is highly expressed in lung tissue
(37). Accordingly, individuals with DM
and COVID-19 have four- to eightfold
higher suPAR levels (median 8.82 ng/
mL) than healthy individuals (median
2.40 ng/mL). We found that suPAR was
the most important predictor of out-
comes in individuals with DM, which
mediated at least 80% of the effect of
DM on outcomes. Overall, these find-
ings suggest that suPAR levels may
reflect more specifically the burden of
inflammation in COVID-19 compared
with other biomarkers.
Hyperglycemia has traditionally been

thought to be a major driver of

inflammation through several mecha-
nisms, including increased oxidative
stress (8). In our study, hyperglycemia
and higher insulin requirements are
independently associated with in-hos-
pital outcomes in individuals with DM
and COVID-19, consistent with earlier
studies (2,38). Surprisingly, we found
only a weak correlation between
suPAR or other inflammatory bio-
markers with hyperglycemia, and the
association between hyperglycemia
and outcomes was not mitigated by
adjusting for suPAR. The association
between hyperglycemia and COVID-
19–related outcomes likely occurs
through mechanisms not reflected by
inflammatory biomarkers. This is con-
sistent with a study showing that non-
mitochondrial glycolysis did not affect
the inflammatory signature in type 2
DM (39). Whether aggressive glucose
control would improve COVID-
19–related outcomes remains to be
shown in a clinical trial setting (14).

This study has several important
strengths. It is the largest study to
investigate the role of inflammatory bio-
markers in individuals with DM hospital-
ized for COVID-19. In addition, in
contrast with other studies, it includes a
diverse cohort of individuals specifically
hospitalized for COVID-19 rather than
defined by SARS-CoV-2 positivity alone.
Blood samples were collected on admis-
sion, without being confounded by
anti-inflammatory therapies, and thus,
reflect more accurately the inflamma-
tory state. The clinical data were col-
lected through careful and adjudicated
review of individual medical records
rather than through administrative data
sets. The study benefited from stan-
dardized glucose and insulin data col-
lected continuously throughout the
hospitalization through the Michigan
Medicine hyperglycemia management
protocol.
This study also had some limitations.

Given the small number of patients
with type 1 DM in this cohort, the find-
ings cannot be extended to these indi-
viduals. The diagnosis of DM was based
on medical chart review and available
HbA1c levels at the time of admission;
thus, it is possible that some individuals
classified as not having DM could have
had undiagnosed DM. Finally, mechanis-
tic studies are warranted to validate the

Figure 3—Associations among glucose, insulin, and combined outcome in individuals with DM
in the M2C2 subset. The forest plot depicts the ORs and 95% CIs for the association among glu-
cose, insulin, and the composite outcome of in-hospital death, need for mechanical ventilation,
and need for renal replacement therapy stratified by DM among individuals with COVID-19 in
the M2C2 subset (n = 1,608). All ORs are compared using the following reference categories for
each variable: 0–1.25 for glucose coefficient of variance, 100% for glucose in range, 0% for high
glucose, and 0 units/kg/day for insulin. The glucose coefficient of variation is calculated as the
SD divided by the mean of all glucose measurements taken during hospitalization and then mul-
tiplied by 10. Percent in glucose range and high glucose are expressed as the percentage of all
glucose measurements within each category during hospitalization. Insulin is calculated as the
total amount of insulin (units) received during hospitalization divided by the patient’s weight
(kg) multiplied by the number of days in the hospital. Models were adjusted for age, sex, race,
BMI, and history of hypertension, coronary artery disease, and congestive heart failure.
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inferences based on the epidemiologic
observations noted in our study.
In summary, these data show that

COVID-19–related in-hospital outcomes
in individuals with DM are driven by a
hyperinflammatory state reflected best
by suPAR levels. SuPAR levels were the
most important predictor of outcomes
in individuals with DM, followed by obe-
sity, hyperglycemia, and age. Hypergly-
cemia and higher insulin requirements
correlated weakly with inflammatory
biomarkers and were associated with
outcomes independently of suPAR, sug-
gesting that they likely impact outcomes
through other mechanisms. Further
study is needed to determine whether
suPAR and hyperglycemia are therapeu-
tic targets for the management of
COVID-19 in individuals with DM.

Funding. A.V. is supported by a National
Heart, Lung, and Blood Institute–funded post-
doctoral fellowship (T32HL007853). S.S.H. is
funded by National Heart, Lung, and Blood
Institute grant 1R01HL153384-01, National
Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK) grants 1R01DK12801201A1
and U01DK119083-03S1, and the Frankel Car-
diovascular Center COVID-19: Impact Research
Ignitor award (U-M G024231). R.P.-B. is sup-
ported by NIDDK grants 1R01DK107956-01
and U01DK119083, JDRF Australia grant 5-
COE-2019-861-S-B, and Michigan Diabetes
Research Center pilot and feasibility NIDDK
grant P30-DK020572. E.G.B. is supported by
the Hellenic Institute for the Study of Sepsis.
F.T. is supported through intramural funds
from Charit�e Universit€atsmedizin Berlin and
the Berlin Institute of Health. S.P. is supported
by the University of Michigan O’Brien Kidney
Translational Core Center (NIDDK grant
P30DK081943).
The funders had no role in the design or conduct
of the study; collection, management, analysis,
or interpretation of the data; and preparation,
review, or decision to publish the manuscript.
Duality of Interest. J.R. and S.S.H. are mem-
bers of the scientific advisory board of Walden
Biosciences. J.E.O. is a cofounder, shareholder,
and chief scientific officer of ViroGates and a
named inventor on patents related to suPAR.
No other potential conflicts of interest relevant
to this article were reported.
Author Contributions. A.V. wrote the first
draft. A.V., Y.H., L.Z., R.P.-B., and S.S.H. per-
formed the statistical analyses. H.S., I.K., T.C.,
E.A., H.B., M.P., T.U.A., C.M., P.O., E.M., R.F.,
P.B., C.L., and S.S.H. collected the data and per-
formed quality control. L.A., M.M., K.M.-S., S.P.,
M.K., S.H.L., A.C., F.T., E.J.G.-B., J.R., J.E.O.,
E.L.F., R.P.-B., and S.S.H. provided expert inter-
pretation of the findings. All authors reviewed
the initial draft and provided critical revisions
and approved the final version of the

manuscript. R.P.-B. and S.S.H. are the guaran-
tors of this work and, as such, had full access
to all the data in the study and take responsi-
bility for the integrity of the data and the accu-
racy of the data analysis.
Data Sharing. Study protocol, statistical code,
and data set summary data are available
upon request after publication through a col-
laborative process. Data sets can be accessed
upon approval of a submitted research pro-
posal. Please contact penegonz@med.umich.
edu for additional information.

References
1. John Hopkins University Coronavirus Resource
Center. COVID-19 United States cases by county.
Accessed 27 September 2021. Available from
https://coronavirus.jhu.edu
2. Feldman EL, Savelieff MG, Hayek SS, Pennathur
S, Kretzler M, Pop-Busui R. COVID-19 and diabetes:
a collision and collusion of two diseases. Diabetes
2020;69:2549–2565
3. Klonoff DC, Umpierrez GE. Letter to the
editor: COVID-19 in patients with diabetes: risk
factors that increase morbidity. Metabolism
2020;108:154224
4. Zhu L, She ZG, Cheng X, et al. Association of
blood glucose control and outcomes in patients
with COVID-19 and pre-existing type 2 diabetes.
Cell Metab 2020;31:1068–1077.e3
5. Morse J, Gay W, Korwek KM, et al.
Hyperglycaemia increases mortality risk in non-
diabetic patients with COVID-19 even more than
in diabetic patients. Endocrinol Diabetes Metab
2021;4:e00291
6. Richardson S, Hirsch JS, Narasimhan M, et al.;
The Northwell COVID-19 Research Consortium.
Presenting characteristics, comorbidities, and
outcomes among 5700 patients hospitalized with
COVID-19 in the New York City area. JAMA 2020;
323:2052–2059
7. Seiglie J, Platt J, Cromer SJ, et al. Diabetes as a
risk factor for poor early outcomes in patients
hospitalized with COVID-19. Diabetes Care
2020;43:2938–2944
8. Donath MY, Shoelson SE. Type 2 diabetes as
an inflammatory disease. Nat Rev Immunol
2011;11:98–107
9. Pop-Busui R, Ang L, Holmes C, Gallagher K,
Feldman EL. Inflammation as a therapeutic
target for diabetic neuropathies. Curr Diab Rep
2016;16:29
10. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk
TP. Oxidative stress and inflammatory markers in
prediabetes and diabetes. J Physiol Pharmacol
2019;70:809–824
11. Mirzaei F, Khodadadi I, Vafaei SA, Abbasi-
Oshaghi E, Tayebinia H, Farahani F. Importance of
hyperglycemia in COVID-19 intensive-care
patients: mechanism and treatment strategy.
Prim Care Diabetes 2021;15:409–416
12. Koh H, Moh AMC, Yeoh E, et al. Diabetes
predicts severity of COVID-19 infection in a
retrospective cohort: a mediatory role of the
inflammatory biomarker C-reactive protein. J
Med Virol 2021;93:3023–3032
13. Azam TU, Shadid HR, Blakely P, et al.;
International Study of Inflammation in COVID-19.
Soluble urokinase receptor (SuPAR) in COVID-19-
related AKI. J Am Soc Nephrol 2020;31:2725–2735

14. Gianchandani R, Esfandiari NH, Ang L, et al.
Managing hyperglycemia in the COVID-19
inflammatory storm. Diabetes 2020;69:2048–2053
15. Tingley D, Yamamoto T, Hirose K, Keele L,
Imai K. mediation: R package for causal media-
tion analysis. J Stat Softw 2014;59:1–38
16. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T.
Bias in random forest variable importance
measures: illustrations, sources and a solution.
BMC Bioinformatics 2007;8:25
17. Gupta S, Hayek SS, Wang W, et al.; STOP-
COVID Investigators. Factors associated with
death in critically ill patients with coronavirus
disease 2019 in the US. JAMA Intern Med
2020;180:1436–1447
18. Mehta P, McAuley DF, Brown M, Sanchez E,
Tattersall RS; HLH Across Speciality Collaboration,
UK. COVID-19: consider cytokine storm syndromes
and immunosuppression. Lancet 2020;395:1033–
1034
19. Chen G, Wu D, Guo W, et al. Clinical and
immunological features of severe and moderate
coronavirus disease 2019. J Clin Invest 2020;
130:2620–2629
20. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical
characteristics of Covid-19 in New York City. N
Engl J Med 2020;382:2372–2374
21. Cariou B, Hadjadj S, Wargny M, et al.;
CORONADO Investigators. Phenotypic charac-
teristics and prognosis of inpatients with COVID-
19 and diabetes: the CORONADO study. Diabeto-
logia 2020;63:1500–1515
22. Huang C, Wang Y, Li X, et al. Clinical
features of patients infected with 2019 novel
coronavirus in Wuhan, China. Lancet 2020;
395:497–506
23. Nicholas DA, Proctor EA, Agrawal M, et al.
Fatty acid metabolites combine with reduced b

oxidation to activate Th17 inflammation in
human type 2 diabetes. Cell Metab 2019;30:
447–461.e5
24. Wellen KE, Hotamisligil GS. Inflammation,
stress, and diabetes. J Clin Invest 2005;115:
1111–1119
25. Hayek SS, Leaf DE, Samman Tahhan A, et al.
Soluble urokinase receptor and acute kidney
injury. N Engl J Med 2020;382:416–426
26. Hayek SS, Sever S, Ko YA, et al. Soluble
urokinase receptor and chronic kidney disease. N
Engl J Med 2015;373:1916–1925
27. Hayek SS, Ko YA, Awad M, et al. Cardio-
vascular disease biomarkers and suPAR in
predicting decline in renal function: a prospe-
ctive cohort study. Kidney Int Rep 2017;2:
425–432
28. Hayek SS, Divers J, Raad M, et al. Predicting
mortality in African Americans with type 2
diabetes mellitus: soluble urokinase plasminogen
activator receptor, coronary artery calcium, and
high-sensitivity C-reactive protein. J Am Heart
Assoc 2018;7:e008194
29. Al-Badri A, Tahhan AS, Sabbak N, et al.
Soluble urokinase-type plasminogen activator
receptor and high-sensitivity troponin levels
predict outcomes in nonobstructive coronary
artery disease. J Am Heart Assoc 2020;9:
e015515
30. Samman Tahhan A, Hayek SS, Sandesara P,
et al. Circulating soluble urokinase plasminogen
activator receptor levels and peripheral arterial

diabetesjournals.org/care Vasbinder and Associates 699

D
ow

nloaded from
 http://diabetesjournals.org/care/article-pdf/45/3/692/670807/dc212102.pdf by guest on 08 D

ecem
ber 2022

2722022 Feldman Laboratory Publications

https://coronavirus.jhu.edu


disease outcomes. Atherosclerosis 2017;264:
108–114
31. Rovina N, Akinosoglou K, Eugen-Olsen J,
Hayek S, Reiser J, Giamarellos-Bourboulis EJ.
Soluble urokinase plasminogen activator
receptor (suPAR) as an early predictor of severe
respiratory failure in patients with COVID-19
pneumonia. Crit Care 2020;24:187
32. Eugen-Olsen J, Andersen O, Linneberg A,
et al. Circulating soluble urokinase plasminogen
activator receptor predicts cancer, cardiovascular
disease, diabetes and mortality in the general
population. J Intern Med 2010;268:296–308
33. Heraclides A, Jensen TM, Rasmussen SS,
et al. The pro-inflammatory biomarker soluble

urokinase plasminogen activator receptor
(suPAR) is associated with incident type 2
diabetes among overweight but not obese
individuals with impaired glucose regulation:
effect modification by smoking and body weight
status. Diabetologia 2013;56:1542–1546
34. _Zabi�nska M, Ko�scielska-Kasprzak K,
Krajewska J, Bartoszek D, Augustyniak-Bartosik H,
Krajewska M. Immune cells profiling in ANCA-
associated vasculitis patients-relation to disease
activity. Cells 2021;10:1773
35. Zhao L,Yu S,Wang L, Zhang X, Hou J, Li X. Blood
suPAR, Th1 and Th17 cell may serve as potential
biomarkers for elderly sepsis management. Scand J
Clin Lab Invest 2021;81:488–493

36. Zhang S, Gang X,Yang S, et al. The alterations in
and the role of the Th17/Treg balance in metabolic
diseases. Front Immunol 2021;12:678355
37. Thunø M, Macho B, Eugen-Olsen J. suPAR:
the molecular crystal ball. Dis Markers 2009;27:
157–172
38. Carrasco-S�anchez FJ, L�opez-Carmona MD,
Mart�ınez-Marcos FJ, et al.; SEMI-COVID-19
Network. Admission hyperglycaemia as a pre-
dictor of mortality in patients hospitalized with
COVID-19 regardless of diabetes status: data
from the Spanish SEMI-COVID-19 Registry. Ann
Med 2021;53:103–116
39. Morris A. Glucose isn’t always to blame. Nat
Rev Endocrinol 2019;15:564

700 DM, Inflammation, and Outcomes in COVID-19 Diabetes Care Volume 45, March 2022

D
ow

nloaded from
 http://diabetesjournals.org/care/article-pdf/45/3/692/670807/dc212102.pdf by guest on 08 D

ecem
ber 2022

2732022 Feldman Laboratory Publications



Neuropsychological Outcomes
in Individuals With Type 1 and
Type 2 Diabetes
Nathaniel M. Putnam1, Evan L. Reynolds2, Mousumi Banerjee1, Kara Mizokami-Stout3,
Dana Albright4, Joyce Lee5, Rodica Pop-Busui3, Eva L. Feldman2 and
Brian C. Callaghan2*

1 Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States, 2 Department of Neurology, University of
Michigan, Ann Arbor, MI, United States, 3 Department of Internal Medicine, Division of Metabolism, Endocrinology, and
Diabetes, University of Michigan, Ann Arbor, MI, United States, 4 Department of Pediatrics, Division of Pediatric Psychology,
University of Michigan, Ann Arbor, MI, United States, 5 Department of Pediatrics, Division of Pediatric Endocrinology,
University of Michigan, Ann Arbor, MI, United States

Objective: To determine the prevalence of neuropsychological outcomes in individuals
with type 1 diabetes compared to individuals with type 2 diabetes or without diabetes, and
to evaluate the association of diabetes status and microvascular/macrovascular
complications with neuropsychological outcomes.

Patients and Methods:We used a nationally representative healthcare claims database
of privately insured individuals (1/1/2001-12/31/2018) to identify individuals with type 1
diabetes. Propensity score matching was used as a quasi-randomization technique to
match type 1 diabetes individuals to type 2 diabetes individuals and controls. Diabetes
status, microvascular/macrovascular complications (retinopathy, neuropathy,
nephropathy, stroke, myocardial infarction, peripheral vascular disease, amputations),
and neuropsychological outcomes (mental health, cognitive, chronic pain, addiction, sleep
disorders) were defined using ICD-9/10 codes. Logistic regression determined
associations between diabetes status, microvascular/macrovascular complications, and
neuropsychological outcomes.

Results: We identified 184,765 type 1 diabetes individuals matched to 524,602 type 2
diabetes individuals and 522,768 controls. With the exception of cognitive disorders, type
2 diabetes individuals had the highest prevalence of neuropsychological outcomes,
followed by type 1 diabetes, and controls. After adjusting for the presence of
microvascular/macrovascular complications, type 1 diabetes was not significantly
associated with a higher risk of neuropsychological outcomes; however, type 2
diabetes remained associated with mental health, cognitive, and sleep disorders. The
presence of microvascular/macrovascular complications was independently associated
with each neuropsychological outcome regardless of diabetes status.
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Conclusion: Microvascular/macrovascular complications are associated with a high risk
of neuropsychological outcomes regardless of diabetes status. Therefore, preventing
microvascular and macrovascular complications will likely help reduce the likelihood of
neuropsychological outcomes either as the result of similar pathophysiologic processes or
by preventing the direct and indirect consequences of these complications. For individuals
with type 2 diabetes, risk factors beyond complications (such as obesity) likely contribute
to neuropsychological outcomes.

Keywords: diabetes mellitus, regress analysis, big data and analytics, mental health, diabetes - quality of life

INTRODUCTION

Individuals with type 1 diabetes are at an increased risk for a
number of microvascular and macrovascular complications,
including retinopathy, neuropathy, nephropathy, stroke,
myocardial infarction, peripheral vascular disease, and
amputations (1). These complications result in substantial
mortality, morbidity, and reduced quality of life (2). In contrast to
these microvascular and macrovascular complications of diabetes,
much less is known about the neuropsychological outcomes of type
1 diabetes including mental health, cognitive, chronic pain,
addiction, and sleep disorders.

The current literature supports a higher burden of most
neuropsychological outcomes in individuals with type 1 diabetes
relative to the general population. The most well studied
neuropsychological outcomes of type 1 diabetes are mental health
disorders, specifically depression and anxiety. A systematic review
found that the prevalence of depression and anxiety for individuals
with type 1 diabetes is nearly three times that of the general
population (3). Similarly, a systematic review found that
individuals with type 1 diabetes had impaired cognitive function
across broad categories including visual-spatial ability and memory
(4). Multiple studies have also documented elevated rates of pain in
adults and adolescents with type 1 diabetes (5, 6). In contrast to
other neuropsychological outcomes, a systematic review found that
there were similar rates of substance use between young adults with
and without type 1 diabetes (7). Lastly, a meta-analysis found that
children with type 1 diabetes get less sleep, adults with type 1
diabetes have lower quality sleep, and that type 1 diabetes is
associated with higher rates of obstructive sleep apnea compared
to the general population (8). However, these studies have four key
limitations. Namely, their sample sizes were relatively small, they
rarely investigated the role of microvascular and macrovascular
complications, they were often focused on young individuals, and/
or they lacked a control group (3–8). Furthermore, no previous
study comprehensively evaluated the full spectrum of
neuropsychological outcomes and few compared these
complications for individuals with type 1 vs. type 2 diabetes. Our
study fills these gaps in the literature using a large, nationally
representative sample of privately insured individuals in the US.

Our objective was to describe and compare the prevalence of
neuropsychological outcomes for individuals with type 1

diabetes, type 2 diabetes, and individuals without diabetes and
to explore the independent effects of diabetes status and
microvascular/macrovascular complications on these
neuropsychological outcomes.

METHODS

Population
We utilized the de-identified Optum Analytics database, which
consists of detailed medical and pharmaceutical claims on tens of
millions of insured individuals from 2001-2018. As the largest
claims data repository in the United States, the demographic
makeup of the Optum Analytics database closely matches those of
the privately insured population. Using a validated ICD-9/ICD-10
code definition (9), we identified individuals with type 1 diabetes
(250.x1, 250.x3, E10.xx) and type 2 diabetes (250.x0, 250.x2, E11.xx).
For individuals with both type 1 and type 2 diabetes diagnosis codes,
greater than 50% of one type of code determined individual diabetes
type (9); this definition has sensitivity of 63% and positive predictive
value of 94% for identifying individuals with type 1 diabetes, and a
sensitivity of 100% and positive predictive value of 90% for
identifying individuals with type 2 diabetes. The population was
restricted to the first enrollment period for individuals with
complete demographic and socioeconomic information.

Neuropsychological Outcomes
Neuropsychological outcomes were defined by aggregating across
diagnoses specific to mental health, cognitive, chronic pain,
addiction, and sleep disorders. These conditions were defined
using ICD-9/ICD-10 codes (Supplemental Table S1) from the
period of follow-up after diabetes diagnosis, or an analogous portion
of follow-up in individuals without diabetes. Specifically, mental
health disorders were determined as whether individuals had a
diagnosis of anxiety, Attention Deficit Hyperactivity Disorder
(ADHD), adjustment disorder, eating disorder, depression, Post-
Traumatic Stress Disorder (PTSD), or other behavioral and
emotional disorders (10–12). Cognitive disorders were determined
as whether individuals had a diagnosis of dementia, mild cognitive
impairment, Alzheimer’s, or vascular dementia (13–15). Addiction
disorders were determined as whether individuals had a diagnosis
indicating dependence on alcohol, opioids, cocaine, sedatives,
hallucinogens, nicotine, inhalant, other stimulants, and, other
psychoactive and non-psychoactive chemicals (16). Chronic pain

Abbreviations: ICD-9/ICD-10, International Classification of Diseases, 9th, and
10th editions respectively.
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disorders were determined as whether individuals had a diagnosis of
chronic pain based on a previously validated definition that
included postherpetic neuralgia, trigeminal neuralgia, HIV-
associated pain, stroke-associated pain, chronic pain syndrome,
lumbar radiculopathy, complex regional pain syndrome, spinal
cord injury, surgically-induced pain, phantom limb, cervical
radiculopathy, multiple sclerosis-associated pain, fibromyalgia,
osteoarthritis, low back pain, migraine, rheumatoid arthritis,
ankylosing spondylitis, psoriatic arthropathy, cancer pain, irritable
bowel syndrome, painful bladder syndrome, and interstitial cystitis
(17). In addition to the above conditions, chronic headache, chronic
fatigue syndrome, temporomandibular joint disorder, and chronic
pelvic pain (endometriosis or vulvodynia) were included as
chronic pain conditions. Sleep disorders were determined as
whether individuals had a diagnosis of insomnia, hypersomnia,
sleep apnea, circadian rhythm disorders, or other sleep
disorders (18).

Microvascular and Macrovascular
Complications of Diabetes
We used ICD-9/ICD-10 codes to determine if individuals had
microvascular or macrovascular complications of diabetes during
the period of follow-up after diabetes diagnosis, or an analogous
portion of total follow-up in individuals without diabetes
(Supplemental Table S1). Microvascular complications included
retinopathy, neuropathy and nephropathy (19, 20). Macrovascular
complications included stroke, myocardial infarction, and peripheral
vascular disease (14, 20, 21). Amputation was also included as a
complication, but was not included as a microvascular or
macrovascular complication since it results from both mechanisms.

Matching
Individuals with type 1 diabetes were matched to individuals with
type 2 diabetes and non-diabetic controls stratified by age (0-20, 20-
40, 40-60, 60+) using propensity scores within a caliper of 0.10 for
individuals age 0-20 and within 0.01 for individuals age 20+ (22).
Propensity scores were calculated based on individual age at study
entry, sex, race/ethnicity, geographic region, education level, net
worth, insurance plan type, high deductible health plan status,
modified Charlson Comorbidity Index, starting year of enrollment,
and length of follow-up. The modified version of the Charlson
Comorbidity Index consisted of conditions that did not overlap
with study outcomes. Specifically, the modified Charlson
Comorbidity Index included congestive heart failure, chronic
pulmonary disease, connective tissue disease, peptic ulcer disease,
mild liver disease, paraplegia and hemiplegia, renal disease excluding
diabetic nephropathy, cancer, liver disease, metastatic carcinoma, and
HIV (23). Individuals with diabetes were also matched based on
length of pre-diagnosis and post-diagnosis enrollment.

Based on the availability of well-matched controls without
diabetes, each individual age 0-40 with type 1 diabetes was
matched to 1 individual with type 2 diabetes and then
independently matched with 1 non-diabetic control. For those
age>40, each individual with type 1 diabetes was matched to 4
individuals with type 2 diabetes and then independently matched
with 4 non-diabetic controls.

Statistical Analysis
Descriptive statistics were used to characterize the matched
individuals, stratified by age. We used a Cochrane-Mantel-Haenszel
test to compare the prevalence of each neuropsychological outcome
and each microvascular/macrovascular complication stratified by
diabetes type and age. Multivariable logistic regression was used to
assess the association between diabetes status, microvascular and
macrovascular complications, and each neuropsychological
outcome (mental health, cognitive, chronic pain, addiction, and
sleep disorders). Specifically, for each of the 5 outcomes, we fit a
model as a function of diabetes status (type 1 diabetes vs. type 2
diabetes vs. non-diabetic controls) and presence of any
microvascular or macrovascular complications, independent of
diabetes status, stratified by age. Wald Tests were used to
determine statistical significance of the effects of diabetes status and
presence of microvascular or macrovascular complications on
neuropsychological outcomes. Since very few individuals between
the ages of 0-40 had cognitive disorders, we did not fit logistic
regression models for those age strata.

To investigate the effects of distinct complications on each
neuropsychological outcome, we fit additional models, first
separating complications into microvascular, macrovascular, and
amputations, and then another model including each specific
complication as an individual covariate (retinopathy, neuropathy,
nephropathy, stroke, myocardial infarction, peripheral vascular
disease, and amputations).

For all hypothesis testing, statistical significance was
determined using a P-value threshold of 0.05.

All analyses were performed using SAS version 9.4 (Cary,
NC, USA).

This study was considered exempt by the Institutional Review
Board of the University of Michigan.

RESULTS

Demographic and Socioeconomic
Information of Matched Individuals
We identified 16,179 individuals aged 0-20 and 55,293
individuals aged 20-40 with type 1 diabetes that were each
matched to 1 individual with type 2 diabetes and 1 individual
without diabetes. Similarly, we identified 63,777 individuals aged
40-60 and 49,516 individuals age 60+ with type 1 diabetes that
were each matched to 4 individuals with type 2 diabetes and 4
individuals without diabetes.

Descriptive statistics of the matched individuals’ demographic,
socioeconomic, and insurance plan information are presented in
Table 1. Within age strata, individuals were closely matched in all
characteristics. In individuals with type 1 diabetes, the mean follow-
up length after diabetes diagnosis was 2.41 years (SD 2.94) for
individuals ages 0-20, 1.56 years (SD 2.13) for individuals ages 20-
40, 2.07 years (SD 2.67) for individuals ages 40-60, and 2.48 years
(SD 3.04) for individuals ages 60+. In individuals with type 2
diabetes, the mean follow-up length after diabetes diagnosis was
2.42 years (SD 2.60) for individuals ages 0-20, 1.59 years (SD 1.93)
for individuals ages 20-40, 2.07 years (SD 2.67) for individuals ages
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TABLE 1 | Demographics of matched cohort, stratified by age and diabetes type.

age 0-20 (N=48,537) age 20-40 (N=165,877)

Variable Type 1
Diabetes
(n=16,179)

Type 2 Diabetes
(n=16,179)

No Diabetes
(n=16,179)

Type 1 Diabetes
(n=55,293)

Type 2
Diabetes
(n=55,293)

No Diabetes
(n=55,291)

Age Mean years (SD) 14.1 (4.52) 14. (5.45) 14.1 (4.95) 31.0 (5.60) 30. (5.63) 30.9 (5.61)
Gender (%) Female 52.0% 52.2% 51.9% 49.4% 49.8% 49.0%

Male 48.0% 47.8% 48.1% 50.6% 50.2% 51.0%
Race (%) Asian 3.2% 3.0% 3.4% 2.8% 3.0% 2.9%

Black 10.7% 10.3% 10.7% 10.1% 10.0% 10.2%
Hispanic 12.6% 12.6% 12.4% 10.2% 10.5% 10.8%
White 73.5% 74.1% 73.5% 76.9% 76.5% 76.1%

State (%) IL, IN, MI, OH, WI 16.2% 16.6% 16.2% 16.1% 15.9% 15.3%
AL, KY, MS, TN 4.8% 4.7% 5.0% 5.6% 5.6% 5.6%
NJ, NY, PA 9.4% 9.4% 9.4% 8.7% 9.2% 9.1%
AZ, CO, ID, MT, NV,
NM, UT, WY

7.2% 7.2% 7.2% 8.7% 8.6% 9.0%

CT, ME, MA, NH,
RI, VT

3.3% 3.4% 3.2% 2.8% 2.9% 3.1%

AK, CA, HI, OR, WA 8.8% 8.6% 8.6% 8.2% 8.2% 8.6%
DE, DC, FL, GA, MD,
NC, SC, VA, WV

26.8% 26.7% 27.5% 25.2% 25.1% 25.0%

IA, KS, MN, MO, NE,
ND, SD

7.9% 7.8% 7.4% 10.5% 10.7% 10.3%

AR, LA, OK, TX 15.5% 15.4% 15.3% 14.1% 13.8% 13.9%
Education Level (%) Less than 12th Grade 0.6% 0.6% 0.7% 0.7% 0.8% 0.7%

High School Diploma 29.9% 30.1% 30.2% 27.8% 27.6% 27.4%
Less than bachelor’s
degree

52.5% 52.3% 51.9% 53.7% 53.2% 53.2%

Bachelor’s degree
Plus

17.0% 17.0% 17.2% 17.8% 18.4% 18.7%

Net Worth (%) <$25K 27.4% 27.2% 26.6% 33.2% 32.6% 32.8%
$25K-$149K 24.1% 24.3% 24.1% 27.2% 27.0% 26.7%
$150K-$249K 12.0% 11.8% 12.2% 11.7% 11.7% 11.8%
$250K-$499K 16.9% 17.1% 17.0% 14.5% 14.7% 15.1%
$500K+ 19.5% 19.6% 20.1% 13.5% 14.1% 13.6%

Insurance Provider (%) Exclusive Provider
Organization

13.6% 13.7% 13.6% 12.2% 12.1% 12.6%

Health Maintenance
Organization

18.5% 18.1% 18.2% 20.3% 20.3% 19.1%

Indemnity 0.0% 0.0% 0.0% 0.1% 0.1% 0.1%
Other 0.1% 0.1% 0.1% 0.8% 0.9% 0.8%
Point of Service 60.8% 61.1% 61.2% 58.1% 58.0% 58.8%
Preferred Provider
Organization

6.9% 7.0% 6.8% 8.5% 8.7% 8.6%

Customer Driven Health
Plan Type (%)

Health
Reimbursement
Arrangement

6.0% 5.9% 6.1% 4.8% 4.9% 5.0%

Health Savings
Account

9.3% 9.4% 9.2% 7.5% 7.4% 8.0%

Micro/Macrovascular
Complication

Any Complication (%) 7.8% 4.4% 0.6% 22.2% 8.9% 1.6%

Retinopathy (%) 3.3% 0.5% 0.0% 12.9% 1.8% 0.0%
Neuropathy (%) 1.4% 1.1% 0.2% 5.3% 2.7% 0.6%
Nephropathy (%) 2.9% 1.6% 0.2% 7.8% 3.2% 0.4%
Myocardial Infarction
(%)

0.1% 0.1% 0.0% 0.4% 0.3% 0.1%

Stroke (%) 0.1% 0.2% 0.1% 0.4% 0.4% 0.1%
Peripheral Vascular
Disease (%)

0.8% 0.8% 0.1% 2.5% 1.6% 0.4%

Amputation (%) 0.4% 0.5% 0.1% 1.3% 0.9% 0.2%
Modified Charlson
Comorbidity Score

Mean score (SD) 0.1 (0.34) 0.1 (0.35) 0.11 (0.35) 0.14 (0.42) 0.15 (0.4) 0.14 (0.41)

Years of Follow-up Mean years (SD) 4.50 (3.77) 4.51 (3.54) 4.52 (3.78) 3.05 (2.93) 3.09 (2.80) 3.06 (3.04)

(Continued)
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TABLE 1 | Continued

age 0-20 (N=48,537) age 20-40 (N=165,877)

Variable Type 1
Diabetes
(n=16,179)

Type 2 Diabetes
(n=16,179)

No Diabetes
(n=16,179)

Type 1 Diabetes
(n=55,293)

Type 2
Diabetes
(n=55,293)

No Diabetes
(n=55,291)

Years of Follow-up Pre-
diabetes diagnosis)

Mean years (SD) 2.08 (2.31) 2.08 (2.20) N/A 1.48 (1.) 1.50 (1.83) N/A

Years of Follow-up Post-
diabetes diagnosis

Mean years (SD) 2.41 (2.94) 2.42 (2.60) N/A 1.56 (2.13) 1.59 (1.93) N/A

age 40-60 (N=573,874) age 60+ (N=443,847)
Variable Type 1

Diabetes
(n=63,777)

Type 2 Diabetes
(n=255,066)

No Diabetes
(n=255,031)

Type 1
Diabetes
(n=49,516)

Type 2
Diabetes

(n=198,064)

No Diabetes
(n=196,267)

Age Mean years (SD) 50. (5.65) 50.4 (5.64) 50.3 (5.64) 71.3 (7.42) 71.3 (7.34) 71.0 (7.15)
Gender (%) Female 47.8% 47.7% 47.9% 52.6% 52.6% 52.3%

Male 52.2% 52.3% 52.1% 47.4% 47.4% 47.7%
Race (%) Asian 2.2% 2.3% 2.3% 2.8% 2.8% 3.0%

Black 10.8% 11.0% 11.0% 14.6% 14.5% 14.4%
Hispanic 8.2% 8.3% 8.4% 8.8% 8.8% 9.1%
White 78.8% 78.5% 78.3% 73.8% 73.9% 73.5%

State (%) IL, IN, MI, OH, WI 15.2% 15.2% 15.2% 13.3% 13.2% 13.0%
AL, KY, MS, TN 5.9% 5.8% 5.8% 5.6% 5.6% 5.5%
NJ, NY, PA 8.4% 8.4% 8.5% 11.6% 11.7% 11.1%
AZ, CO, ID, MT, NV,
NM, UT, WY

7.4% 7.5% 7.5% 7.2% 7.3% 7.9%

CT, ME, MA, NH, RI, VT 3.5% 3.5% 3.6% 5.6% 5.7% 5.4%
AK, CA, HI, OR, WA 8.4% 8.3% 8.4% 10.5% 10.5% 10.6%
DE, DC, FL, GA, MD,
NC, SC, VA, WV

28.2% 28.4% 27.8% 28.6% 28.5% 27.5%

IA, KS, MN, MO, NE,
ND, SD

10.1% 10.1% 9.9% 7.7% 7.7% 8.5%

AR, LA, OK, TX 12.7% 12.9% 13.0% 9.6% 9.4% 10.1%
Education Level (%) Less than 12th Grade 0.8% 0.8% 0.8% 1.3% 1.3% 1.3%

High School Diploma 30.8% 30.9% 31.0% 36.0% 35.9% 36.0%
Less than bachelor’s
degree

51.4% 51.0% 51.1% 49.7% 49.9% 49.6%

Bachelor’s degree Plus 17.1% 17.3% 17.2% 13.0% 12.9% 13.0%
Net Worth (%) <$25K 20.0% 20.1% 20.2% 18.4% 18.2% 18.6%

$25K-$149K 22.7% 22.6% 22.7% 21.2% 21.1% 21.4%
$150K-$249K 13.5% 13.4% 13.8% 13.7% 13.8% 14.0%
$250K-$499K 21.2% 21.1% 20.9% 21.1% 21.2% 21.2%
$500K+ 22.7% 22.7% 22.4% 25.6% 25.7% 24.9%

Insurance Provider (%) Exclusive Provider
Organization

10.2% 10.3% 10.5% 2.6% 2.6% 2.7%

Health Maintenance
Organization

23.4% 23.5% 22.8% 34.4% 34.2% 35.3%

Indemnity 0.2% 0.2% 0.2% 3.8% 3.8% 3.9%
Other 4.6% 4.6% 4.4% 33.7% 34.0% 32.0%
Point of Service 52.4% 52.2% 52.9% 14.1% 14.1% 14.6%
Preferred Provider
Organization

9.2% 9.2% 9.2% 11.4% 11.4% 11.5%

Customer Driven Health
Plan Type (%)

Health Reimbursement
Arrangement

4.4% 4.5% 4.5% 1.2% 1.2% 1.2%

Health Savings Account 7.2% 7.2% 7.4% 1.9% 1.8% 2.0%
Micro/Macrovascular
Complication

Any Complication (%) 38.6% 21.9% 6.9% 53.6% 46.6% 25.4%

Retinopathy (%) 21.2% 5.0% 0.0% 17.4% 7.8% 0.1%
Neuropathy (%) 12.5% 7.9% 2.1% 15.5% 13.6% 4.7%
Nephropathy (%) 13.6% 7.3% 1.9% 23.7% 22.7% 11.9%
Myocardial Infarction (%) 2.0% 1.8% 0.9% 5.4% 5.2% 3.5%
Stroke (%) 1.7% 1.7% 0.9% 6.1% 6.2% 4.6%
Peripheral Vascular
Disease (%)

9.1% 6.2% 2.1% 22.9% 20.3% 11.1%

Amputation (%) 3.9% 2.4% 0.5% 6.2% 4.8% 1.8%

(Continued)
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40-60, and 2.47 years (SD 2.91) for individuals ages 60+. Matched
individuals were roughly 50% female (within 3% in each group).
Approximately 10% of matched individuals were black, except in
the 60+ age strata, where approximately 15% of individuals were
black. Individuals aged 0-40 were 10-12% Hispanic, while
individuals age 40+ were 8-9% Hispanic.

Neuropsychological Outcomes
The unadjusted prevalence of each neuropsychological condition
is presented in Figures 1A–E. Across all neuropsychological
outcomes except cognitive disorders, individuals with type 2
diabetes had the highest prevalence, followed by individuals with
type 1 diabetes and then individuals without diabetes (each
Cochrane-Mantel-Haenszel Test P<.001). For cognitive
disorders, individuals with type 1 diabetes had a higher
prevalence than individuals with type 2 diabetes (each
Cochrane-Mantel-Haenszel Test P<.001). In each age strata,
chronic pain was the most prevalent condition, followed by
mental health, sleep, addiction, and cognitive disorders.
Cognitive disorders were rare in all age groups except in those
greater than 60 years old.

Microvascular and Macrovascular
Complications
The unadjusted prevalence of microvascular and macrovascular
complications is presented in Figure 2. Individuals with type 1
diabetes had the highest prevalence of microvascular and
macrovascular complications (ages 0-20: 7.8%, ages 20-40:
22.2%, ages 40-60: 38.6%, ages 60+: 53.6%), followed by
individuals with type 2 diabetes (ages 0-20: 4.4%, ages 20-40:
8.9%, ages 40-60: 21.9%, ages 60+: 46.6%) and non-diabetic
controls (ages 0-20: 0.6%, ages 20-40: 1.6%, ages 40-60: 6.9%,
ages 60+: 25.4%) (Cochrane-Mantel-Haenszel Test: P<.001)
(Figure 2). This trend was consistent for each individual
complication and age strata (all P<.001).

Mental Health Disorders
The results of the mental health disorder models are presented
in Table 2. Across age strata and after adjusting for the presence
of microvascular/macrovascular complications, individuals with
type 2 diabetes (ages 0-20: OR 1.31, 95% CI: 1.28-1.35; ages 20-
40: OR 1.24, 95% CI 1.22-1.26; ages 40-60: OR 1.11, 95% CI:

1.10-1.12; ages 60+: OR 1.01, 95% CI: 1.01-1.02) and younger
individuals with type 1 diabetes (ages 0-20: OR 1.14, 95% CI:
1.10-1.17; ages 20-40: OR 1.04, 95% CI 1.03-1.06) had
significantly higher odds of mental health disorders compared
to non-diabetic controls (Table 2). In contrast, older individuals
with type 1 diabetes had significantly lower odds of mental
health disorders compared to non-diabetic controls (ages 40-60:
OR 0.98, 95% CI: 0.97, 0.99; ages 60+: OR 0.94, 95% CI: 0.93-
0.95). In all age strata, individuals with type 2 diabetes also had
significantly higher odds of mental health disorders compared
to individuals with type 1 diabetes. After adjusting for diabetes
status, the effects of microvascular and macrovascular
complications were independently associated with an
increased odds of mental health disorders (ages 0-20: OR 1.37,
95% CI: 1.28-1.46; ages 20-40: OR 1.31, 95% CI 1.28-1.34; ages
40-60: OR 1.43, 95% CI: 1.41-1.44; ages 60+: OR 1.61, 95% CI:
1.60-1.63).

Cognitive Disorders
The results of the cognitive disorder models are presented in
Table 2. After adjusting for the presence of microvascular/
macrovascular complications, both individuals with type 1
diabetes (ages 40-60: OR 0.89, 95% CI: 0.85-0.94; ages 60+: OR
0.87, 95% CI: 0.85-0.88) and individuals with type 2 diabetes
(ages 40-60: OR 0.96, 95% CI: 0.93-0.99; ages 60+: OR 0.89, 95%
CI: 0.88-0.90) had significantly lower odds of having a cognitive
disorder compared to those without diabetes. However, there
was no significant difference between individuals with type 1
diabetes and individuals with type 2 diabetes. In all individuals,
after adjusting for diabetes status, the presence of microvascular/
macrovascular complications were independently associated
with an increased odds of cognitive disorders (ages 40-60: OR
2.45, 95% CI: 2.36-2.54; ages 60+: OR 2.16, 95% CI: 2.13-2.19).

Chronic Pain
The results of the chronic pain models are presented in Table 2. In
all age strata and after adjusting for the presence of microvascular/
macrovascular complications, individuals with type 2 diabetes (ages
0-20: OR 1.44, 95% CI: 1.41-1.48; ages 20-40: OR 1.34, 95% CI 1.33-
1.36; ages 40-60: OR 1.12, 95% CI: 1.11-1.13; ages 60+: OR 1.05,
95% CI: 1.04-1.05) had significantly higher odds of chronic pain
than both individuals with type 1 diabetes and those without

TABLE 1 | Continued

age 0-20 (N=48,537) age 20-40 (N=165,877)

Variable Type 1
Diabetes
(n=16,179)

Type 2 Diabetes
(n=16,179)

No Diabetes
(n=16,179)

Type 1 Diabetes
(n=55,293)

Type 2
Diabetes
(n=55,293)

No Diabetes
(n=55,291)

Modified Charlson
Comorbidity Score

Mean score (SD) 0.32 (0.6) 0.3 (0.64) 0.32 (0.6) 0.64 (0.90) 0.65 (0.89) 0.65 (0.89)

Years of Follow-up Mean years (SD) 3.8 (3.57) 3.87 (3.35) 3.85 (3.53) 4.21 (3.85) 4.20 (3.57) 4.10 (3.78)
Years of Follow-up Pre-
diabetes diagnosis)

Mean years (SD) 1.79 (2.13) 1.78 (2.07) N/A 1.7 (2.07) 1.73 (1.94) N/A

Years of Follow-up Post-
diabetes diagnosis

Mean years (SD) 2.07 (2.67) 2.08 (2.47) N/A 2.48 (3.04) 2.47 (2.91) N/A

N/A, Not Applicable.
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diabetes. Compared to individuals without diabetes, individuals
with type 1 diabetes aged 0-40 had significantly higher odds of
chronic pain while individuals with type 1 diabetes aged 40+ had
significantly lower odds of chronic pain than individuals with no
diabetes (ages 0-20: OR 1.06, 95% CI: 1.03-1.09; ages 20-40: OR
1.02, 95% CI 1.01-1.04; ages 40-60: OR 0.94, 95% CI: 0.93-0.95; ages
60+: OR 0.92, 95% CI: 0.91-0.93). After adjusting for diabetes status,
the presence of microvascular or macrovascular complications were

independently associated with an increased odds of chronic pain
amongst all age groups (ages 0-20: OR 1.46, 95% CI: 1.37-1.55; ages
20-40: OR 1.35, 95% CI 1.32-1.38; ages 40-60: OR 1.51, 95% CI:
1.50-1.53; ages 60+: OR 1.77, 95% CI: 1.75-1.78).

Addiction Disorder
The results of the addiction disorder models are presented in
Table 2. After adjusting for the presence of microvascular/

A B

D

E

C

FIGURE 1 | Prevalence of Mental Health Disorders (A) Cognitive Disorders (B) Chronic Pain (C) Addiction (D) Sleep (E). (A) Prevalence of Mental Health Disorders
for individuals with type 1 diabetes, type 2 diabetes, and without diabetes, stratified by age (0-20, 20-40, 40-60, 60+ years). (B) Prevalence of Cognitive Disorders
for individuals with type 1 diabetes, type 2 diabetes, and without diabetes, stratified by age (0-20, 20-40, 40-60, 60+). (C) Prevalence of Chronic Pain for individuals
with type 1 diabetes, type 2 diabetes, and without diabetes, stratified by age (0-20, 20-40, 40-60, 60+). (D) Prevalence of Addiction for individuals with type 1
diabetes, type 2 diabetes, and without diabetes, stratified by age (0-20, 20-40, 40-60, 60+). (E) Prevalence of Sleep Disorders for individuals with type 1 diabetes,
type 2 diabetes, and without diabetes, stratified by age (0-20, 20-40, 40-60, 60+).
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macrovascular complications, only individuals with type 2
diabetes aged 0-40 had significant differences in the odds of
addiction compared to individuals with type 1 diabetes and
those without diabetes (ages 0-20: OR: 1.15, 95% CI 1.09-1.21;
ages 20-40: OR: 1.24, 95% CI 1.22-1.27). Individuals aged 40+

with type 1 diabetes had a significantly smaller odds of addiction
compared to individuals with type 2 diabetes and without diabetes
(ages 40-60: OR 0.83, 95% CI: 0.82-0.84; ages 60+: OR 0.83, 95%
CI: 0.81-0.84). In contrast, for individuals 0-20 years old, there
were no differences in odds of addiction between individuals with

TABLE 2 | The association between diabetes status and microvascular/macrovascular complications and neuropsychological outcomes stratified by age.

Model Outcome Covariate Ages 0-20 OR
(95% CI)

Ages 20-40 OR
(95% CI)

Ages 40-60 OR
(95% CI)

Ages 60 + OR
(95% CI)

Mental Health
Disorder

Type 1 Diabetes (reference: no diabetes) 1.14 (1.10, 1.17) a 1.04 (1.03, 1.06) a 0.98 (0.97, 0.99) a 0.94 (0.93, 0.95) a

Type 2 Diabetes (reference: no diabetes) 1.31 (1.28, 1.35) a 1.24 (1.22, 1.26) a 1.11 (1.10, 1.12) a 1.01 (1.01, 1.02) a

Microvascular/Macrovascular complications
(reference: none)

1.37 (1.28, 1.46) 1.31 (1.28, 1.34) 1.43 (1.41, 1.44) 1.61 (1.60, 1.63)

Cognitive Disorder Type 1 Diabetes (reference: no diabetes) N/A N/A 0.89 (0.85, 0.94) 0.87 (0.85, 0.88)
Type 2 Diabetes (reference: no diabetes) N/A N/A 0.96 (0.93, 0.99) 0.89 (0.88, 0.90)
Microvascular/Macrovascular complications
(reference: none)

N/A N/A 2.45 (2.36, 2.54) 2.16 (2.13, 2.19)

Chronic Pain Type 1 Diabetes (reference: no diabetes) 1.06 (1.03, 1.09) a 1.02 (1.01, 1.04) a 0.94 (0.93, 0.95) a 0.92 (0.91, 0.93) a

Type 2 Diabetes (reference: no diabetes) 1.44 (1.41, 1.48) a 1.34 (1.33, 1.36) a 1.12 (1.11, 1.13) a 1.05 (1.04, 1.05) a

Microvascular/Macrovascular complications
(reference: none)

1.46 (1.37, 1.55) 1.35 (1.32, 1.38) 1.51 (1.50, 1.53) 1.77 (1.75, 1.78)

Addiction Type 1 Diabetes (reference: no diabetes) 1.03 (0.97, 1.09) 1.08 (1.06, 1.11) a 0.83 (0.82, 0.84) a 0.83 (0.81, 0.84) a

Type 2 Diabetes (reference: no diabetes) 1.15 (1.09, 1.21) 1.24 (1.22, 1.27) a 0.99 (0.98, 1.00) a 0.94 (0.93, 0.95) a

Microvascular/Macrovascular complications
(reference: none)

1.51 (1.36, 1.68) 1.33 (1.29, 1.37) 1.58 (1.56, 1.60) 1.58 (1.56, 1.60)

Sleep Disorder Type 1 Diabetes (reference: no diabetes) 0.97 (0.91, 1.04) a 0.92 (0.90, 0.95) a 0.93 (0.92, 0.94) a 0.98 (0.97, 1.00) a

Type 2 Diabetes (reference: no diabetes) 1.54 (1.46, 1.63) a 1.39 (1.36, 1.42) a 1.25 (1.24, 1.26) a 1.14 (1.12, 1.15) a

Microvascular/Macrovascular complications
(reference: none)

1.54 (1.38, 1.72) 1.41 (1.36, 1.46) 1.49 (1.48, 1.50) 1.52 (1.50, 1.53)

OR, Odds ratio; CI, confidence interval; N/A, Not Applicable.
Bold represents a statistically significant (P-Value<0.05) difference in odds between individuals with type 1 diabetes and without diabetes, between individuals with type 2 diabetes and
without diabetes, and between individuals with and without microvascular/macrovascular complications based on Wald Tests.
aRepresents a statistically significant (P-Value<0.05) difference in odds between individuals with type 1 diabetes and individuals with type 2 diabetes based on Wald Tests.

FIGURE 2 | Prevalence of Microvascular or Macrovascular Complications for individuals with type 1 diabetes, type 2 diabetes, and without diabetes, stratified by
age (0-20, 20-40, 40-60, 60+).
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type 1 diabetes and those without diabetes (OR 1.03, 95% CI 0.97-
1.09), and individuals 20-40 years old experienced higher
odds of addiction than individuals with no diabetes (OR 1.08,
95% CI 1.06-1.11). After adjusting for diabetes status, the
presence of microvascular or macrovascular complications were
independently associated with an increased odds of addiction (age
0-20: OR 1.51, 95% CI: 1.36-1.68; age 20-40: OR 1.33, 95% CI
1.29-1.37; age 40-60: OR 1.58, 95% CI: 1.56-1.60; age 60+: OR
1.58, 95% CI: 1.56-1.60).

Sleep Disorders
The results of the sleep disorder models are presented in Table 2.
In all age groups and after adjusting for the presence of
microvascular/macrovascular complications, individuals with
type 2 diabetes had significantly higher odds of having sleep
disorders compared to individuals without diabetes, (ages 0-20:
OR 1.54, 95% CI: 1.46-1.63; ages 20-40: OR 1.39, 95% CI 1.36-
1.42; ages 40-60: OR 1.25, 95% CI: 1.24-1.26; ages 60+: OR 1.14,
95% CI: 1.12-1.15). Individuals with type 1 diabetes ages 20-60
had significantly lower odds of sleep disorders than individuals
without diabetes (ages 20-40: OR 0.92, 95% CI: 0.90-0.95; ages
40-60: OR 0.93, 95% CI: 0.92-0.94). After adjusting for diabetes
status, the presence of microvascular or macrovascular
complications was independently associated with an increased
odds of sleep disorders across age strata (ages 0-20: OR 1.54, 95%
CI: 1.38-1.72; ages 20-40: OR 1.41, 95% CI 1.36-1.46; ages 40-60:
OR 1.49, 95% CI: 1.48-1.50; ages 60+: OR 1.52, 95% CI:
1.50-1.53).

Effect of Specific Microvascular and
Macrovascular Complications
When separating the effects of complications into microvascular,
macrovascular, and amputations, nearly all effects remained
posit ive and statist ical ly significant , as detailed in
Supplementary Table S2. Macrovascular complications had
the largest effect size for 14 out of 18 comparisons. The models
with individual complication effects, detailed in Supplementary
Table S3, revealed that amongst microvascular complications,
neuropathy had the largest effect size for 17 out of 18
comparisons. Amongst macrovascular complications, stroke
had the largest effect size for 12 out of 18 comparisons.

DISCUSSION

To our knowledge, this is the largest US study to examine the
prevalence of neuropsychological outcomes among a nationally
representative population of privately insured individuals with
type 1 and type 2 diabetes and controls without diabetes.
Furthermore, we are unaware of studies that have evaluated
the independent effects of diabetes status and microvascular/
macrovascular complications on these neuropsychological
outcomes. We found that the prevalence of neuropsychological
outcomes (mental health, chronic pain, addiction, and sleep
disorders) was higher in individuals with type 2 diabetes
compared to type 1 diabetes, and in individuals with type 1
diabetes compared to those without diabetes. For cognitive

disorders, microvascular complications, and macrovascular
complications, the prevalence was highest in those with type 1
diabetes, followed by those with type 2 diabetes and then those
without diabetes. Microvascular and macrovascular
complications were consistently associated with higher odds
for all five neuropsychological outcomes, independent of
diabetes status. Interestingly, after adjusting for the presence of
microvascular and macrovascular complications, individuals
with type 1 diabetes had similar odds of developing
neuropsychological outcomes compared to those without
diabetes (no odds ratios >1.15). In contrast, individuals with
type 2 diabetes are more likely to experience mental health,
chronic pain, and sleep disorders even after adjusting for
microvascular and macrovascular complications.

Despite a higher prevalence of neuropsychological outcomes, we
found that individuals with type 1 diabetes had similar or reduced
odds of developing all neuropsychological outcomes compared to
individuals without diabetes, after adjusting for the presence of
microvascular and macrovascular complications. Thus,
microvascular and macrovascular complications likely play a
fundamental role in the development of neuropsychological
outcomes in individuals with type 1 diabetes. One explanation of
our results is that the same pathophysiologic processes that drive
microvascular and macrovascular complications also drive
neuropsychological outcomes. For instance, individuals with a
longer duration of diabetes or worse glycemic control are more
likely to develop complications, and these same factors may also
increase the risk of neuropsychological outcomes. Unfortunately,
our database does not contain information on diabetes duration or
severity to address this important question. Another possibility is
that the complications themselves lead to worse neuropsychological
outcomes, either directly through downstream consequences that
result from these complications or indirectly through reduced
quality of life and disease burden. A combination of these two
explanations is likely and should be the focus of future studies. In
addition, future studies should focus on the role of neuropathy and
stroke as these were the individual microvascular/macrovascular
complications that resulted in the highest odds of
neuropsychological outcomes. Furthermore, since microvascular
and macrovascular complications are more common in individuals
with type 1 diabetes and are a major driver of the higher prevalence
of neuropsychological outcomes in these individuals, our results
highlight the importance of preventing these complications.

In contrast, after adjusting for the presence of microvascular
and macrovascular complications, individuals with type 2
diabetes were still at higher risk for developing three
neuropsychological outcomes: mental health disorders, chronic
pain, and sleep disorders, compared to both individuals with type
1 diabetes, and individuals without diabetes. These results
indicate that factors beyond microvascular and macrovascular
complications likely contribute to the development of these
wide-ranging neuropsychological conditions in individuals
with type 2 diabetes. Since individuals with type 2 diabetes
have a higher prevalence of metabolic risk factors than
individuals with type 1 diabetes and the general population,
these other metabolic factors may contribute to the higher
prevalence of neuropsychological outcomes.
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Supporting this hypothesis, metabolic risk factors other than
hyperglycemia have been shown to be associated with multiple
neuropsychological outcomes. Specifically, meta-analyses
demonstrated associations between obesity, metabolic control
and mental health disorders such as anxiety and depression (24,
25). Similarly, a meta-analysis revealed associations between
overweight and obesity with chronic pain (26). Moreover,
obesity also increases the likelihood of lower quality sleep and
sleep apnea (27). Given the robust literature linking obesity and
other metabolic risk factors with neuropsychological outcomes
and the high prevalence of these comorbidities with type 2
diabetes, the higher prevalence of neuropsychological outcomes
in the type 2 compared to the type 1 diabetes population is at
least partially explained.

Another possibility is that individuals that have or are
susceptible to neuropsychological outcomes may be more likely
to develop type 2 diabetes. Though the majority of the literature
focuses on risks in individuals that already have type 2 diabetes, a
systematic review (28) found that depressed adults have a 37%
increased risk of developing type 2 diabetes. While demographic
factors are also different between type 1 and type 2 diabetes
populations, our comparisons are adjusted for many key factors
including age, sex, race, ethnicity, and socioeconomic status. Given
that microvascular and macrovascular complications are not the
sole driving force behind neuropsychological outcomes in
individuals with type 2 diabetes, studies are needed to determine
the other key risk factors including demographic factors.

Individuals that experienced any microvascular complications,
macrovascular complications or amputations had higher odds of
having each neuropsychological outcome, suggesting that these
complications are the primary driver for a wide range of
neuropsychological outcomes, regardless of diabetes status.
Although macrovascular complications were less prevalent than
microvascular complications, macrovascular complications
were associated with a higher odds of neuropsychological
outcomes compared to microvascular complications in 14 out
of the 18 models we evaluated. The macrovascular and
microvascular complications having the largest associations with
neuropsychological outcomes were stroke (12 out of 18
comparisons) and neuropathy (17 out of 18 comparisons)
respectively. These results are congruent with previous studies
that have found that dementia, mental health disorders, chronic
pain, and sleep disorders were common in individuals following a
stroke (29–33). In addition, neuropathy has been previously linked
to chronic pain, various mental health disorders, sleep disorders,
lower cognitive performance, and inhalant addiction (34–39).
Given that individuals with these complications have a higher risk
for these neuropsychological outcomes, preventing or improving
complications such as neuropathy or stroke in individuals with
diabetes may simultaneously improve their neuropsychological
prospects, and therefore, should be the focus of future studies.

Limitations of the current study include possible disease
misclassification using ICD-9/ICD-10 codes. However, many of
our definitions have been validated with high positive predictive
values. Separately, claims data lack the necessary detailed clinical
information to assess the severity of microvascular/macrovascular
complications, neuropsychological conditions, and diabetes.

In addition, our analyses may have differentially captured severe
neuropsychological outcomes, as only such cases would prompt a
visit to a provider and result in a diagnostic code. Furthermore, the
generalizability to other populations such as those that are not
privately insured is unclear. On the other hand, the large-scale
claims data allowed us to identify a wide range of
neuropsychological outcomes across many age ranges, including
older populations with type 1 diabetes.

In summary, individuals with type 1 diabetes have a higher
prevalence of neuropsychological outcomes compared to those
without diabetes. However, after adjusting for the presence of
microvascular or macrovascular complications, type 1 diabetes
was not associated with an increased odds of neuropsychological
outcomes compared to individuals without diabetes.
Furthermore, microvascular and macrovascular complications
are independently associated with neuropsychological outcomes.
Specifically, we identified stroke and neuropathy as major risk
factors for most neuropsychological outcomes. Therefore,
prevention of microvascular and macrovascular complications
will likely reduce neuropsychological outcomes either as the
result of similar pathophysiologic processes or by preventing
the direct and indirect consequences of these complications. In
contrast, individuals with type 2 diabetes were at increased odds
of multiple neuropsychological outcomes compared to those
with type 1 diabetes, even after adjusting for presence of
microvascular/macrovascular complications. This indicates that
in individuals with type 2 diabetes, other factors (such as obesity)
may lead to neuropsychological complications. Alternatively, it is
possible that neuropsychological complications may result in
type 2 diabetes onset.
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Abstract 

Context: Peripheral neuropathy (PN) is a frequent prediabetes and type 2 diabetes (T2D) 
complication. Multiple clinical studies reveal that obesity and dyslipidemia can also drive 
PN progression, independent of glycemia, suggesting a complex interplay of specific 
metabolite and/or lipid species may underlie PN.
Objective: This work aimed to identify the plasma metabolomics and lipidomics signature 
that underlies PN in an observational study of a sample of individuals with average class 
3 obesity.
Methods: We performed plasma global metabolomics and targeted lipidomics on obese 
participants with (n = 44) and without PN (n = 44), matched for glycemic status, vs lean 
nonneuropathic controls (n = 43). We analyzed data by Wilcoxon, logistic regression, 
partial least squares–discriminant analysis, and group-lasso to identify differential 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/107/4/1091/6432428 by U
niversirty of M

ichigan user on 08 D
ecem

ber 2022

2862022 Feldman Laboratory Publications

https://orcid.org/0000-0002-4651-781X
https://orcid.org/0000-0001-5575-2494
https://orcid.org/0000-0002-0788-3251
https://orcid.org/0000-0001-5349-7960
https://orcid.org/0000-0002-8885-6748
https://orcid.org/0000-0002-0736-2149
https://orcid.org/0000-0002-9162-2694
https://orcid.org/0000-0002-4651-781X
https://orcid.org/0000-0001-5575-2494
https://orcid.org/0000-0002-0788-3251
https://orcid.org/0000-0001-5349-7960
https://orcid.org/0000-0002-8885-6748
https://orcid.org/0000-0002-0736-2149
https://orcid.org/0000-0002-9162-2694


1092 The Journal of Clinical Endocrinology & Metabolism, 2022, Vol. 107, No. 4

metabolites and lipids by obesity and PN status. We also conducted subanalysis by 
prediabetes and T2D status.
Results: Lean vs obese comparisons, regardless of PN status, identified the most 
significant differences in gamma-glutamyl and branched-chain amino acid metabolism 
from metabolomics analysis and triacylglycerols from lipidomics. Stratification by PN 
status within obese individuals identified differences in polyamine, purine biosynthesis, 
and benzoate metabolism. Lipidomics found diacylglycerols as the most significant 
subpathway distinguishing obese individuals by PN status, with additional contributions 
from phosphatidylcholines, sphingomyelins, ceramides, and dihydroceramides. 
Stratifying the obese group by glycemic status did not affect discrimination by PN status.
Conclusion: Obesity may be as strong a PN driver as prediabetes or T2D in a sample of 
individuals with average class 3 obesity, at least by plasma metabolomics and lipidomics 
profile. Metabolic and complex lipid pathways can differentiate obese individuals with 
and without PN, independent of glycemic status.

Key Words: complex lipid, diacylglycerol, metabolomics, lipidomics, obesity, polyneuropathy

Peripheral neuropathy (PN) is a common prediabetes and 
the most common type 2 diabetes (T2D) complication (1). 
Multiple clinical studies have identified factors beyond gly-
cemia that underlie PN onset and progression (2), specif-
ically, components of metabolic syndrome (MetS) (3-5). 
Furthermore, we have shown in several population studies 
that MetS components are PN risk factors, independent 
of glycemic status (6-8). MetS encompasses a collection 
of conditions, which include obesity, dyslipidemia, insulin 
resistance, and hypertension, which frequently occur to-
gether. The criteria defining individuals with MetS are 3 out 
of 5 from the following: elevated waist circumference (WC; 
≥ 102 cm men, ≥ 88 cm women), systolic (≥ 130 mm Hg) 
or diastolic blood pressure (≥ 85 mm Hg), triacylglycerols 
(TAGs, ie, triglycerides; ≥ 150 mg/dL), and fasting glucose 
(> 100 mg/dL) and lower high-density lipoprotein choles-
terol (HDL-c; < 40 mg/dL men, < 50 mg/dL women) (9).

In our most recent clinical study, we identified WC, de-
fined by National Cholesterol Education Program (NCEP) 
criteria, as the primary anthropometric PN driver, even in 
normoglycemic obese individuals (10, 11). This finding sug-
gests that central obesity itself is a sufficient condition for 
PN development. This observation was replicated in our 
preclinical study of diet-induced obesity in mice, which 
also drives PN development independent of T2D status 
(12). In this integrated lipidomic-transcriptomic study, we 
found that high-fat diet dysregulated the nerve lipidome 
during PN progression. The sciatic nerve from obese 
prediabetic mice with PN exhibited a distinct lipid pro-
file compared to lean mice without PN, which centered on 
differential TAG species and expression of diacylglycerol 
acyltransferase 2, the enzyme catalyzing the final and com-
mitted step in TAG synthesis. While the study suggested 
that lipidome dysregulation is a critical PN feature in obese 

murine models, whether these results translate to humans 
is unknown.

To overcome this gap (13), we undertook an observa-
tional study to characterize the metabolomic and lipidomic 
plasma profiles in a sample of individuals with average 
class 3 obesity with (n = 44; obese_PN) and without PN 
(n = 44; obese_No_PN), matched for glycemic status, 
vs lean controls without PN (n = 43). In this clinical co-
hort, metabolomic profiles between obese vs lean indi-
viduals correlated most strongly with gamma-glutamyl 
and branched-chain amino acid (BCAA) metabolism and 
within obese participants by PN status by alterations in 
polyamine, purine biosynthesis, and benzoate metabolism 
(a xenobiotics subpathway). Lipidomic profiles identified 
TAGs as strongly correlating with obesity compared to lean 
individuals, regardless of PN status. However, significant 
differences were present in diacylglycerols (DAGs) and in 
several complex lipid subpathways in obese individuals 
without PN compared to their obese counterparts with 
PN, supporting a role for dysregulation of specific lipid 
species in PN development. Stratifying the obese group by 
glycemic status did not affect discrimination by PN status. 
These results suggest obesity may be as strong a PN driver 
as prediabetes or T2D in individuals with class 3 obesity, at 
least by plasma metabolomics and lipidomics profile.

Materials and Methods

Study Participants and Diagnoses

Participants were recruited as part of two separate clinical 
trials from the University of Michigan Bariatric Surgery 
Clinic (1) and Investigational Weight Management Clinic 
(IWMC) (2), respectively. In parallel, lean controls were 
recruited for each trial. Controls did not have any MetS 
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components, assessed by clinical testing, by the NCEP/
Adult Treatment Panel III criteria. NCEP/Adult Treatment 
Panel III definitions for MetS included WC (> 102 cm men, 
> 88  cm women), systolic (> 130  mm Hg) or diastolic
blood pressure (> 85 mm Hg), TAGs (> 150 mg/dL), HDL-c
(< 40 mg/dL men, < 50 mg/dL women), and fasting glucose
(> 100 mg/dL) (3). Baseline plasma samples were obtained
from all participants. The present baseline observational
study combines the demographic data from both studies
and includes obese participants without PN (n = 44) and
with PN (n = 44) and lean controls without MetS (n = 43)
(Table 1).

The aim of this observational study was to identify dif-
ferential plasma metabolites and lipids by PN status in 
obesity, independent of glycemic status. Lean controls were 
normoglycemic, as determined by clinical testing, and did 
not meet any criteria for prediabetes or T2D. Lean controls 
had fasting blood glucose (FBG) of less than 100 mg/dL, 
2-hour glucose of less than 140 mg/dL following a 75-g oral 
glucose tolerance test (OGTT) or a glycated hemoglobin
(HbA1c) of less than 5.7% (39 mmol/mol). The obese par-
ticipants with and without PN were matched for glycemic
parameters. Prediabetes was defined based on an FBG
(100-≤ 125 mg/dL) or a 2-hour glucose of 140 to 199 mg/
dL following an OGTT or HbA

1c of 5.7% (39 mmol/mol)

to less than or equal to 6.4% (46  mmol/mol). T2D was 
defined as an FBG greater than 126 mg/dL or a 2-hour glu-
cose greater than or equal to 200 mg/dL after an OGTT, 
according to the Expert Committee on the Diagnosis and 
Classification of Diabetes Mellitus (14). T2D was also 
determined based on a known diabetes diagnosis and/or 
medications or an HbA1c greater than or equal to 6.5% 
(48 mmol/mol). All participants without a known diagnosis 
of T2D had an OGTT, and HbA1c status was collected from 
available medical records if performed within 6 months of 
the study visit. Participants underwent PN diagnosis ac-
cording to the Toronto consensus definition of probable 
PN, which requires 2 or more of the following: PN symp-
toms, abnormal sensory examination, and abnormal re-
flexes, as determined by 1 of 4 neuromuscular specialists 
(15). All participants gave their written informed consent 
for these studies, which were approved by the University of 
Michigan Institutional Review Board (HUM00092638 for 
the bariatric surgery clinic, HUM00039723 for the IWMC 
study).

Study Design

For each participant, we collected demographics (age, 
sex), anthropometric measures (body weight, height, 

Table 1. Participant demographics at time of plasma collection for global metabolomics and lipidomics analysis

Clinical parameter Lean (n = 43) Obese_PN (n = 44) Obese_No_PN 
(n = 44)

P Obese_PN 
vs Lean

P Obese_No_
PN vs Lean

P Obese_PN vs 
Obese_No_PN

Age, mean (SD), y 43.93 ± 12.28 53.16 ± 8.68 52.75 ± 8.42 < .001 < .001 .98
Sex
Female 35 (81.40%) 24 (54.55%) 24 (54.55%) .011 .011 ≥ .99
Male 8 (18.60%) 20 (45.45%) 20 (45.45%) .011 .011 ≥ .99
BMI, mean (SD) 22.89 ± 2.06 45.03 ± 6.84 43.03 ± 6.22 < .001 < .001 .21
Body weight, mean (SD), kg 64.43 ± 10.01 137.32 ± 29.94 123.88 ± 21.91 < .001 < .001 .015
WC, mean (SD), cm 80.64 ± 7.12 136.47 ± 16.92 124.49 ± 16.11 < .001 < .001 < .001
Blood pressure, mean (SD), 

mm Hg
Systolic 108.40 ± 10.50 135.00 ± 15.39 130.50 ± 11.12 .001 < .001 .22
Diastolic 66.30 ± 9.73 70.02 ± 11.17 71.36 ± 10.67 .23 .069 .82
Cholesterol, mean (SD), mmol/l 181.81 ± 41.06 157.25 ± 41.60 162.27 ± 36.91 .013 .062 .83
TAGs, mean (SD), mmol/L 72.42 ± 22.34 161.09 ± 113.90 151.25 ± 94.48 < .001 < .001 .86
HDL-c, mean (SD), mmol/l 67.19 ± 16.23 43.34± 12.36 41.57 ± 9.99 < .001 < .001 .80
LDL-c, mean (SD), mmol/L 102.77 ± 28.83 85.16 ± 34.91 99.26 ± 44.57 .069 .90 .18
FBG, mean (SD), mg/dL 85.07 ± 6.46 128.61 ± 37.80 131.71 ± 66.70 <0.001 < .001 .95
Type 2 diabetes (yes/no) 0/43 29/15 25/19 < .001 < .001 .051
Prediabetes (yes/no) 0/43 7/37 13/31 .012 < .001 .20
Statin use (yes/no) 0/43 22/22 21/23 < .001 < .001 ≥ .99
β-blocker use (yes/no) 0/43 18/26 17/27 < .001 < .001 ≥ .99

Age, BMI, body weight, WC, blood pressure (systolic, diastolic), cholesterol, TAGs, HDL-c, and LDL-c were analyzed by one-way analysis of variance with post 
hoc analysis with Tukey test; sex (female, male), diabetes status, prediabetes status, statin use, and β-blocker use were analyzed by Fisher test.
Abbreviations: BMI, body mass index; FBG, fasting blood glucose; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; 
obese_PN, obese with peripheral neuropathy; obese_No_PN, obese without peripheral neuropathy; TAGs, triacylglycerols; WC, waist circumference.
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body mass index [BMI], WC), vitals (systolic and dia-
stolic blood pressure), and a fasting lipid profile (TAGs, 
total cholesterol, HDL-c, and low-density lipoprotein 
cholesterol [LDL-c]). For the primary study outcome, 
participants provided a plasma sample for metabolomics 
and lipidomics analysis before weight-loss intervention. 
Participants were asked to fast for 12 hours overnight 
and abstain from alcohol, smoking, medication use, and 
caffeine, and avoid vigorous exercise out of their normal 
routine. Participants with T2D were asked to monitor 
their blood sugar and adjust medication if needed. Blood 
was drawn from fasted participants using good clinical 
practice into EDTA tubes, which were temporarily kept 
at 4  °C for a maximum 2 hours’ duration. Tubes were 
then centrifuged (2000g, 10  min, 4  °C) and the plasma 
supernatants were saved in cryovials, which were directly 
transferred for storage at –80 °C.

Plasma Untargeted Metabolomics and Targeted 
Lipidomics Analysis

For metabolomics and lipidomics, plasma samples were 
shipped on dry ice to Metabolon, where they were stored 
at –80 °C. Untargeted metabolomics is a system-wide tech-
nique that agnostically and systematically detects and 
identifies metabolites from a biosample. Owing to the tech-
nical methodology, metabolomics generally captures polar, 
water-soluble metabolites, including more polar lipids. 
Thus, metabolomics analyses also contain certain lipid 
classes. Lipidomics is a technique that detects and identifies 
nonpolar as well as polar species, with an emphasis on lipid 
species. Targeted lipidomics specifically detects a predeter-
mined lipid species panel.

Global untargeted metabolomics analysis was con-
ducted by ultrahigh performance liquid chromatog-
raphy–tandem mass spectroscopy (UPLC-MS/MS), using 
published Metabolon protocols (16, 17). Briefly, recovery 
and internal standards were added to plasma samples 
for evaluating extraction efficiency and instrument per-
formance, respectively. Metabolites were extracted with 
methanol and analyzed by reverse-phase UPLC-MS/MS 
(positive and negative ion modes) and hydrophilic inter-
action chromatography UPLC-MS/MS. Metabolites were 
identified by automated ion peak comparison from each 
sample to a reference library of authenticated chemical 
standards with specific mass-to-charge ratios and retention 
times, followed by data curation. Each metabolite within 
a sample was quantified by its area under the curve and 
normalized to account for day-to-day variation by equating 
the metabolite median across all samples that day to 1 and 
normalizing the metabolite within each sample proportion-
ately against the median.

The targeted Complex Lipid Panel was performed by 
differential mobility spectroscopy by Sciex SelexION at 
Metabolon. Differential mobility spectroscopy separates 
species beyond differences in mass-to-charge ratios and 
retention time, such as, additionally, by size and shape, 
facilitating lipid identification, even of highly similar spe-
cies. Briefly, lipids were extracted from plasma in the 
presence of internal standards by butanol-methanol ex-
traction (18), dried under nitrogen, and reconstituted in a 
dichloromethane:methanol solution containing ammonium 
acetate. Samples were analyzed via both positive and nega-
tive mode electrospray MS. Each lipid species concentra-
tion was quantified by a ratio of its sample signal intensity 
to an assigned internal standard, multiplied by the internal 
standard concentration in that sample. Each lipid class con-
centration was calculated by summing all lipids belonging 
to that class. Each fatty acid composition was calculated 
through the proportion of each class composed of indi-
vidual fatty acids.

Metabolite Data Sets and Imputation Method

In sum, we detected 842 named metabolites from the 
metabolomics analysis and 983 named lipid species from 
the lipidomics analysis, both from Metabolon’s curated 
databases (19). We excluded from further analysis any me-
tabolites not present in at least 80% of samples (ie, overall 
missingness > 20%), yielding 604 metabolites and 858 
lipids (19). Missing values for metabolites retained in our 
analysis were imputed to the minimum observed value for 
each metabolite, per Metabolon protocols (16, 17).

Statistical Analysis

Descriptive analysis
Descriptive summaries of demographic and clinical charac-
teristics were calculated for the following 4 groups: obese 
vs lean, obese with PN vs lean, obese without PN vs lean, 
and obese with vs without PN. Fisher exact tests and one-
way analysis of variance with post  hoc Tukey tests were 
used to determine the pairwise differences between groups 
(obese vs lean, obese with PN vs lean, obese without PN vs 
lean, and obese with vs without PN).

Identification of differential metabolites and lipids
Multiple approaches were employed to identify metabolites 
and lipids that statistically significantly differed between the 
groups (obese vs lean, obese with PN vs lean, obese without 
PN vs lean, and obese with vs without PN). Wilcoxon rank 
sum tests, referred to as unadjusted, were used to iden-
tify significant unadjusted differences in abundance for 
each metabolite and lipid between groups. Multivariable 
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logistic regression models, referred to as adjusted, were 
created to determine the association between groups and 
each natural log-transformed and standardized metabolite 
and lipid, after adjusting for age and sex. Separate logistic 
regression models were created for each metabolite/lipid 
and for each comparison (obese vs lean, obese with PN vs 
lean, obese without PN vs lean, and obese with vs without 
PN). For both unadjusted (Wilcoxon rank sum tests) and 
adjusted (logistic regression) approaches, statistically sig-
nificantly different metabolites and lipids were defined as 
those with a corresponding Benjamini-Hochberg–corrected 
P value of less than .05. The resulting adjusted and un-
adjusted P values were visualized using volcano plots and 
Manhattan plots, respectively.

Partial least squares-discriminant analysis (PLS-DA) 
was also performed on metabolites and lipids separately by 
using the R package mixOmics (20, 21). This dimension-
ality reduction tool identifies metabolite/lipid patterns that 
statistically significantly contributed to group separation as 
determined using a variable importance in projection (VIP) 
score greater than 1 as the cutoff.

We also performed group-lasso on log-transformed and 
standardized metabolites and lipids separately using the R 
package gglasso (22). Specifically, we used a 5-fold cross-
validation to optimize the tuning parameter corresponding 
to a sparse model that was within 1 SE of the minimum 
cross-validation error. We then refit the group-lasso model 
to adjust for age and sex, and therefore generate the final 
model. Group-lasso results are represented by heatmaps 
with significant metabolites/lipids having βvalues greater 
than 0 or Manhattan plots with odds ratios (OR) greater 
than 1.

Prediabetes and type 2 diabetes status analysis
Despite matching, we reanalyzed the data stratified by gly-
cemic status to determine whether there was any effect from 
plasma metabolomic and lipidomic profiles in prediabetes 
or T2D compared to the overall obesity profiles on PN 
separation. Specifically, we employed Wilcoxon rank sum 
tests and evaluated Benjamini-Hochberg–adjusted P values 
to identify differential metabolites/lipids between obese 
participants with and without T2D and with and without 
prediabetes. In addition, we used principal component ana-
lysis (PCA) to visualize groups by glycemic status in the 
entire cohort.

Metabolism and complex lipid pathway analysis
Pathway enrichment analysis was conducted by our 
in-house R package richR (https://github.com/hurlab/
richR/). Superpathway and subpathway annotations were 
from Metabolon and were employed as background path-
ways. PLS-DA– and group-lasso–selected statistically 

significant metabolites were assessed for overrepresentation 
within each subpathway. A hypergeometric test was con-
ducted for each candidate subpathway, which was con-
sidered statistically significant for P less than .05.

Two-way orthogonal partial least squares (O2PLS)
Two-way orthogonal partial least squares (O2PLS) was 
employed to integrate metabolomics and lipidomics to 
identify highly interassociated metabolites and lipids of 
biological significance (23), using an R package OmicsPLS 
(24). The network was built from 604 metabolites with es-
tablished links to 858 lipids. Metabolomics and lipidomics 
data were scaled and transformed, according to published 
methods (25). The loading values for the joint covariance 
were extracted to identify highly correlated metabolites and 
lipids. The final metabolite-lipid correlation network was 
generated using the top 100 correlations between the 50 
metabolites and 50 lipids with the highest loading values.

Spearman correlation analysis
Spearman rank correlation was calculated to determine 
correlation in metabolites and lipids in the obese partici-
pants with vs without PN. Heat maps were used to display 
the significant correlations (adjusted P < .05) for positive 
(strongest with the value of 1) and negative (strongest with 
the value of –1) correlations.

Statistical software
All statistical and prediction analyses were completed using 
the R statistical computing software version 4.0.2.

Results

Clinical Characteristics of the Obese Groups 
Compared to the Lean Group

In this observational study (see Table 1), age and sex dif-
fered in both obese groups vs lean, but did not differ be-
tween obese participants with vs without PN. All lean 
individuals were normoglycemic. Since obese participants 
were matched based on their glycemic status, the obese 
with vs without PN groups did not differ in the prevalence 
of prediabetes and T2D. Both obese groups had higher an-
thropometric measures (body weight, BMI, WC), systolic 
blood pressure (all P < .001), and TAGs (P < .001) and 
lower HDL-c (P < .001) vs lean controls. The mean BMIs 
of the obese group with PN and obese group without PN 
were 45.03 ± 6.84 and 43.03 ± 6.22, respectively, making 
these obese groups, on average, groups with class 3 obesity. 
There was a significantly lower total cholesterol level in 
obese participants with PN vs lean controls (P = .013) and 
a trending lower cholesterol level in obese participants 
without PN vs lean controls (P = .069). This, presumably, is 
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because most obese individuals were on statins for hyper-
lipidemia (cholesterol level by statin use, “yes” vs “no,” 
P =9.4 × 10–6 by Wilcoxon in the obese vs lean comparison, 
P =.00051 by Wilcoxon in the obese with vs without PN 
comparison). Despite statin management, obese individuals 
had significantly higher plasma TAGs vs controls, which 
may be partly due to prevalent β-blocker use (26). While 
statins affect the lipidomic profile in obese participants, 
it does not affect PN development (27). WC was higher 
in obese participants with vs without PN, as anticipated  
(10, 11), as was body weight. Otherwise, importantly, 
obese groups with and without PN did not differ signifi-
cantly in any other metabolic metric, including BMI, total 
cholesterol, TAGs, HDL-c, LDL-c, prediabetes status, and 

T2D status, underscoring our hypothesis that specific me-
tabolite and/or lipid species may underlie PN rather than 
global dyslipidemia and/or glycemia alone.

Plasma Metabolomics Differs in Obese Groups vs 
Lean Group

We first examined metabolite differences between the obese 
group as a whole (obese groups both with and without PN 
combined) vs the lean controls. Descriptive analyses are listed 
for Wilcoxon (19) and logistic regression (19). PLS-DA clearly 
separated obese from lean participants with 205 metabolites 
satisfying VIP greater than 1 (Fig. 1A) (19), whereas group-
lasso identified 47 significant metabolites (Fig. 1B) (19). 
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Figure 1. Metabolomics analysis in obese vs lean participants. A, Partial least squares–discriminant analysis (PLS-DA) fully separated obese (red, 
n = 88) from lean (green, n = 43) participants, and selected 205 significant metabolites that contributed to the separation with variable importance in 
projection (VIP) greater than 1. B, Group-lasso selected 11 subpathways containing 47 significant metabolites with an odds ratio (OR) greater than 
1 (metabolite higher in obese) or OR less than 1 (metabolite lower in obese), adjusted for age and sex. C, Pathway analysis of PLS-DA– and group-
lasso–selected metabolites. The circles represent selected enriched subpathways. Circle color indicates significance level from most (red) to least 
(lightest pink) significant. Circle size represents the number of selected metabolites belonging to the enriched subpathways. The subpathways also 
encompass several lipid pathways because the global metabolomics analysis detects some lipids.
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PLS-DA and group-lasso overlapped in several subpathways, 
including the most significant “gamma-glutamyl amino acid,” 
but also uniquely selected others, including several fatty acid 
metabolism subpathways (Fig. 1C).

Plasma Lipidomics Differs in Obese Groups vs 
Lean Group

We observed more differences in lipid species than in gen-
eral metabolites between the obese group as a whole (both 
groups) vs lean group; descriptive analyses are listed for 
Wilcoxon (19) and logistic regression (19). Interestingly, 
although PLS-DA fully resolved obese from lean parti-
cipants by metabolites (Fig. 1A), the separation was less 
pronounced by lipids, although many more fulfilled VIP 
greater than 1 (Fig. 2A (19);). Moreover, group-lasso 
selected 668  statistically significant lipids (Fig. 2B) (19). 

Among lipid subpathways, PLS-DA and group-lasso were 
fully discordant (Fig. 2C); PLS-DA selected “TAG ester” 
(highest significance) and “DAG ester,” whereas group-
lasso selected complex lipids, such as “dihydroceramide” 
and “ceramide.”

We next analyzed lipid species by chain length and sat-
uration by generating heat maps of log2-transformed levels 
of lipids selected by PLS-DA (Fig. 3). TAGs and DAGs of all 
chain lengths and saturation were elevated in obese vs lean 
groups (see Fig. 3A). When we examined complex lipids, 
we found that the obese group was characterized by higher 
levels of free fatty acids, dihydroceramides, and ceramides 
of all chain lengths and saturation, and lower levels of 
cholesterol esters, hexosylceramides, lactosylceramides, 
lysophosphatidylcholines, lysophosphatidylethanolamines, 
phosphatidylcholines, phosphatidylethanolamines, and 
phosphatidylinositols (see Fig. 3B).

Figure 2. Lipidomics analysis in obese vs lean participants. A, Partial least squares–discriminant analysis (PLS-DA) partly separated obese (red, 
n = 88) from lean (green, n = 43) participants, and selected 388 significant lipids that contributed to the separation with variable importance in projec-
tion (VIP) greater than 1. (B) Group-lasso selected 8 subpathways containing 668 significant lipids with an odds ratio (OR) greater than 1 (lipid higher 
in obese) or OR less than 1 (lipid lower in obese), adjusted for age and sex. PLS-DA and group-lasso both selected more lipids than metabolites (Fig. 
1A and 1B) in obese vs lean comparisons. C, Pathway analysis of PLS-DA– and group-lasso–selected lipids. The circles represent selected enriched 
subpathways. Circle color indicates significance level from most (red) to least (lightest pink) significant. Circle size represents the number of selected 
lipids belonging to the enriched subpathways.
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Plasma Metabolomics Differ in Obese Groups 
With and Without Peripheral Neuropathy vs Lean 
Controls

We next stratified the obese group by PN status and exam-
ined how obese participants with and without PN differed 
in plasma metabolomic profile compared to lean controls. 
Descriptive analyses for obese with PN vs lean and obese 
without PN vs lean were conducted by Wilcoxon and lo-
gistic regression (19). As expected in both instances, there 
was a good separation of obese with PN vs lean and 
obese without PN vs lean by PLS-DA (19); however, the 
2 obese groups did not differ from lean participants in all 
the same metabolites (19). Group-lasso selected 45 and 

46  statistically significant metabolites in obese with PN 
vs lean and obese without PN vs lean comparisons, re-
spectively (19). In subpathways, obese with PN and obese 
without PN both differed from lean controls most signifi-
cantly in “gamma-glutamyl amino acid,” as expected (19), 
and were discordant in only a few subpathways.

Plasma Lipidomics Differ in Obese Groups With 
and Without Peripheral Neuropathy vs Lean 
Controls

Descriptive analyses by Wilcoxon and logistic regression 
were conducted to identify lipid differences for obese with 
PN vs lean and obese without PN vs lean (19). When we 
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Figure 3. Lipid abundance heat maps by chain lengths and saturation in obese vs lean participants. Heat maps of log2-transformed abundances 
of lipids selected by partial least squares–discriminant analysis (PLS-DA) for A, triacylglycerols (TAGs) and diacylglycerols (DAGs); and B, chol-
esterol esters (CE), ceramides (CER), dihydroceramides (DCER), free fatty acids (FFA), hexosylceramides (HCER), lactosylceramides (LCER), 
lysophosphatidylcholines (LPC), lysophosphatidylethanolamines (LPE), phosphatidylcholines (PC), phosphatidylethanolamines (PE), and 
phosphatidylinositols (PI).
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compared obese groups by PN status to lean controls, we 
again did not see a complete group separation by lipids by 
PLS-DA but when compared to the number of metabol-
ites, more lipids had VIP greater than 1 (19). Lipid spe-
cies differing between obese with PN vs lean were highly 
shared with obese without PN vs lean. Group-lasso selected 
670 and 165 statistically significant lipids in obese with 
PN vs lean and obese without PN vs lean comparisons, re-
spectively (19). In obese with PN vs lean, “TAG ester” by 
PLS-DA was most statistically significant and encompassed 
the most lipid species; in obese without PN vs lean, “DAG 
ester” (group-lasso) was most statistically significant while 
“TAG ester” (PLS-DA) comprised the most lipids (19).

Plasma Metabolomic and Lipidomic Profiles 
Separate Obese Groups With and Without 
Peripheral Neuropathy 

We next examined the metabolomic and lipidomic profiles 
of obese individuals with vs without PN (descriptive statis-
tics in [19]). PLS-DA separated the 2 groups based on me-
tabolites and lipids (Figs. 4A-5A) (19), but not to the same 
extent as obese vs lean individuals (Figs. 1A-2A), suggesting 
fewer differences in plasma metabolome and lipidome by 
PN status as opposed to obesity status. PLS-DA (VIP > 1) 
(19) and group-lasso (OR > 1 or OR < 1) selected 218 and
58  metabolites, respectively, and 256 and 249 lipids, re-
spectively (Figs. 4B-5B) (19). By subpathway, “benzoate
metabolism” contained the largest metabolite numbers and
greatest statistical significance by PLS-DA and group-lasso
overlap (Fig. 4C), but other subpathways were also mu-
tually selected. The lipid subpathways, most significantly
different by PN status, were primarily selected by group-
lasso and comprised “DAG ester” and “PC (phosphatidyl-
choline) ester” (Fig. 5C). “Sphingomyelin” and “ceramide” 
subpathways differentiated PN status by both PLS-DA and
group-lasso. Overall, complex lipid subpathways were most 
discriminating for obese participants with vs without PN.

We also examined lipid species by chain length and sat-
uration using heat maps of abundances of lipids selected 
by PLS-DA (Fig. 6). Saturated TAGs (no double bonds) 
and highly polyunsaturated and longer-chain TAGs tended 
to be higher in obese participants with PN vs without PN 
(see Fig. 6A). Among the complex lipids, obese participants 
with PN had lower ceramide and sphingomyelin levels 
across the whole spectrum of chain lengths and saturation 
vs obese participants without PN (see Fig. 6B). Trends in 
dihydroceramides differed across the 2  obese groups; 
dihydroceramides of lower carbon and double bond 
numbers were elevated in obese participants without PN, 
whereas dihydroceramides with more double bonds were 
elevated in obese participants with PN.

Effect of Prediabetes and Type 2 Diabetes Status 
on Peripheral Neuropathy Status

There were no differences in prediabetes or T2D prevalence 
in the obese group with vs the obese group without PN 
because we matched participants for glycemic status (see  
Table 1). However, there were also no differences in basic 
lipid profiles (cholesterol, TAGs, HDL-c, LDL-c) between ei-
ther obese group by PN status, although there were overall 
distinctions in total complex lipid profiles. Therefore, 
despite matching for prediabetes and T2D in the 2 obese 
groups, we reanalyzed the data stratified by glycemic 
status to evaluate if there was an influence from plasma 
metabolomic and lipidomic profile in the prediabetes and 
T2D setting compared to the overall obesity profiles on PN 
separation. First, we examined differential metabolite/lipid 
abundance by Wilcoxon within the obese groups, using a 
cutoff of adjusted P less than .05. By T2D status, 12 metab-
olites differed in obese participants with vs without T2D, 
of which 10 were shared with the 331 metabolites that dif-
fered in the obese vs lean comparison, and 2 were unique 
(annotated as “shared” and “unique” in [19]). Glucose 
was among the shared metabolites and was elevated in 
obese vs lean participants and in obese with vs without 
T2D, as anticipated. There were no differential metabol-
ites by prediabetes status, and no differential lipids by ei-
ther prediabetes or T2D status. Therefore, within the obese 
group, few metabolites differed in abundance by T2D 
status, but many differed from lean participants. When 
we examined by PN status, within either the obese groups 
with vs without PN, there were no differential metabol-
ites or lipids by either prediabetes or T2D status. Overall, 
prediabetes and T2D status only marginally affected me-
tabolite and lipid abundance by Wilcoxon.

Next, we examined group clustering by unsupervised 
PCA of the entire (obese and lean) cohort, stratifying obese 
participants, both with and without PN, by prediabetes 
and T2D status. We found that PCA of metabolites or 
lipids clustered obese participants with or without T2D 
together but still separated the obese participants (either 
with/without T2D) from lean participants (19). Moreover, 
there was no separation of participants with vs without 
T2D by PN status. Thus, in this highly obese sample of 
individuals (average class 3 obesity, average BMI 44.04) 
composed of normoglycemic, prediabetic, and diabetic par-
ticipants, metabolic and lipidomic profiles by obesity status 
can separate participants from lean controls, independent 
of the glycemic state. As expected, we also determined that 
PCA of metabolites or lipids did not separate obese par-
ticipants with or without prediabetes (19). As with the 
T2D analysis, there was no separation of participants with 
vs without prediabetes by PN status. Overall, at least by 
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plasma metabolomic and lipidomic profiles, obesity and 
T2D differentiate PN status to similar extents in a sample 
of individuals with average class 3 obesity.

Plasma Metabolomic and Lipidomic 
Correlation Network

O2PLS integrated metabolites with lipids to construct a 
metabolite-lipid correlation across the obese vs lean com-
parison (Fig. 7) (19). The metabolite-lipid correlation net-
work was constructed from correlations between the 50 
metabolites and 50 lipids with the highest loading values. 
These 50 metabolites and 50 lipids generated 2500 statis-
tically significant correlations (adjusted P < .05), of which 

the top 100 correlations are represented in the correlation 
network, which contains 13 metabolites and 50 lipids  
(Fig. 7). Candidates from the most statistically significant 
metabolite subpathways “gamma-glutamyl amino acid” 
(ie, gamma-glutamyl valine, gamma-glutamyl leucine) and 
“leucine, isoleucine and valine metabolism” (ie, leucine, 
1-carboxyethylvaline) correlated to lipids from the most
statistically significant subpathways lipid pathway “TAG
ester.” Spearman correlation was performed between metab-
olites and lipids in the obese group with vs the obese group
without PN comparisons (Fig. 8). A cluster of positive cor-
relations occurred between ceramides, dihydroceramides,
and sphingomyelins with 2-hydroxynervonate, β-hydro-
xyisovalerate, 2-hydroxymyristate, α-ketobutyrate, and
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Figure 4. Metabolomics analysis in obese_PN vs obese_No_PN participants. A, Partial least squares–discriminant analysis (PLS-DA) partly separ-
ated obese_PN (red, n = 44) from obese_No_PN (green, n = 44) participants, and selected 218 significant metabolites that contributed to the separ-
ation with variable importance in projection (VIP) greater than 1. B, Group-lasso selected 7 subpathways containing 58 significant metabolites with 
an OR greater than 1 (metabolite higher in obese) or OR less than 1 (metabolite lower in obese), adjusted for age and sex. C, Pathway analysis of 
PLS-DA– and group-lasso–selected metabolites. The circles represent selected enriched subpathways. Circle color indicates significance level from 
most (red) to least (lightest pink) significant. Circle size represents the number of selected metabolites belonging to the enriched subpathways. The 
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2-hydroxybutyrate/2-hydroxyisobutyrate, which nega-
tively correlated with other complex lipids.

Discussion

In the present observational study, we performed plasma 
global metabolomics and lipidomics to identify species 
and pathways correlating with PN status in a sample of 
individuals with average class 3 obesity. Since our focus 
was obesity as a PN risk factor, we matched our obese 
groups with and without PN for glycemic status before 
our data analysis. However, we also conducted a post hoc 
subanalysis by prediabetes and T2D since dysglycemia re-
mains a major risk factor for PN. The obese participants as 
a whole exhibited the anticipated characteristics vs the lean 
participants, for example, elevated body weight, BMI, WC, 
systolic blood pressure, and TAGs, as well as lower HDL-c. 

WC was higher in obese participants with vs without PN, 
as anticipated (10, 11), as was body weight. Otherwise, 
there were no additional demographic differences, allowing 
us to identify specific metabolic and lipidomic signatures 
underlying PN status in obese individuals.

As a first step, we examined the metabolites and lipid 
species that differed between the obese vs lean groups. 
We focused on subpathways because metabolites/lipids 
can exist within more than one network, which are fur-
ther interconnected. The most prominent subpathway 
differentiating obese and lean individuals, selected by both 
PLS-DA and group-lasso, was “gamma-glutamyl amino 
acid,” which belongs to the gamma-glutamyl cycle respon-
sible for glutathione antioxidant synthesis and degradation 
(28). Gamma-glutamyl transferase, a key gamma-glutamyl 
cycle enzyme, correlates positively with TAGs, BMI, and 
blood pressure and is linked to oxidative stress in obesity 

Figure 5. Lipidomics analysis in obese_PN vs obese_No_PN participants. A, Partial least squares–discriminant analysis (PLS-DA) did not separate 
obese_PN (red, n = 44) from obese_No_PN (green, n = 44) participants, but selected 256 significant lipids that differed between groups with vari-
able importance in projection (VIP) greater than 1. B, Group-lasso selected 12 subpathways containing 249 significant lipids with an odds ratio (OR) 
greater than 1 (lipid higher in obese) or OR less than 1 (lipid lower in obese), adjusted for age and sex. C, Pathway analysis of PLS-DA– and group-
lasso–selected lipids. The circles represent selected enriched subpathways. Circle color indicates significance level from most (red) to least (lightest 
pink) significant. Circle size represents the number of selected lipids belonging to the enriched subpathways.
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and MetS (29) and also potentially to T2D (30). Other 
emergent pathways when comparing the metabolome of 
obese vs lean participants were related to “leucine, iso-
leucine and valine metabolism” (or BCAA metabolism), 

as well as BCAA related to fatty acid metabolism. BCAA 
metabolism is centered around protein synthesis (through 
mechanistic target of rapamycin [mTOR]), glucose regula-
tion, neurotransmission modulation, adiposity, and satiety, 
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Figure 6. Lipid abundance heat maps by chain lengths and saturation in obese_PN vs obese_No_PN participants. Heat maps of log2-transformed 
abundances of lipids selected by partial least squares–discriminant analysis (PLS-DA) for A, triacylglycerols (TAGs) and diacylglycerols (DAGs); 
B, cholesterol esters (CE), ceramides (CER), dihydroceramides (DCER), free fatty acids (FFA), hexosylceramides (HCER), lactosylceramides 
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and is linked to obesity, where it correlates with insulin 
resistance and T2D-onset risk (31). Plasma metabolomics 
of participants of the Susceptibility to Particle Health 
Effects, miRNAs and Exosomes study (n = 1391) identi-
fied the highest association of BMI with aromatic amino 
acid and BCAA metabolism, after adjusting for age, sex, 
and smoking status (32). An integrative metabolomics and 
genome-wide association study in a population of Korean 
women (n = 77) concluded elevated BMI disrupted BCAA 
and aromatic amino acid catabolism, as well as β-oxidation, 
lipid metabolism, urea cycle, and purine/pyrimidine metab-
olism (33). Finally, our global metabolomics identified a 
number of fatty acid metabolism pathways that differed by 
obese vs lean status, as anticipated.

When we specifically examined lipids between the 
obese groups and the lean group, the largest and most sig-
nificant pathway selected was “TAG ester,” followed by 
“DAG ester.” This agrees with the basic blood lipid profiles 

from our obese groups, which were higher in TAGs spe-
cifically containing long-chain fatty acids vs the lean 
group. Interestingly, group-lasso did not select the TAG 
subpathway, possibly because it contains the most candi-
dates, at 518, and there may not have been sufficient signifi-
cant TAGs for group-lasso to select the entire subpathway. 
On the other hand, group-lasso, which places greater 
emphasis on subpathway structure than PLS-DA, iden-
tified subpathways that were more centered on complex 
lipids, such as ceramides and dihydroceramides, as well as 
cholesteryl esters.

Our findings are aligned with several published studies, 
which have also investigated the correlation of plasma 
lipidomics signatures with obesity metrics, such as BMI, 
WC, and insulin resistance. Lipidomics analysis of plasma 
from participants enrolled in the Australian Diabetes, 
Obesity and Lifestyle Study (n = 10 339) and validated in 
the Busselton Health Study (n = 4207) found 577 lipids 
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correlated with BMI, after adjusting for age and sex (34). 
Differential lipids dropped to 508, after additionally 
adjusting for total cholesterol, HDL-C, and triglycerides. 
TAGs and sphingolipids, especially shorter-chain ceramides 
and sphingomyelins, positively correlated with BMI, 
whereas gangliosides and hexosylceramides correlated 
negatively. In particular, Cer (18:1/18:0) and Cer (18:1/20:0) 
increased proportionately with BMI (both P < 10–10) (34); 
similarly, we had a statistically significant increase in Cer 
(18:1/18:0) and Cer(18:1/20:0) in obese participants with 
P values of 3.53 × 10–10 and 1.27 × 10–4, respectively, by 
Wilcoxon, along with several other statistically significant 
shorter-chained ceramides. These findings were mirrored in 
a cohort of 2302 ethnically Chinese Singaporeans, where 
ceramides associated positively with BMI, central obesity, 
measured by WC, and homeostatic model assessment of 
insulin resistance (HOMA-IR), whereas hexosylceramides 
associated negatively, after adjusting for age, sex, HDL-
c, LDL-c, and triglycerides (35). Associations were also 
chain length and saturation dependent; as in other studies, 
shorter-chain ceramides, including Cer (18:1/18:0) and Cer 
(18:1/20:0), were elevated with BMI. In contrast, a smaller 
study (n = 28, BMI > 25; n = 23 lean) concluded a plasma 
lipidomic signature of higher BMI was characterized by ele-
vated TAGs and lower plasmalogens, and lacking any as-
sociation with sphingolipids (36). A plasma TAG signature 
also correlates with insulin resistance and T2D (37).

Our main interest focused on global metabolomic and 
complex lipidomic differences in obese participants by 
PN status. With regard to the metabolome, we identified 
4 unique metabolomics signatures that are associated with 
PN in obese participants, “purine metabolism,” “polyamine 
metabolism,” “benzoate metabolism,” and “xanthine metab-
olism.” Purine metabolism is centered on the breakdown of 
adenosine monophosphate and guanosine monophosphate, 
which are involved in cellular energy metabolism and ad-
enosine 5′-triphosphate synthesis. In alignment with these 
data, we previously identified altered nerve bioenergetics 
and decreased adenosine 5′-triphosphate levels (38-40) as-
sociated with PN in mouse models of prediabetes and T2D 
and in cultured primary sensory neurons treated with sat-
urated fatty acids (41). Polyamines, such as spermidine, are 
part of “polyamine metabolism” and have proautophagy, 
immunomodulatory, and neuroprotective properties, and 
are present in high levels in the brain, where they sus-
tain neuronal health (42). Polyamines have not been well 
studied in PN, although supplementation of polyamine bio-
synthesis precursors, L-arginine (43) and agmatine (44), are 
beneficial in treating neuropathic pain in diabetes rodent 
models. Two xenobiotics superpathways were identified 
in “benzoate metabolism,” possibly from benzoate addi-
tives in food, and “xanthine metabolism,” which contains 

several natural products and metabolized byproducts from 
coffee and tea, as well as pharmaceutical medications. 
Why metabolites from these pathways are associated with 
PN in only our obese group is unknown. One intriguing 
possibility lies in the idea that these food additives and 
byproducts alter the microbiome, which in turn is associ-
ated with PN (45), an area of active research by several 
groups (46, 47).

When examining distinct lipidomic signatures, there 
were more signaling and complex lipid classes associ-
ated with the obese group with PN. These results suggest 
that signaling dysregulation and complex, and possibly 
lipotoxic, lipids may in part underlie PN onset and progres-
sion. Among the largest and most significant signaling lipids 
were the DAGs, bioactive lipids that participate in several 
neurovascular mechanisms, such as blood flow and con-
duction velocity, through protein kinase C (PKC) activation 
(48). While earlier clinical trials of PKC inhibitors failed in 
the treatment of PN in diabetes cohorts (49), more recent 
efforts have focused on selective inhibition of different PKC 
isoforms for treating PN (50). Among the complex lipids, 
“ceramide,” “dihydroceramide,” “lactosylceramide,” and 
“sphingomyelin” are associated with obese participants 
with PN vs those obese participants without PN. This is 
of significant interest, and aligned with our prior studies, 
which found sphingolipid levels were altered in obese indi-
viduals with PN (51, 52).

Ceramides and dihydroceramides are a family of bio-
active lipids that modulate apoptosis, senescence, and 
stress responses (53). As such, they are lipotoxic and ac-
cumulate in tissues or plasma during obesity and insulin 
resistance (54). Ceramide biosynthesis occurs through mul-
tiple pathways (53); however, under conditions of excessive 
dietary TAG intake, de novo synthesis may dominate (55), 
leading to an increase in dihydroceramides. Ceramides and 
dihydroceramides are linked to PN in patients with dia-
betes (56), and could be recurrent features in neuropathies, 
generally, for example, in hereditary neuropathies, such as 
in hereditary sensory and autonomic neuropathy type 1 
(52). When comparing T2D participants with and without 
PN, we previously observed trends in ceramide acyl chain 
lengths (51), which influence their biological proper-
ties (57). The contributions of the various ceramide and 
dihydroceramide species length and saturation that con-
tributed to PN status in this sample of individuals with 
average class 3 obesity are a future area of interest, along 
with a greater understanding of these lipotoxic lipids in 
prediabetes, T2D, and PN.

Sphingomyelins are important constituents of myelin-
ensheathed nerves; however, they are less studied in 
obesity and diabetes, and associated PN (58). One study 
found higher sphingomyelins in cerebrospinal fluid from 
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participants with acquired demyelinating peripheral 
neuropathies compared to axonal neuropathies (59). In 
neuropathic sural nerve, a loss of long-chain sphingomyelins 
occurs compared to healthy nerve and brain tissue (60). 
As with ceramides and dihydroceramides, the discovery 
of significant sphingomyelin species associated with PN 
opens a new avenue of research aimed at understanding 
PN pathogenesis.

When we integrated metabolites with lipids to build an 
O2PLS correlation network for all obese participants (both 
groups) vs the lean group, the most significant metabolite 
subpathways gamma-glutamyl amino acid (ie, gamma-
glutamyl valine, gamma-glutamyl leucine) and BCAA (ie, 
leucine, 1-carboxyethylvaline) correlated to lipids from the 
most significant lipid subpathways, TAGs, suggesting that 
global dysregulation of both the metabolome and lipidome 
occurred in concert in all obese participants. When we per-
formed Spearman correlation analyses between metabol-
ites and lipids in the obese groups based on PN status, we 
found a cluster of positive correlations between ceramides, 
dihydroceramides, and sphingomyelins to 2-hydroxy fatty 
acids, namely 2-hydroxynervonate, β-hydroxyisovalerate, 
and 2-hydroxymyristate. 2-Hydroxy fatty acids condense 
with ceramides and sphingolipids to generate 2-hydroxy 
fatty acid–ceramides and 2-hydroxy fatty acid–sphingo-
lipids, which are important for normal neural function 
(61). Additionally, ceramides, dihydroceramides, and 
sphingomyelins positively correlated with α-ketobutyrate 
and 2-hydroxybutyrate. α-Ketobutyrate is the oxidized 
form of α-hydroxybutyrate, which is linked to insulin re-
sistance and impaired glucose regulation, particularly in 
nondiabetes populations, and could constitute a link to 
dyslipidemia (62).

Our study has limitations. First, although it involved a 
real-life cohort, which is a strength, most participants were 
on statins to manage their hyperlipidemia, which affected 
their basic plasma lipid profiles, for example, cholesterol. 
Thus, data analysis could place a greater emphasis on ac-
counting for medication use, that is, statins, β-blockers, 
antidiabetic medications. However, since statin use does 
not affect PN status in T2D (27) and was evenly balanced 
between both obese groups with and without PN in the 
present study, we anticipate that the identified metabolites 
and lipids present in the obese PN participants represent 
an association with PN. In addition, though our primary 
focus was on the effects of obesity on PN, insulin resist-
ance and hyperglycemia are frequently comorbid condi-
tions with obesity in patients. However, our study was 
limited by a lack of sensitive measures of insulin resistance, 
like HOMA-IR. Sex and age differences were not evalu-
ated in this study, which could affect the plasma lipidome 
(63-66). Sex and age differences could be relevant to this 

study, particularly regarding the sex and age imbalance 
in lean vs obese participants, though our logistic regres-
sion and group-lasso models accounted for these factors as 
covariates. Importantly, the study also faced a tissue issue, 
since plasma may not be representative of nerve tissue-
specific metabolome and lipidome differences, which is not 
an accessible tissue in human participants. Additionally, the 
study was not longitudinal, rendering it difficult to make 
causal inferences. Furthermore, this study was in individ-
uals with severe obesity, and whether these results gener-
alize to other populations is unknown.

Finally, our sample size included 88 obese individuals 
and 43 lean controls, which likely limited our power to 
detect small differences in metabolites and lipids between 
groups with vs without PN. This was even more pro-
nounced in our subanalysis by prediabetes (n = 15) and 
T2D (n = 43) status. Analysis of larger cohorts may find 
that metabolic and lipidomic profiles in T2D may outper-
form obesity profiles for PN separation. Although we stat-
istically accounted for the number of comparisons, their 
sheer number, due to a large number of detected metabol-
ites and lipids relative to the number of study participants 
could led to some false associations. Future studies are 
needed to confirm our results.

In conclusion, when compared to lean individuals, 
this observational study identified differences in the 
metabolome and lipidome of a sample of individuals with 
average class 3 obesity, especially gamma-glutamyl amino 
acid and BCAA metabolism and TAG lipid metabolism. 
When obese individuals were stratified by PN status, pos-
sible novel research avenues emerged in the metabolome 
with polyamine biosynthesis, as well as better established 
defects in bioenergetics through purine biosynthesis. With 
respect to the lipidome, bioactive and complex lipids 
distinguished the obese group with PN from the obese 
group without PN. It will be critical, moving forward, 
to identify trends in chain length and saturation level 
of specific bioactive lipid classes and particular species 
that contribute to PN. We anticipate lipid signaling and 
complex lipids may be exciting avenues of investigation 
for PN associated with metabolic dysfunction, that is, 
obesity, prediabetes, and T2D. Inhibitors of complex lipid 
signaling, such as ceramides (67, 68), are an active area of 
research as antiobesity, anti-T2D, and anti-insulin resist-
ance therapies, highlighting the potential significance of 
this research direction in PN.
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A High-Fat Diet Disrupts Nerve Lipids
and Mitochondrial Function in Murine
Models of Neuropathy
Amy E. Rumora1,2*†, Kai Guo1,3†, Lucy M. Hinder1†, Phillipe D. O’Brien1, John M. Hayes1,
Junguk Hur1,3 and Eva L. Feldman1
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As the prevalence of prediabetes and type 2 diabetes (T2D) continues to increase
worldwide, accompanying complications are also on the rise. The most prevalent
complication, peripheral neuropathy (PN), is a complex process which remains
incompletely understood. Dyslipidemia is an emerging risk factor for PN in both
prediabetes and T2D, suggesting that excess lipids damage peripheral nerves;
however, the precise lipid changes that contribute to PN are unknown. To identify
specific lipid changes associated with PN, we conducted an untargeted lipidomics
analysis comparing the effect of high-fat diet (HFD) feeding on lipids in the plasma,
liver, and peripheral nerve from three strains of mice (BL6, BTBR, and BKS). HFD
feeding triggered distinct strain- and tissue-specific lipid changes, which correlated
with PN in BL6 mice versus less robust murine models of metabolic dysfunction and
PN (BTBR and BKS mice). The BL6 mice showed significant changes in neutral lipids,
phospholipids, lysophospholipids, and plasmalogens within the nerve. Sphingomyelin
(SM) and lysophosphatidylethanolamine (LPE) were two lipid species that were unique to
HFD BL6 sciatic nerve compared to other strains (BTBR and BKS). Plasma and liver lipids
were significantly altered in all murine strains fed a HFD independent of PN status,
suggesting that nerve-specific lipid changes contribute to PN pathogenesis. Many of
the identified lipids affect mitochondrial function and mitochondrial bioenergetics, which
were significantly impaired in ex vivo sural nerve and dorsal root ganglion sensory neurons.
Collectively, our data show that consuming a HFD dysregulates the nerve lipidome and
mitochondrial function, which may contribute to PN in prediabetes.

Keywords: dyslipidemia, prediabetes, mitochondria, obesity, neuropathy, lipidomics, high-fat diet, metabolic
syndrome
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INTRODUCTION

Peripheral neuropathy (PN) is a common and highly morbid
complication of prediabetes and type 2 diabetes (T2D) (Feldman
et al., 2019). PNpresents as a distal to proximal loss of sensation in the
extremities with pain as a frequent feature (Feldman et al., 2019).
While the pathogenesis of PN is incompletely understood, impaired
peripheral nervous system bioenergetics under conditions of excess
energy substrate is a central characteristic of PN (Feldman et al.,
2017). In parallel, recent clinical studies highlight components of the
metabolic syndrome as PN risk factors (Callaghan et al., 2016a;
Callaghan et al., 2016b), suggesting lipids, including triglycerides
(TGs), contribute to peripheral nervous system energy overload
(Wiggin et al., 2009; Andersen et al., 2018).

Murine models of diet-induced obesity develop features of
prediabetes and PN like that seen in humans; however, the genetic
background of each mouse strain affects the degree of metabolic
dysfunction and type of nerve fibers affected (Montgomery et al.,
2013). Large nerve fibers confer proprioceptive information
related to position and movement whereas small afferent Aδ
fibers and unmyelinated C-fibers are responsible for temperature,
pain, and nociceptive sensations. Prediabetes and T2D PN result
from a combination of large and small fiber dysfunction. We
recently reported the effects of high-fat diet (HFD) feeding on
three mouse strains (BL6, BTBR, and BKS). Mice on the
BL6 background gained weight throughout the 36-weeks study
and developed features of the metabolic syndrome as well as large
and small fiber PN similar to what is observed in humans with
prediabetes (Hinder et al., 2017). In contrast, HFD-fed BTBR
mice developed large fiber PN only and gained weight at the same
rate as standard diet (SD)-fed BTBR for the first 24 weeks of the
study. The final strain of mice fed a HFD, the BKS mice, also
developed large fiber PN only but required genetic manipulation
of the leptin receptor to gain weight from study onset.

The goal of the current studywas to assess the association between
disruptions in lipid composition and PN metabolic risk factors and
disease severity. Because lipid levels profoundly impactmitochondrial
bioenergetics (Rumora et al., 2018), we postulated that distinct nerve
lipid levels would associate with PN under varying conditions of
metabolic dysfunction.We conducted untargeted lipidomics of nerve,
liver and plasma from HFD-fed BL6, BTBR and BKS mice and
observed distinct changes in nerve, liver and plasma lipids in all three
strains. Unique changes in mitochondrial lipid levels were observed
within the nerves of HFD-fed BL6 mice with PN, the only strain that
developed both large and small nerve fiber dysfunction. Further
evaluation of mitochondrial bioenergetics in ex vivo sural nerves and
sensory dorsal root ganglion (DRG) neurons from BL6 animals
showed impaired mitochondrial bioenergetics, suggesting a role
for nerve-specific lipid signatures in the pathogenesis of PN.

MATERIALS AND METHODS

Mouse Model Description
Mouse strains included i) BKS-wt (C57BLKS/J #000662, Jackson
laboratory, Bar Harbor, ME), ii) B6-wt (C57BL/6J #000664,
Jackson Laboratory), and iii) BTBR-wt (BTBR T+ Itpr3tf/J

#002282, Jackson Laboratory). Mice from each strain were
randomly assigned to two groups at 4 weeks of age and fed
either a standard diet (SD) (#D12450-B, 10% kcal fat,
Research Diets, New Brunswick, NJ) or a 54% HFD
(#05090701, 54% kcal fat from lard, Research Diets) for
32 weeks, leading to six groups of male mice with 12 mice/
group (HFD BKS, SD BKS, HFD B6, SD B6, HFD BTBR, SD
BTBR). The fatty acid composition of each diet is provided in
Supplementary Table S1. At the study end at 36 weeks of age,
sciatic nerve, footpads, plasma, and liver samples were collected.
Terminal metabolic measurements included body weight, fasting
blood glucose, glucose tolerance, and glycated hemoglobin, as
well as terminal neuropathymeasurements including assessments
of sural and sciatic nerve conduction velocities (NCV), measures
of large fiber function, and intraepidermal nerve fiber density
(IENFD), a measure of small nerve fiber function, were evaluated
at 36 weeks of age. Plasma insulin, cholesterol, and triglycerides
were also measured by Mouse Metabolic Phenotyping Centers
(MMPC; Vanderbilt University, Nashville, TN; University of
Cincinnati, Cincinnati, OH). All metabolic and neuropathy
measurements were reported previously (Hinder et al., 2017).
Herein, we conducted a follow-up untargeted lipidomics analysis
on sciatic nerve, plasma, and liver from each group of mice. Mice
were housed in a pathogen-free environment and animal
husbandry was conducted by the University of Michigan Unit
for Laboratory Animal Medicine. Animal protocols followed
Diabetic Complications Consortium Guidelines (https://www.
diacomp.org/shared/protocols.aspx) and were approved by the
University ofMichigan University Committee onUse and Care of
Animals.

Untargeted Lipidomics Profiling
Four sciatic nerves from each group of mice were selected blindly
and submitted to the Michigan Regional Comprehensive
Metabolomics Resource Core (MRC2; www.mrc2.umich.edu)
for untargeted lipidomics, which was conducted as described
previously (Sas et al., 2018). Briefly, lipids were extracted from
each sample (plasma, homogenized sciatic nerve, or homogenized
liver) according to a modified Bligh-Dyer protocol. Purified lipids
from samples and quality controls were analyzed by liquid
chromatography-tandem mass spectrometry (LC-MS/MS).
LipidBlast (http://fiehnlab.ucdavis.edu/projects/LipidBlast) was
used to identify lipids and MultiQuant (SCIEX, Concord,
Canada) was used for lipid quantification. A total of 967 lipid
species were detected within the sciatic nerve (Positive - 579;
Negative—388), 1,339 lipid species were detected in the liver
(Positive- 799; Negative—540), and 956 lipid species were
detected in the plasma (Positive - 603; Negative—353).

Untargeted Lipidomics Data Preprocessing
and Analysis
Missing values in the raw data were imputed with the K-nearest
neighbor method and normalized to internal standards using the
R package pamr with the function pamr. knnimpute (https://
www.rdocumentation.org/packages/pamr/versions/1.55/topics/
pamr.knnimpute) (Troyanskaya et al., 2001). Euclidian was used
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as the distance metric (Troyanskaya et al., 2001). At least one
internal standard for each lipid class was included in the analysis
(Supplementary Tables S2–S4). Lipid species with a coefficient
of variation >30% were removed and then lipid species from
positive and negative ion modes were merged into a single
dataset. Lipids measured in both positive and negative modes
were assigned an average value from both modes. Lipid species
with an odd number of carbons were removed because odd-chain
lipids are rarely synthesized in mammalian systems and are
typically obtained from the diet or by gut microbiota (Venn-
Watson et al., 2020; Ampong et al., 2022). We also did not
identify any significant changes in branched lipids in this study.
To summarize lipid levels per class, the total values of lipid species
in each class were summed and then log2-transformed. Heatmaps
were generated to visualize the profiling pattern of each lipid class
across different tissue and genetic background groups. Pearson
correlation coefficients were calculated for each shared lipid
species between different tissues (O’Brien et al., 2020). Lipid
heatmaps were not displayed in the figures if the HFD compared
to the SD had no significant impact on tissue lipid levels in a
particular strain of mice.

Identifying Important Lipid Species
A t-test was performed for each lipid species to determine
significant differences between the HFD and SD groups. Lipid
species with a p-value < 0.05 were deemed significant differential
lipids. Partial least squares-discriminant analysis (PLS-DA) was
also performed with mixOmics package (Rohart et al., 2017), to
identify lipid species that carry the greatest class-separating
information, represented by the first latent variable (Brereton
and Lloyd, 2014). Tenfold cross-validation was used to select the
tuning parameter (the number of components) for PLS-DA with
the minimal overall error rate. Once the optimal number of
components was decided, the PLS-DA was refit to the full dataset
to obtain the final model. Score plots were generated to illustrate
the difference between HFD versus SD for each genetic
background (BKS, BL6, BTBR). The variable importance in
projection (VIP) score for each lipid species was calculated as
a weighted sum of the squared correlations between the PLS-DA
components and the original lipid species (Galindo-Prieto et al.,
2014). Lipid species with a VIP score >1 were selected as the
important species, which contribute highly to group separation
(Cho et al., 2008). All the above analyses were performed using R
v3.5 (https://www.R-project.org/).

Mitochondrial Bioenergetics Analysis
Ex vivo mitochondrial bioenergetics analysis was conducted on
whole sural nerve tissue and primary DRG neurons dissected
from 20-week HFD- versus SD-fed BL6 mice using an
XF24 Extracellular Flux Analyzer (Agilent Technologies, Santa
Clara, CA, United States). Bioenergetic analysis was conducted
3–6 h post mortem for both primary DRG neuron cultures and
whole sural nerve. Whole sural nerves were dissected from four
mice/group, placed in optimized energetics media, and arranged
on an islet capture screen (Pooya et al., 2014). For DRG neuron
cultures, DRG were extracted, dissociated into a single-cell
suspension, and plated on a laminin-coated Seahorse plate, as

described previously (Rumora et al., 2018; Rumora et al., 2019a;
Rumora et al., 2019b). Whole sural nerves were then challenged
by sequential addition of mitochondrial drugs in the following
order: i) 12.6 μM oligomycin, ii) 20 μM carbonyl cyanide-4-
(trifluoromethoxy)phenyl-hydrazone (FCCP), and iii) 2 μM
antimycin A. DRG neurons were challenged with the
consecutive injection of i) 1.25 mM oligomycin, ii) 100 or
600 nM FCCP, and iii) 1 mM antimycin A. All bioenergetics
measurements were recorded by the Seahorse XF analyzer and
bioenergetics parameters were analyzed using mitochondrial
drug response curves, as described previously (Rumora et al.,
2018). Results were normalized to tissue weight and
mitochondrial copy number (see below). Data analysis was
conducted on GraphPad Prism using one-way ANOVA with a
Tukey post-test for multiple comparisons, two-way ANOVA with
Bonferroni post-test for multiple comparisons, or unpaired t-test
(Festing and Altman, 2002).

FIGURE 1 | Study paradigm and workflow for lipidomics (A) and
mitochondrial bioenergetics analysis (B). (A) Three strains of mice (C57BLKS/
J, C57BL6/J, and BTBR) were divided into two groups per strain and fed
either a standard diet (SD) or 54% high-fat diet (HFD). Mice were fed SD
or HFD for 32 weeks and phenotyped for metabolic and neuropathy
parameters at 36 weeks. At 36 weeks, sciatic nerve, liver, and plasma were
collected and processed for LC-MS/MS lipidomics analysis. Lipidomics data
were subjected a bioinformatics pipeline including PLS-DA, heat maps, and
VIP score plots. (B) DRG neuron and sural nerve mitochondrial bioenergetics
were evaluated in BL6 mice fed a SD or 60% HFD from 5 to 20 weeks. At
20 weeks of age, mitochondrial bioenergetics and mitochondrial copy
number were assessed in DRG neurons and whole sural nerves from HFD
BL6 mice compared to SD BL6 mice.
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Mitochondrial Copy Number Analysis
The sural nerve mitochondrial copy number was evaluated in
HFD- versus SD-fed BL6 mice, as previously described (Rumora
et al., 2018). Briefly, DNA was isolated using the AllPrep DNA/
RNA Mini Kit (Qiagen, Germantown, MD, United States) from
the sural nerves, which were used for mitochondrial bioenergetics
analysis. Quantitation of mitochondrial cytochrome b (cytob) and
nuclear tyrosine 3-monooxygenase/tryptophan five-
monooxygenase activation protein (Ywhaz) was evaluated
using Power SYBR Green PCR Master Mix (Thermo Fisher
Scientific) on a StepOnePlus Real-Time PCR system (Thermo
Fisher Scientific), as described previously (Rumora et al., 2018).
The standard curve method was used for cytob and Ywhaz gene
quantitation.

RESULTS

Tissue Lipidomics Profiling of HFD BL6,
BTBR, and BKS Mice
Untargeted lipidomics was performed on the sciatic nerve,
plasma, and liver from BL6, BTBR, and BKS mice fed either
SD or 54% HFD for 36 weeks (Figure 1A). PLS-DA score plots

showed a clear separation between lipid species in the sciatic
nerve of HFD BL6 mice with large and small fiber PN and HFD
BTBR mice with large fiber PN, versus SD BL6 and SD BTBR
mice without PN (Figures 2A,B). Sciatic nerve lipid profiles from
HFD-fed BKS mice that had no weight gain compared to SD-fed
animals show less separation between HFD and SD score plots
(Figure 2C). Elevated plasma insulin levels and large fiber PN,
based on slowed sciatic and sural nerve conduction velocities,
were present in all strains. However, only BL6 mice fed a HFD
had highly significant weight gain throughout the entire study (8-,
16-, 24-, 36- weeks) compared to SD-fed BL6 animals. At the
study end, these animals also had statistically elevated cholesterol
levels and low IENFDs, a marker of small fiber PN
(Supplementary Table S5) (Hinder et al., 2017). HFD-fed
BTBR mice gained weight at a similar rate as SD-fed animals
for the first 24 weeks of the study, and only at the 36-weeks time
point were significantly heavier than their SD-fed counterparts.
These HFD animals had higher levels of fasting glucose than the
SD-fed animals with no changes in lipid levels. In contrast both
SD- and HFD-fed BKSmice gained weight at equivalent rates and
had no evidence of elevated cholesterol or fasting glucose
(Supplementary Table S5) (Hinder et al., 2017). The greater
separation between the score plots of sciatic nerve lipids from

FIGURE 2 | Score plots of lipid changes across species. Partial least squares-discriminant analysis (PLS-DA) showed strain-dependent separation of lipid species
between the SD (red) and HFDmice (blue); dots represent individual mice. BL6 mice with weight gain, dyslipidemia, and both large fiber and small fiber PN (A) and BTBR
mice with weight gain and large-fiber PN (B) showed distinct separation of sciatic nerve (SCN) lipids between SD and HFD groups compared to BKSmice with large fiber
PN without weight gain (C). Whereas, clear separation between plasma (D–F) and liver lipids (G–I) was visible across murine strains.
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HFD- vs SD-fed BL6 and BTBRmice shows that changes in nerve
lipid composition are associated with distinct PN phenotypes and
metabolic changes including weight gain, fasting glucose, and
plasma insulin (Supplementary Table S5) (Hinder et al., 2017).
Unlike the strain-dependent sciatic nerve lipid profiles, the liver
and serum lipid profiles had a distinct separation between HFD
versus SD groups, regardless of strain (Figures 2D–I). These
results suggest that tissue-specific sciatic nerve lipid profiles are
associated with distinct types of PN as defined by large and small
nerve fiber involvement and metabolic dysfunction.

Triglycerides and Diacylglycerols
To identify tissue-specific changes in lipid profiles that associate
with PN, we generated heat maps of significantly altered (p <
0.05) lipid species in mice fed a HFD compared to SD. Out of a
total of 57 detected TG species in the sciatic nerve, 17 were altered
in BL6 mice, 15 in BTBR mice, and five in BKS with HFD feeding
(Figure 3A). The chain length and saturation degree of sciatic
nerve TGs were also altered by a HFD. Both BL6 and BTBR
strains fed a HFD experienced weight gain by 36 weeks,
developed at least two measures of metabolic dysfunction, and
exhibited a higher abundance of sciatic nerve long-chain TGs,

which contrasted with a higher level of shorter-chain TGs in
BL6 and BTBR mice fed a SD. The highly abundant sciatic nerve
long-chain TGs in HFD-fed BL6 and BTBR also showed a higher
degree of acyl chain unsaturation. These HFD-induced changes
in nerve TGs correlated with large fiber PN in both BL6 and
BTBR mice. Conversely, sciatic nerve from BKS mice that did not
gain weight and developed only one measure of metabolic
dysfunction, showed changes in TG level but no distinct
changes in TG chain length or saturation.

Diacylglycerols (DGs) were significantly altered in the sciatic
nerve of all three strains of mice fed a HFD. A total of 35 DGs
were analyzed in the sciatic nerve, of which 12 in BL6, three in
BTBR, and two in BKS sciatic nerve were significantly affected by
consuming a HFD (Figure 3B). Only sciatic nerve from BL6 mice
with both large and small fiber PN showed changes in DG chain
length, while BTBR and BKS mice had an overall decrease in DGs
with HFD feeding compared to their respective SD controls.
Interestingly, changes in chain length were opposite in DGs
versus TGs, with BL6 sciatic nerve displaying greater shorter-
chain and lower longer-chain DG levels in animals fed a HFD
compared to animals on a SD. Collectively, these results suggest
that elevated long-chain TGs and shorter-chain DGs in sciatic

FIGURE 3 | Heat maps of neutral lipids in the sciatic nerve of BL6, BTBR, and BKS mice fed the SD or HFD. (A) Sciatic nerve triglyceride (TG) chain length and
degree of saturation were significantly altered in HFD sciatic nerve from BL6 and BTBRmice. (B) Sciatic nerve diacylglycerols (DGs) were significantly altered by the HFD
in all three strains. t-test, p-value < 0.05.
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nerves correlate with weight gain, metabolic dysfunction, and
large and small fiber PN in HFD BL6 mice after 36 weeks.

Phospholipids
HFD feeding drastically dysregulated phospholipids in the sciatic
nerve of BL6 models with large and small fiber PN and BTBR

models with large fiber PN, which both experienced weight gain
and metabolic dysfunction (Figure 4). However, phospholipids
were unaffected in the sciatic nerve of HFD-fed BKS mice, the
strain that did not gain weight and developed less metabolic
dysfunction with a HFD. Collectively, these findings suggest a role
for phospholipids in large fiber PN pathogenesis associated with

FIGURE 4 | Heat maps of BL6, BTBR, and BKS sciatic nerve phospholipids. All phospholipid levels including (A) phosphatidylcholine (PC) (B)
phosphatidylethanolamine (PE) (C) phosphatidylserine (PS) and (D) phosphatidylinsotitol (PI) were altered by the HFD in BL6 and BTBR mice. t-test, p-value < 0.05.
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metabolic dysfunction. Within the sciatic nerve, BL6 mice had a
higher level of short-chain phosphatidylcholines (PCs) and long-
chain phosphatidylethanolamines (PEs) with HFD feeding versus
SDmice (Figures 4A,B). Although the levels of certain PC and PE
species were also affected in HFD-fed BTBR sciatic nerve, there
were no distinct changes in the chain length. In both BKS and
BTBR mice fed a HFD, levels of specific phosphatidylserine (PS)
species were altered, but without discernable changes in chain
length (Figure 4C). Decreases in phosphatidylinositol (PI)
species were exclusive to HFD-fed BTBR sciatic nerve
(Figure 4D).

Levels of mitochondrial phospholipid cardiolipin (CL) were
significantly reduced within the sciatic nerves of BL6 and BTBR
mice after HFD feeding whereas sphingomyelin (SM) levels were
only reduced in the sciatic nerves from HFD-fed BL6 mice
(Figures 5A,B). Conversely, a HFD did not affect SM and CL
levels in the sciatic nerves of BKS mice. Since CL and SM were
only reduced in sciatic nerve from animals that gained weight and
were metabolically dysfunctional, these phospholipids may play
an important role in PN pathogenesis associated with metabolic
dysfunction.

Lysophospholipids and Plasmalogens
The HFD feeding significantly altered lysophospholipid and
plasmalogen lipids in the sciatic nerve for all three strains of
mice when compared to SD (Figures 6A–C).
Lysophosphatidylcholine (LPC) and plasmenyl-
phosphatidylethanolamine (plasmenyl-PE) lipid species were
significantly decreased in the sciatic nerves of BL6 and BTBR
mice fed a HFD compared to SD. The HFD-fed BKSmice with no
metabolic dysfunction displayed a significant decrease in LPC
and an increase in plasmenyl-PE. A reduction in
lysophosphatidylethanolamine (LPE) in the sciatic nerve
occurred only in BL6 mice fed a HFD, and not the two other

FIGURE 5 | Heat maps of BL6 and BTBR sciatic nerve cardiolipin (CL) and sphingomyelin (SM). HFD BL6 and BTBRmice show global decreases across all (A) CL
and (B) SM lipid species. t-test, p-value < 0.05.

FIGURE 6 | Heat maps of BL6, BTBR, and BKS sciatic nerve
plasmalogens and lysophospholipids. (A) HFD BL6 and BTBR mice show a
global decrease in plasmenyl-phosphatidylethanolamine (plasmenyl-PE)
whereas BKS mice have an increase in plasmenyl-PE. (B)
Lysophosphatidylcholine (LPC) species were also significantly decreased in
HFD BL6 and BTBR mice. (C) LPE species were decreased exclusively in the
sciatic nerve of HFD BL6 mice only. t-test, p-value < 0.05.
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strains, suggesting an association with LPE and both large and
small fiber PN in the murine model that most closely replicates
the human condition.

Liver and Plasma Lipid Profiles
The sciatic nerve lipidome is modulated by changes in plasma
lipid levels, whereas the liver is a major regulator of circulating
plasma lipid levels (O’Brien et al., 2017; O’Brien et al., 2020).
Therefore, we compared the liver and plasma lipid levels across all
murine strains with HFD versus SD feeding and found major
changes in lipid profiles regardless of murine strain. Although no
significant differences in plasma TG level were detected in all
murine strains (Supplementary Table S5), the chain length of
plasma TGs changed with HFD feeding. The BL6 and BTBRmice,
but not the BKS animals, had significant elevations in long-chain
TGs in plasma after HFD feeding compared to SD groups
(Supplementary Figure S1). The levels of several plasma DG
and cholesterol ester species were uniquely altered in HFD BTBR
mice after HFD feeding (Supplemental Figure 1B-C). Plasma
phospholipid levels were changed across all murine strains fed the
HFD but showed no significant difference in chain length or
degree of saturation (Supplementary Figure S2). Interestingly,
plasma SM levels were elevated in all HFD-fed murine strains
including HFD BL6 mice, which contrasted with decreased SM
levels in the HFD BL6 sciatic nerve (Supplementary Figure S3).
The levels of plasma plasmenyl-PE, plasmenylphosphatidylcholine
(plasmenyl-PC), LPE, and LPC were also significantly upregulated or
downregulated by the HFD feeding depending on the murine strain
(Supplementary Figure S4).

The liver had distinct changes in neutral lipids including
significant increases in TG and DG chain length, as well as an
overall decrease in DGs, in BL6 fed a HFD compared to a SD diet
(Supplementary Figure S5). Conversely, the levels of liver TGs
were significantly decreased in BTBR and BKS mice fed a HFD
(Supplementary Figure S5). Phospholipids were also
significantly altered in the liver of all three mouse models. The
level of PCs and PEs were significantly decreased in the liver of all
three murine strains with HFD feeding (Supplementary Figure
S6). Other phospholipid groups including PI, PS,
phosphatidylglycerol, and phosphatidic acid were also
decreased in a strain-dependent manner in the liver of these
mice (Supplementary Figure S6). As in the sciatic nerve, there
was a significant decrease in CL, plasmenyl-PC, LPC, and LPE in
the liver of BL6 mice fed a HFD (Supplementary Figures S7A,
S8A–D). The levels of specific species of SM, plasmalogens, and
lysophospholipids were altered in certain strains of HFD mice
[SM (BL6, BKS), plasmalogens (BL6, BTBR, BKS), and
lysophospholipids (BL6, BTBR)], but there were no distinct
changes in chain length or degree of saturation.

Top Lipids Contributing to Peripheral
Neuropathy in BL6 HFD-Fed Animals
We have previously reported that HFD feeding of BL6 mice leads
to metabolic dysfunction and large and small fiber PN that most
closely resembles that seen in humans (Hinder et al., 2017;
Rumora et al., 2019b; O’Brien et al., 2020). To determine

lipids most significantly linked to pathogenesis of both large
and small fiber PN, we identified the lipid species in sciatic nerves,
plasma, and liver that contributed the most to diet-induced group
separation among BL6 animals by VIP plots and correlation
coefficient analysis. A total of 166 sciatic nerve lipids, 141 plasma
lipids, and 240 liver lipids had VIP values greater than 1. The top
20 lipids with the highest VIP values were 9 TGs, four PCs, four
plasmenyl-PEs, one PS, one PE, and one CL species, which were
significantly altered in sciatic nerves (Figures 7A–C). Lipid VIP
scores for each tissue are provided in Supplementary Tables
S6–S8. Plasma lipids were also significantly impacted by HFD
feeding including five LPCs, five SMs, three PCs, two plasmenyl-
PCs, two LPEs, one PE, one CL species, and one cholesterol ester.
Important liver lipids affected by HFD feeding included six PEs,
4 TGs, three PCs, two CLs, one LPE, one PS, one phosphatidic
acid, one DG, and one phosphatidylglycerol species. We next
assessed lipid correlations across tissues and found, among the
35 differentially altered lipids, plasma and liver had greater overlap in
shared lipids versus sciatic nerve (Figure 7D). Finally, we directly
compared the liver, plasma, and sciatic nerve lipid levels in BL6mice.
Interestingly, lipid levels in the sciatic nerve were distinct from lipid
levels in the plasma or liver in BL6 mice fed the SD and the HFD
(Supplementary Figures S9A,B).

To identify lipid changes that contribute to PN in the different
mouse strains, we compared sciatic nerve lipids with VIP >1 across
the three strains of mice. We identified 33 shared lipid changes
between all murine strains, 57 shared lipid changes between sciatic
nerve from BL6 and BTBR mice, and 20 shared lipid changes in
sciatic nerve from BL6 and BKS mice (Supplementary Figures S10
and Supplementary Table S9). All HFD murine strains developed
large fiber neuropathy and had changes in the level of neutral lipids
(triglycerides and diacylglycerols) indicating that changes in neutral
lipid species may contribute to large nerve fiber damage. HFD
BL6 and BTBR mice that developed large fiber neuropathy
associated with metabolic dysfunction shared many lipid changes
in lysophospholipids and plasmalogens that were less distinct inHFD
BKS mice, indicating that these lipid species may contribute to large
fiber neuropathy in metabolic dysfunction.

HFD Impairs Mitochondrial Bioenergetics
Within DRG Neurons and the Sural Sensory
Nerve
Since essential mitochondrial phospholipids, including PE, PC,
PI, PS, and CL, were significantly altered in sciatic nerves of
BL6 mice fed a HFD, we next evaluated the impact of HFD on ex
vivomitochondrial function. Mitochondrial bioenergetic analyses
were performed on the DRG sensory neurons and the sural
sensory nerve. DRG neurons showed significant increases in
basal respiration and ATP production with no discernable
change in coupling efficiency at rest (Figures 8A–C). DRG
neurons from HFD-fed BL6 mice challenged with both
100 and 600 nM FCCP had significantly higher maximum
spare respiratory capacity relative to the BL6 DRG neurons
from SD, but loss of spare respiratory capacity at 600 nM
FCCP (Figures 8D,E). Basal ATP production and coupling
efficiency were significantly reduced in BL6 sural nerves from
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HFD-fed animals, while the basal respiration was not impacted,
compared to sural nerves from animals fed a SD (Figures 8F–H).
Sural nerve mitochondria also showed a significant decrease in
maximum respiratory capacity and spare respiratory capacity in
HFD-fed versus SD animals (Figures 8I,J). Mitochondrial copy
number was also significantly lower with HFD feeding in sural
nerves but not DRG neurons (Figure 8K). These results indicate
that a HFD induces DRG and sural nerve mitochondrial
dysfunction, correlating with altered mitochondrial lipid levels,
which may contribute to the loss of sensory nerve function in PN.

DISCUSSION

Multiple clinical studies identify components of the metabolic
syndrome, including dyslipidemia and elevated TGs, as
important PN risk factors (Wiggin et al., 2009; Andersen

et al., 2018). Preclinical research shows these same risk factors
adversely impact axonal mitochondrial trafficking and
bioenergetics (Rumora et al., 2018; Rumora et al., 2019a; Sajic
et al., 2021) resulting in bioenergetic failure in distal peripheral
nerve axons and PN (Feldman et al., 2017). Despite the relevance
of lipids, both as PN risk factors and in PN pathogenesis, the
precise circulating and nerve lipid species most important to PN
remain unknown. Importantly, the correlation of plasma and
liver lipidome to nerve lipidome is also incompletely understood,
despite the fact that a circulating lipidomic signature correlated to
that identified in the nerve could serve as a disease biomarker.
Thus, we undertook a systematic study of sciatic nerve, plasma,
and liver lipidomics of three HFD-fed mouse models of varying
metabolic and neuropathic phenotypes. The first model, HFD-fed
BL6 mice, gain weight and develop insulin resistance,
dyslipidemia and both large and small fiber PN, metabolic and
PN features similar to those reported in humans with prediabetes

FIGURE 7 | Variable importance in projection (VIP) score plots of the top 20 PLS-DA lipids in (A) sciatic nerve, (B) plasma, and (C) liver, that separate HFD BL6mice
from SD mice. (D) Pearson correlation coefficients for each shared lipid species between plasma vs liver, liver vs sciatic nerve, and sciatic nerve vs plasma.
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(Hinder et al., 2017). The second model, BTBR mice, are resistant
to weight gain until 36 weeks but develop insulin resistance,
hyperglycemia and large fiber PN. Lastly, the third model, BKS
mice fed a HFD diet develop only insulin resistance and large
fiber PN without gaining weight. Although large fiber PN was
detected in all strains of mice by 36 weeks of age, only BL6 mice
consistently developed the diet-induced metabolic dysfunction
and sensory PN that closely mimics the human condition. We,
therefore, reasoned that comparing the lipid signatures in these
different strains with varying metabolic and neuropathic
phenotypes would identify tissue-specific lipids important in
PN pathogenesis.

We found that score plots of sciatic nerve lipids separated
BL6 and BTBR mice fed a HFD from their SD counterparts,
aligning with the presence of weight gain and large fiber PN at
36 weeks in these HFD-fed strains. In contrast, BKS animals did
not experience this same diet-mediated separation in sciatic nerve
lipids and in parallel did not gain weight with a HFD. These data
show that nerve-specific lipid changes correlate with weight gain
from HFD feeding and support the idea that diet-induced lipid
changes impact tissue function, especially in tissues with diverse
lipid composition, such as the peripheral nervous system (Surma
et al., 2021). We also discovered distinct changes in the sciatic
nerve lipidome of HFD-fed BL6 and BTBR mice with large fiber
PN, including neutral lipids (TGs, DGs), phospholipids,
lysophospholipids, and plasmalogens. However, changes in
nerve SMs and LPE levels were unique to HFD-fed BL6 mice
who robustly model large and small fiber PN and are the only
strain to develop plasma dyslipidemia. These nerve lipid classes
may selectively contribute to small fiber nerve damage commonly
associated with obesity, the metabolic syndrome, and prediabetes
(Palavicini et al., 2020). Liver and plasma lipid profiles, that
presumably dictate the sciatic nerve lipidome, also changed
significantly in response to a HFD in all mouse strains. Since

none of these plasma or liver changes were specific to animals
with varying degrees of PN and metabolic dysfunction, it suggests
that nerve-specific lipid changes specifically contribute to PN.
Many of the nerve lipids identified in BL6 mice fed a HFD are
critical for mitochondrial function; indeed, sural nerves from
BL6 mice fed a 60% HFD were characterized by a loss of
respiratory capacity in both the basal resting and energetically
challenged states. Collectively, these results indicate that changes
in the peripheral nerve lipidome associate with specific PN
phenotypes (large and/or small fiber dysfunction) and likely
contribute to mitochondrial dysfunction in PN.

An accumulation of long-chain TGs and short-chain DGs in
the sciatic nerve was associated with PN in HFD BL6 mice with
small and large fiber PN and in BTBR mice with large fiber PN,
indicating that long-chain fatty acids from the diet are
incorporated into TGs, mobilized into the plasma, and
integrated into the sciatic nerve lipidome (Tracey et al., 2018).
These results are consistent with previous studies showing
elevated TGs in the sciatic nerve of neuropathic BL6 mice fed
60% HFD (O’Brien et al., 2020). In fact, gene expression of
diacylglycerol acyltransferase 2 (DGAT2), the rate-limiting
enzyme for TG biosynthesis was significantly increased in the
sciatic nerve of these neuropathic BL6 mice fed 60% HFD.
DGAT2 was also elevated in sural sensory nerve biopsies from
T2D humans with PN, suggesting that nerve TG synthesis is
elevated in PN (O’Brien et al., 2020). In the current study, TGs
also displayed longer hydrocarbon chains and a greater degree of
unsaturation in the HFD BL6 sciatic nerve, consistent with
findings in plasma of type 2 diabetic human subjects with
dyslipidemia and progressively worsening diabetic
complications (Afshinnia et al., 2018; Afshinnia et al., 2019).
The increase in TG hydrocarbon chain unsaturation in the sciatic
nerve might be a compensatory mechanism to replace saturated
TG hydrocarbon chains with polyunsaturated hydrocarbon

FIGURE 8 |Mitochondrial bioenergetics in SD vs HFDDRG neurons and sural nerves. Resting bioenergetics parameters including (A) basal respiration and (B) ATP
production were significantly increased in DRG neurons from HFD mice compared to SD mice, whereas (C) coupling efficiency was unaffected. (D) HFD DRG neurons
challenged with 100 and 600 nM FCCP had increased maximum respiratory capacity, but significantly diminished spare respiratory capacity with 600 nM FCCP (E)
relative to SD DRG neurons. The HFD had no effect on sural nerve (F) basal respiration but significantly reduced both (G) ATP production and (H) coupling efficiency
compared to the SD sural nerve. Challenging the HFD sural nerve with 20 μMFCCP significantly impaired both (I)maximum respiratory capacity and (J) spare respiratory
capacity compared to SD sural nerves. (K)Mitochondrial copy number was reduced in HFD sural nerve. Data mean ± SEM, n = 15 mice/group sural nerves; *p < 0.05,
**p < 0.01, ***p < 0.001.
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chains in an attempt to prevent nerve lipid peroxidation (Bailey
et al., 2015; Ackerman et al., 2018). Alternatively, the observed
mobilization of long-chain saturated fatty acids from TGs can
uncouple the mitochondrial membrane and impair
mitochondrial oxidative phosphorylation, which could have
contributed to the observed nerve injury (Murray et al., 2011).

In contrast to TGs, saturated DGs, including DGs 30:0–34:0,
were significantly elevated in the sciatic nerve of HFD BL6 mice.
The predominant DG species in standard rodent sciatic nerve are
unsaturated DGs 38:4 (18:0/20:4) and 34:1 (16:0/18:1) (Eichberg
and Zhu, 1992). Therefore, our findings indicate that HFD
consumption triggers the incorporation of saturated fatty
acids, such as palmitic acid and stearic acid, into sciatic nerve
DGs in HFD BL6 mice with small and large fiber PN and
dyslipidemia. This accumulation of saturated DGs in the
sciatic nerve may underlie nerve damage by mediating
lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum
stress, or apoptosis (Akoumi et al., 2017).

Our findings suggest that redirecting lipid biosynthetic
pathways away from TG/DG synthesis could provide a viable
therapeutic approach to treating PN. In support of this idea,
inhibiting DGAT and lipin1, a DG synthesizing enzyme,
promotes axon regeneration in peripheral neurons by reducing
TG/DG synthesis and stimulating phospholipid synthesis (Yang
et al., 2020). Furthermore, modulating DG levels in the sciatic
nerve of STZ-treated rats confers neuroprotection and improves
PN measures (Wang et al., 2021). Future preclinical studies
focused on nerve-specific TG/DG biology in the setting of
dyslipidemia and metabolic dysfunction could facilitate the
development of targeted interventions for the treatment of PN.

Phospholipids, including PE, PC, PS, and CL, were
significantly altered in the sciatic nerve of both HFD-fed
BL6 and BTBR mice but not BKS mice, indicating a major
shift in the nerve phospholipid content in response to HFD
feeding that correlates with weight gain. These results parallel
previous studies in murine models and humans with metabolic
syndrome, prediabetes, and T2D (O’Brien et al., 2020; Rumora
et al., 2021), suggesting that changes in nerve phospholipids
contribute to large fiber PN pathogenesis in these disease
states. Phospholipids make up approximately 57% of lipids in
the cell bodies and axons of peripheral neurons and 40% of lipids
in the myelin sheath (Calderon et al., 1995; Poitelon et al., 2020;
Hornemann, 2021). Alterations in phospholipid levels can trigger
aberrant changes in cellular signaling (Nishizuka, 1992), cell
membrane structure (Kuge et al., 2014), and membrane
dynamics in neurons (Tracey et al., 2018). Importantly,
phospholipids are a major constituent of the mitochondrial
membrane and play an integral role in regulating
mitochondrial function.

The most abundant phospholipids in the inner mitochondrial
membrane (PE, PC, CL) (Basu Ball et al., 2018) were those most
changed in HFD BL6 sciatic nerve in this study, supporting the
idea that these phospholipid changes could alter mitochondrial
bioenergetics (Schenkel and Bakovic, 2014). Changes in the levels
of inner mitochondrial membrane PE, PC, and CL result in the
improper assembly of the mitochondrial electron transport
supercomplexes, impairing oxidative phosphorylation (Tasseva

et al., 2013). Changes in CL are of particular interest since CL is
exclusively found in mitochondria and modulates the assembly of
respiratory chain supercomplexes III and IV (Zhang et al., 2005),
mitochondrial membrane potential (Ghosh et al., 2020),
mitochondrial bioenergetics (Paradies et al., 2014), reactive
oxygen species production (Falabella et al., 2021), and
apoptotic signaling and mitochondrial dynamics (Falabella
et al., 2021). The shift in PS and PE lipids, as well as the loss
of CL, within the sciatic nerves of HFD BL6 mice may destabilize
mitochondrial respiratory chain complexes, thereby reducing the
efficiency of oxidative phosphorylation and injuring the
peripheral nerves.

The most distinct lipid change was a global decrease in
lysophospholipids (LPC, LPE) and plasmenyl-PE in the sciatic
nerve of HFD BL6 and BTBR mice compared to BKS mice. A
decrease in lysophospholipids was recently reported in both
sciatic nerve (O’Brien et al., 2020) and plasma (Guo et al.,
2021) from mice and humans, respectively, with PN and
metabolic disease. Elevated levels of LPC are also implicated in
neuropathic pain associated with chemotherapy-induced
neuropathy (Rimola et al., 2020) and other painful
neuropathies (Inoue et al., 2008). Lysophospholipids are
generated from the hydrolysis of phospholipids (Tan et al.,
2020), leading to elevated nitric oxide levels, which may
damage peripheral nerves (Wang et al., 2013). Interestingly,
LPCs and LPEs, were only decreased in HFD-fed BL6 and
HFD-fed BTBR sciatic nerves emphasizing the possibility that
sciatic nerve lysophospholipid levels may be strain-dependent
(Hinder et al., 2017) and may contribute to the observed
differences in PN among the three strains. The HFD
BL6 sciatic nerve had the highest number of altered LPC
species and was the only strain with HFD-induced alterations
in LPE species indicating that altered lysophospholipids levels
may contribute to small and large fiber PN associated with
metabolic dysfunction. LPC levels are reportedly increased
during painful PN (Wang et al., 2013), indicating that a loss
of sensory function may be associated with the distinct decrease
in LPC species in HFD-fed BL6 mice. Plasmenyl-PE is a
plasmalogen, a family of lipids that contain arachidonic acid, a
known mediator of nervous system lipid-signaling pathways
(Murphy, 2017), membrane trafficking, and inflammatory
pathways (Tracey et al., 2018). Critical for the formation of
membrane rafts in the nervous system (Poitelon et al., 2020),
loss of plasmalogen plasmenyl-PE in peripheral nerves may alter
the lipid composition of myelin and ultimately lead to nerve
damage.

Only two lipid species, SM and LPE, were dysregulated
exclusively in the sciatic nerve from HFD BL6 mice with
weight gain, dyslipidemia, and small and large fiber PN that
mimics the human condition, compared to sciatic nerve from
BTBR or BKS mice. Both SM and LPE were significantly
decreased, indicating that the loss of SM and LPE within the
sciatic nerve may contribute to small fiber damage within the
nerve. This is supported by reports showing decreased plasma SM
levels in patients with T2D (Rumora et al., 2021) and obesity
(Guo et al., 2021). SM is an important nerve lipid of the myelin
sheath, which protects and supports sensory nerve fibers
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(Poitelon et al., 2020; Hornemann, 2021). Although the role of
LPE in the peripheral nervous system is less studied, changes in
LPE levels are reported in other neurological disorders, including
Alzheimer’s disease (Liu et al., 2021; Llano et al., 2021),
emphasizing the importance of this lipid for proper nervous
system function.

In the current study, HFD significantly impacted the liver and
plasma lipid profile in all three murine strains, irrespective of PN.
Since the peripheral nerves rely on both de novo lipogenesis and
lipid uptake from circulation (Tracey et al., 2018; Poitelon et al.,
2020), the saturation and chain length of circulating dietary fatty
acids and complex lipids can influence the nerve lipidome. We
have shown switching mice from a saturated fatty acid-rich HFD
to a monounsaturated fatty acid-rich HFD rich significantly
improves nerve function (Rumora et al., 2019b), likely because
monounsaturated fatty acids restore mitochondrial function
following saturated fatty acid-induced mitochondrial
dysfunction (Rumora et al., 2018; Rumora et al., 2019a;
Rumora et al., 2019b). Previous studies also describe elevated
plasma and liver TGs in HFD-fed BL6 mice with PN, consistent
with reports showing higher TGs in plasma of dyslipidemic
rodents (Lupachyk et al., 2012), and plasma of diabetic
(Wiggin et al., 2009; Callaghan et al., 2011; Smith and
Singleton, 2013) and obese subjects with PN (Guo et al.,
2021). However, we observed no strain-dependent differences
in plasma or liver lipid classes that were unique to the HFD-fed
BL6 mice or BTBR HFD-fed animals. These data suggest that
nerve-specific lipid changes are a more important driver of PN
pathogenesis than plasma or liver lipid signatures. In support of
this idea, a recent study showed that statins alter circulating lipid
levels in a T2D patient cohort from the ADDITION-Denmark
study but have no effect on PN (Kristensen et al., 2020).

Lipids profoundly influence mitochondrial bioenergetics
(Hinder et al., 2012; Aon et al., 2014); therefore, we
determined whether changes in the peripheral nerve lipidome
correlate with mitochondrial function distally in the ex vivo sural
sensory nerve and proximally in sensory DRG neurons from
HFD-fed BL6 mice. Although untargeted lipidomics was
conducted on sciatic nerves to provide sufficient tissue for the
lipidomic analysis, prediabetic and T2D PN is primarily a sensory
neuropathy (Feldman et al., 2017), so mitochondrial bioenergetic
analyses were performed on the sural sensory nerve and DRG
sensory neurons. Since HFD-fed BL6 mice robustly mimic PN in
humans with metabolic dysfunction, we postulated that ex vivo
sural nerve and DRG neurons from HFD-fed BL6 mice would
model changes in mitochondrial function that underlie diet-
induced small and large fiber PN pathogenesis. Basal ATP
production, coupling efficiency, and mitochondrial copy
number were reduced in the sural nerves from HFD-fed
animals, suggesting that mitochondrial energy production is
compromised due to uncoupling of ATP production from
mitochondrial respiration, as well as fewer mitochondria
(Chowdhury et al., 2013). Challenging these sural nerves with
mitochondrial uncoupler, FCCP, revealed a decrease in both
maximum respiratory capacity and spare respiratory capacity,
indicating the inability to increase ATP production to match
increased energy demand.

In contrast, DRG neurons cultured from HFD-fed BL6 mice
had significant increases in basal respiration and ATP production
under resting conditions with no changes in coupling efficiency
(Rumora et al., 2018), suggesting that mild uncoupling doesn’t
occur despite the increase in basal respiration. The lack of
uncoupling could in part prevent the formation of reactive
oxygen species. The loss of spare respiratory capacity suggests
the DRG neuron mitochondria are already functioning at
maximum capacity and cannot increase energy output to meet
increased energy demands. Elevated ATP production in DRG
neurons may therefore be a compensatory mechanism to increase
mitochondrial content and mitochondrial-derived ATP distally
in the sural nerve, to maintain at least partial nerve function
(Feldman et al., 2017).

Our study had several limitations. First, we used two different
HFD paradigms including a 54% HFD for lipidomics studies
versus a 60% HFD for mitochondrial bioenergetics. Since we
previously showed lipid changes in the sciatic nerve of mice fed a
60% HFD by 16 weeks of age were similar to mice fed the 54%
HFD at 36 weeks of age (O’Brien et al., 2020), we postulated that
changes in mitochondrial bioenergetics would be similar across
the two HFD paradigms. Future studies will test the effect of the
two different HFD paradigms on mitochondrial bioenergetics in
whole sural nerve and DRG neurons. Second, we were unable to
determine the acyl chain composition of lipids in the untargeted
lipidomics analysis. Targeted lipidomics platforms will be used in
future studies to identify structural changes in sciatic nerve, liver,
and plasma lipid species. It will be interesting to determine
whether HFD impacts the identity of the acyl chains of key
sciatic nerve lipid species we identified in this study. Further
studies are also needed to determine the significance of odd chain
lipids in HFD fed mice. Additionally, we will conduct
transcriptomics on nerve, liver, and plasma from each mouse
strain to assess changes in genes related to de novo lipogenesis and
other metabolic pathways in each tissue. A third limitation of this
study is the use of the sciatic nerve for untargeted lipidomics
versus DRG neurons and sural nerve for mitochondrial
bioenergetics analysis. Future directions will use targeted
lipdomics or MALDI-MSI to correlate changes in
mitochondrial bioenergetics function with lipid changes in
DRG neurons and sural nerve. A fourth limitation was our
limited number of biological samples (4 samples/tissue type)
for the untargeted lipidomics analysis. Future studies will
evaluate lipidomics changes with a greater number of tissue
samples per group and will be analyzed using q-value
statistical analysis to show variance across samples.

In conclusion, HFD feeding of different mouse models with
varying degrees of PN and metabolic dysfunction produced
significant remodeling of the sciatic nerve lipidome and
aberrant mitochondrial bioenergetics. Of the three mouse
strains (BL6, BTBR, BKS), HFD-fed BL6 mice develop large
fiber and small fiber PN and metabolic dysfunction that most
closely resembles the human condition. These animals showed
significant changes in neutral lipids, phospholipids,
lysophospholipids, and plasmalogen levels in the sciatic nerve.
Both SM and LPE were significantly altered in sciatic nerves only
in the HFD-fed BL6 animals, indicating the importance of these
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lipids for maintaining small fiber nerve function. Although
plasma and liver lipids were significantly impacted by the
HFD across all murine strains, the plasma and liver lipid
changes were not biomarkers of PN. The loss of mitochondrial
bioenergetics capacity in the sensory sural nerves from HFD-fed
BL6 mice differed from HFD-fed BL6 DRG neurons, which
showed increased ATP production, potentially as a compensatory
mechanism to restore ATP production distally in the injured nerve.
Future studies will focus on determining lipid changes that damage
specific subsets of nerve fibers, including small and large nerve fibers,
as a potential pathogenic mechanism underlying specific PN
phenotypes. Additionally, identifying the specific lipid species that
drive mitochondrial dysfunction and nerve damage may provide
novel therapeutic targets for PN associatedwith prediabetes and T2D.
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Abstract

Objective: The serum lipidomic profile associated with neuropathy in type 2

diabetes is not well understood. Obesity and dyslipidemia are known neuropa-

thy risk factors, suggesting lipid profiles early during type 2 diabetes may iden-

tify individuals who develop neuropathy later in the disease course. This

retrospective cohort study examined lipidomic profiles 10 years prior to type 2

diabetic neuropathy assessment. Methods: Participants comprised members of

the Gila River Indian community with type 2 diabetes (n = 69) with available

stored serum samples and neuropathy assessment 10 years later using the com-

bined Michigan Neuropathy Screening Instrument (MNSI) examination and

questionnaire scores. A combined MNSI index was calculated from examination

and questionnaire scores. Serum lipids (435 species from 18 classes) were quan-

tified by mass spectrometry. Results: The cohort included 17 males and 52

females with a mean age of 45 years (SD = 9 years). Participants were stratified

as with (high MNSI index score > 2.5407) versus without neuropathy (low

MNSI index score ≤ 2.5407). Significantly decreased medium-chain acylcarniti-

nes and increased total free fatty acids, independent of chain length and satura-

tion, in serum at baseline associated with incident peripheral neuropathy at

follow-up, that is, participants had high MNSI index scores, independent of

covariates. Participants with neuropathy also had decreased phosphatidylcholi-

nes and increased lysophosphatidylcholines at baseline, independent of chain

length and saturation. The abundance of other lipid classes did not differ signif-

icantly by neuropathy status. Interpretation: Abundance differences in circulat-

ing acylcarnitines, free fatty acids, phosphatidylcholines, and

lysophosphatidylcholines 10 years prior to neuropathy assessment are associated

with neuropathy status in type 2 diabetes.

Introduction

Peripheral neuropathy is a common complication of

type 2 diabetes, ranging in prevalence from 10 to over

50% in various cohorts.1–6 Peripheral neuropathy symp-

toms manifest as a loss of sensation and pain in a

length-dependent manner.1 Peripheral neuropathy in

type 2 diabetes remains recalcitrant to effective treat-

ment; glucose control only marginally prevents neuropa-

thy onset and development.7 This has spurred interest in

identifying metabolic factors early during type 2 dia-

betes, including modifiable factors, which identify

1392 ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
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patients most at risk to implement lifestyle interventions

in those patients.

Over the past decade, numerous studies have provided

evidence that obesity and dyslipidemia are important neu-

ropathy risk factors,8 independent, even, of glycemic status.

In the Danish ADDITION type 2 diabetes cohort, periph-

eral neuropathy is associated with decreased high-density

lipoprotein cholesterol.3 This relationship was also present

in older populations, in the Health, Aging and Body Com-

position study,9 and in youths, in the SEARCH for Diabetes

in Youth study.5 Elevated triglycerides associated with

peripheral neuropathy in the Danish Centre for Strategic

Research in Type 2 Diabetes cohort10 and risk for nontrau-

matic lower-extremity amputations in the DISTANCE

study.11 In these investigations, measurements were limited

to a basic lipid profile. Recent mass spectrometry advances

allow the identification and quantification of a larger array

of lipids, termed the lipidome, from biosamples. These lipi-

dome studies can identify relevant disease biomarkers at a

more granular level and shed light on pathogenesis to

develop rationalized, targeted therapies.12–17

Previously, we reported serum abundance differences in

the lipidome in type 2 diabetes patients, which correlated

with diabetic kidney disease (DKD) one decade later.13 In

cross-sectional studies, we also reported stepwise trends

in plasma abundance in free fatty acids, acylcarnitines,

diacylglycerols, sphingomyelins, and various additional

complex lipids by carbon and double bond number in

type 2 diabetes patients with compared to those patients

without neuropathy.18 We similarly found lipidomic sig-

natures differentiated obese patients with versus without

peripheral neuropathy, independent of glycemic status,19

a finding replicated in preclinical animal models.15,20,21

Collectively, these observations suggest that free fatty

acids, acylcarnitines, and complex lipids may be differen-

tially linked with a known diagnosis of neuropathy. How-

ever, they do not address whether the serum lipidome

can predict future incident neuropathy.

This present retrospective cohort study profiled free

fatty acid, acylcarnitine, and complex lipid abundance in

18 lipid classes by carbon number and saturation level in

individuals with type 2 diabetes 10 years prior to their

neuropathy assessment. The objective was to evaluate

correlations between serum lipidomics profile to future

incident peripheral neuropathy development. The periph-

eral neuropathy stage was stratified by Michigan Neu-

ropathy Screening Instrument (MNSI) index scores (low,

score ≤ 2.5407; high, score > 2.5407), an index that

combines the MNSI physical examination score and

MNSI symptom questionnaire. Study participants are

members of the Gila River Indian community and com-

prise one of the longest-running studies of type 2 dia-

betes.22 Since we found that the lipidome early during

type 2 diabetes correlates with the onset and progression

of DKD severity a decade later,13 we anticipated a rela-

tionship would also emerge with neuropathy and specific

lipid profiles. Indeed, we identified abundance differences

in circulating acylcarnitines, free fatty acids, phos-

phatidylcholines, and lysophosphatidylcholines, which

were linked to neuropathy severity 10 years later in this

type 2 diabetes cohort. This is, to our knowledge, the

first study to demonstrate that serum lipidomic signa-

tures can associate with the presence and severity of

future peripheral neuropathy.

Participants and Methods

Participant population and diabetic
peripheral neuropathy diagnosis

Study population details and participant recruitment are

published elsewhere.23 Briefly, the population comprised

American Indians from the Gila River Indian Community

who were participating in a longitudinal study of diabetes

and its complications (n = 169). They were recruited

between 1996 and 2001 for a randomized, double-blind,

placebo-controlled clinical trial to assess the efficacy of an

angiotensin receptor blocker on the development and

progression of DKD in type 2 diabetes (ClinicalTrials.gov,

NCT00340678).23 Of the 169 clinical trial participants,23

89 were subsequently enrolled in a long-term observa-

tional study, which included a neuropathy evaluation

(Fig. 1). Of these, 69 participants met the eligibility crite-

ria for this study, which included the availability of a

stored serum sample 10 years prior to the neuropathy

evaluation by MNSI examination and MSNI question-

naire.24,25 All participants meeting the eligibility criteria

were included in this study.

The MNSI examination consists of a foot exam, which

assesses ulceration, vibration, and ankle reflexes, and

scores 0 to 8. The MNSI questionnaire consists of 15 self-

administered questions related to symptoms and clinical

history and scores of 0–15. The combined MNSI index

score (hereafter referred to as MSNI index score) is calcu-

lated by a weighted sum of the individual four MSNI

examination domains (the eight scores for left and right

foot are combined to give four) and 15 MSNI question-

naire components. The weight of components is regres-

sion coefficients from a multivariable logistic regression

model, which most accurately predicts definite neuropa-

thy.25 An MNSI index cutoff of >2.5407 indicates the

presence of neuropathy.

Participants did not have a baseline MNSI examination

or questionnaire. To evaluate baseline status, the risk of

baseline of diabetic neuropathy was estimated using a “di-

abetic neuropathy prediction risk score”.26 This method
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Figure 1. Flow diagram of the study strategy. Participants (n = 169) were originally recruited for the Renoprotection in Early Diabetic

Nephropathy in Pima Indians trial from 1996 to 2001. Participants were followed for 6 years to assess the trial outcome. Of the original 169

clinical trial participants, 89 were subsequently enrolled in a long-term observational study, which banked baseline serum and collected baseline

clinical data (age, sex, height, weight, BMI, blood pressure, heart rate, diabetes duration, FPG, HbA1c, total cholesterol, triglycerides, GFR, urine

ACR, and medication use). At a mean 10-year follow-up, all 89 participants were reexamined, and peripheral neuropathy was assessed by MNSI

examination (foot ulceration, vibration, and ankle reflexes) and questionnaire. Of these, 69 participants met the eligibility criteria for this study,

which included the availability of a stored serum sample 10 years prior to the neuropathy evaluation. Banked serum from 10 years prior was ana-

lyzed by mass spectrometry; 435 lipids from the 18 classes were quantitated and their abundance by chain length and saturation were analyzed.

ACR, albumin creatinine ratio; ESRD, end-stage renal disease; FPG, fasting plasma glucose; GFR, glomerular filtration rate; HbA1c, glycated hemo-

globin; MNSI, Michigan Neuropathy Screening Instrument; PN, peripheral neuropathy. Figure created in BioRender.com.
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leverages an artificial intelligence neural network-based

approach to predict neuropathy status from clinical risk

factors, including age, height, weight, diabetes duration,

glycated hemoglobin, urine albumin-to-creatinine ratio,

and total cholesterol. The model achieves over 70% accu-

racy for predicting neuropathy status, as assessed by

continuous-scale vibration perception threshold using a

neurothesiometer.26 Based on the diabetic neuropathy

prediction risk score, the probability of baseline neuropa-

thy was only 5.5% (SD = 1.0%) in patients with low

MNSI index and 5.7% (SD = 0.7%) in patients with high

MNSI index, which did not differ significantly

(p = 0.367). Therefore, participants likely did not have

neuropathy at baseline.

The clinical data at the time of serum sample collection

were used to describe baseline participant characteristics.

The study was approved by the Institutional Review

Board #0000006 at the National Institute of Diabetes,

Digestive, and Kidney Diseases, Bethesda, Maryland. All

participants gave signed informed consent prior to their

participation in the study.

Sample preparation and mass spectrometry

Samples were prepared and mass spectrometry quantified

lipids from 18 classes per our published protocols.12,14,27

Details of sample preparation and lipid analyses are pro-

vided in Supplemental Methods.

Measured lipids

Four hundred and thirty-five lipids were quantitated from

the 18 classes (Table S1). Classes that consisted of two or

fewer lipid species (monoacylglycerols, plasmenyl-

phosphatidylcholines, phosphatidic acids, phosphatidylglyc-

erols, phosphatidylserines, ceramide phosphates) were elimi-

nated. After combining the different mass spectrometry

adducts of the same feature, 236 unique lipids were included

in the final analysis, including 16 free fatty acids (6.8%), 76

glycerolipids (32.2%; diacylglycerols and triacylglycerols), 12

cholesteryl-esters (5.1%), 83 phospholipids (35.1%;

phosphatidylcholines, phosphatidylethanolamines, lysophos-

phatidylcholines, lysophosphatidylethanolamines, plasmenyl-

phosphatidylethanolamines, phosphatidylinositols), 20

sphingomyelins (8.5%), and 29 acylcarnitines (12.3%).

Quality control

A pool of study samples was injected at the beginning

and after every 20 mass spectrometry runs in the lipido-

mic study, and after every 15 mass spectrometry runs in

the acylcarnitine study, to assess the stability of measures

over time and identify any batch effects.

Statistical analysis

Mean (�SD) or frequency (percentage) was used to

describe normally distributed continuous and categorical

variables, respectively. The median and interquartile

ranges were used to describe nonnormally distributed

continuous and categorical variables, respectively. Partici-

pant baseline characteristics for normally distributed con-

tinuous variables were compared using the t test for two

groups, whereas Kolmogorov–Smirnov test compared

skewed continuous variables and chi-square to compare

categorical variables. Lipidomics data were prepared for

analysis by batching and sum normalizing the raw peak

intensities by lipid species within each lipid subclass,

which were logit transformed and z-score standardized.12

Models were adjusted by age, sex, body mass index

(BMI), and systolic and diastolic blood pressure, glycated

hemoglobin (HbA1c), statin use, and use of other lipid-

lowering agents due to their established association with

neuropathy, and with lipid class carbon number and

number of double bond due to test the effect of chain

length and saturation status with the outcome, that is, the

presence of neuropathy (high MNSI index >2.5407) or

the absence of neuropathy (low MNSI index ≤2.5407).
We used backward elimination of nonsignificant covari-

ates. We also performed a Pearson’s correlation analysis

treating the MNSI index as a continuous variable corre-

lated to each lipid within each lipid class and to each

component of the metabolic syndrome.

Results

Cohort characteristics

Sixty-nine participants with type 2 diabetes, including 17

males and 52 females, received a neuropathy assessment.

Mean age was 45 � 9 years (�SD) and mean BMI was

36.0 � 7.5 kg/m2 in females and 34.8 � 7.5 kg/m2 in

males (p = 0.575). When we assessed neuropathy at the

10-year follow-up, there were 27 participants with neu-

ropathy (i.e., with a high MNSI index score of >2.5407)
and 42 participants without neuropathy (i.e., with a low

MNSI index score of ≤2.5407; Table 1). Systolic

(p = 0.010) and diastolic (p = 0.006) blood pressure were

significantly greater in participants with versus without

neuropathy.13,28 Additionally, the median urine albumin

creatinine ratio (ACR) was 15 mg/g in participants with-

out neuropathy, which is within the normal range. This

contrasts with a median ACR of 54 mg/g in participants

with neuropathy, which indicates microalbuminuria and

DKD onset and is significantly elevated versus the group

without neuropathy (p = 0.005). The correlation of DKD

with peripheral neuropathy is anticipated, based on our
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earlier study of Pima participants.6 There were no other

significant differences in baseline characteristics by neu-

ropathy status. However, there were several trends of

increased fasting plasma glucose (FPG), HbA1c, BMI, total

cholesterol, and triglycerides in participants with versus

without neuropathy, as anticipated based on uncontrolled

diabetes, obesity, and dyslipidemia being known periph-

eral neuropathy risk factors.3,9,29–31 Analysis of MNSI

index to components of the metabolic syndrome yielded

the same results, with the only significant correlation a

positive association between MNSI index and diastolic

blood pressure (Table S2).

Baseline acylcarnitine and free fatty acid
abundance associated with future
neuropathy status

We next conducted lipidomics on serum, which had been

banked one decade earlier from these participants to

identify early lipidomic changes correlating with neuropa-

thy development. Participants with significantly reduced

overall baseline abundance of medium-chain (C6–C14)
acylcarnitines correlated with the development of periph-

eral neuropathy at a 10-year follow-up (p < 0.001;

Fig. 2A), that is, had high MNSI index scores. Species-

specific differences by chain length and saturation level

were nonsignificant, likely attributable to a lack of statisti-

cal significance from limited power of low sample size

(Fig. 2B). However, the trend for all individual medium-

chain species with 0, 1, or 2 double bonds followed the

aggregate trend and were lower in participants with versus

without neuropathy. In short-chain acylcarnitines, there

were nonsignificant trends for reduced L-carnitine and C4

and elevated C2 and C3 in participants with versus with-

out neuropathy. In long-chain acylcarnitines, there were

also trends for decreased unsaturated species and

increased saturated species by participants with versus

without neuropathy. Elevated aggregate free fatty acid val-

ues correlated with participants that developed neuropa-

thy (p = 0.042; Fig. 3A). When we examined individual

free fatty acids by carbon and double bond numbers,

there were no significant differential levels in single spe-

cies (Fig. 3B). However, long-chain (C20–C24) saturated

and unsaturated free fatty acids had nonsignificant trends

for being generally elevated in participants with neuropa-

thy compared to participants without neuropathy. Differ-

ences in free fatty acids with 16 and 18 carbons were far

less pronounced. Finally, correlation analysis of the MNSI

index to lipids similarly found significant correlations

between acylcarnitines (p = 0.015) and free fatty acids

(p = 0.006) (Fig. S2A and B).

Overall, at baseline, lower aggregate medium-chain

acylcarnitines and higher aggregate free fatty acids levels

in serum were associated with the presence and severity

of peripheral neuropathy in participants with type 2 dia-

betes at the 10-year follow-up.

Baseline phosphatidylcholine and
lysophosphatidylcholine abundance
associated with future neuropathy status

Of the complex lipids, we found that baseline abundance

differences in phosphatidylcholines and lysophosphatidyl-

cholines are associated with future peripheral neuropathy

status. Overall, decreased phosphatidylcholine aggregate

abundance correlated with neuropathy in participants at

Table 1. Participant characteristics by neuropathy status.

Variables

Without

Neuropathy

With

Neuropathy

p value

MNSI index

≤ 2.5407

MNSI index

> 2.5407

N 42 27

Age (years) 46 � 8 45 � 9 0.666

Male sex (%) 8 (19.0) 9 (33.3) 0.179

Height (m) 1.6 � 0.1 1.7 � 0.1 0.168

Weight (kg) 92 � 20 100 � 25 0.160

Body mass index (kg/m2) 35.0 � 6.3 36.8 � 8.9 0.316

Systolic blood pressure

(mmHg)

117 � 14 126 � 14 0.010

Diastolic blood pressure

(mmHg)

74 � 8 79 � 7 0.006

Pulse (/min) 72 � 9 74 � 9 0.381

Diabetes duration (years) 15.5 � 5.4 15.6 � 6.4 0.925

Fasting plasma glucose

(mg/dL)

192 � 78 223 � 96 0.147

HbA1c (mmol/mol) 72.7 � 18.2 81.4 � 14.9 0.102

HbA1c (%) 8.8 � 2.2 9.6 � 1.8 0.102

Total cholesterol (mg/dL) 162 � 41 165 � 37 0.788

Triglyceride (mg/dL) 184 � 160 195 � 240 0.839

GFR (mL/min) 146 � 45 162 � 62 0.264

Urine albumin creatinine

ratio (mg/g)#
15 [5–53] 54 [18–155] 0.005

Intervention arm (%) 25 (59.5) 12 (44.4) 0.220

Medication

Antihypertensive (%) 17 (40.5) 10 (37.0) 0.775

Metformin (%) 25 (59.5) 18 (66.7) 0.550

Insulin (%) 17 (40.5) 11 (40.7) 0.983

Oral hypoglycemic (%) 31 (73.8) 24 (88.9) 0.128

Statins (%) 9 (21.4) 6 (22.2) 0.938

Other lipid-lowering (%) 10 (23.8) 7 (25.9) 0.842

Significant p values are in bold. Data represented as mean � SD (for

continuous variables) or frequency (percentage; for categorical vari-

ables), except nonnormally distributed data, for example, urine albu-

min creatine ratio#, represented as median [interquartile range].

ANOVA assessed normally distributed continuous variables; Kol-

mogorov–Smirnov test assessed skewed continuous variables; chi-

square test assessed categorical variables. ANOVA, analysis of vari-

ance; GFR, glomerular filtration rate; HbA1c, glycated hemoglobin;

MNSI, Michigan Neuropathy Screening Instrument.
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the 10-year follow-up (p = 0.016; Fig. 4A). Although

nonsignificant, most mono- and polyunsaturated phos-

phatidylcholines were diminished in banked serum from

participants that eventually developed neuropathy (i.e.,

high MNSI index; Fig. 4B). In contrast, the class level of

lysophosphatidylcholine abundance was significantly

higher in participants with versus without neuropathy

(p = 0.017; Fig. 5A). This observation is aligned with

lower phosphatidylcholines in the neuropathy group,

since lysophosphatidylcholines are generated from

phosphatidylcholines by phospholipase A2-mediated

removal of a fatty acid chain. There were no significant

chain length- and saturation-dependent differences by

neuropathy status (Fig. 5B). Broadly, individual

lysophosphatidylcholine species followed the aggregate

trend, with few exceptions, most notably the saturated

C18 species. As anticipated, correlation analysis of the

MNSI index to lipids identified a significant correlation

to lysophosphatidylcholines (p = 0.006) (Fig. S2C).

Cumulatively, of complex lipids, differential baseline

serum phosphatidylcholine and lysophosphatidylcholine

levels correlated with the presence and severity of periph-

eral neuropathy one decade later in Pima participants

with type 2 diabetes. Abundances of other signaling and

complex lipids did not significantly affect future neuropa-

thy status (Figs. S1 and S2D–L). Among these lipid

classes, none of the covariates were used to adjust models

associated with lipid level variation.
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Figure 3. Free fatty acid abundance by neuropathy status. (A) Overall, mean free fatty acid abundance was significantly increased in participants

with (dark gray, high MNSI index) versus without neuropathy (light gray, low MNSI index; p = 0.042). (B) Heatmap of free fatty acid abundance

by chain length (carbon number) and saturation (double bond number) for participants with (n = 27, high MNSI index) versus without neuropathy

(n = 42, low MNSI index). The scale represents acylcarnitines species that are increased (red) or decreased (blue) in groups. (A and B) are based

on generalized linear mixed models with a double bond number, carbon number, and MNSI index groups as main effect variables. (B) bars

represent z-score standardized mean values � SEM. MNSI, Michigan Neuropathy Screening Instrument.

Figure 2. Acylcarnitine abundance by neuropathy status. (A) Overall, mean C6–C14 acylcarnitine abundance was significantly decreased in

participants with (dark gray, high MNSI index) versus without neuropathy (light gray, low MNSI index; p < 0.001). (B) Heatmap of acylcarnitine

abundance by chain length (carbon number) and saturation (double bond number) for participants with (n = 27, high MNSI index) versus without

neuropathy (n = 42, low MNSI index). The scale represents acylcarnitines species that are increased (red) or decreased (blue) in groups. A and B

are based on generalized linear mixed models with carbon number, double bond number, and MNSI index groups as main effect variables and

the MNSI index group by carbon number interaction, adjusted for other covariates. B, bars represent z-score standardized mean values � SEM.

LC, L-carnitine; MNSI, Michigan Neuropathy Screening Instrument.
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Discussion

Herein, for the first time, to our knowledge, we demon-

strate that a serum lipidomics signature associates with

future incident peripheral neuropathy. Specifically, in

Pima participants with type 2 diabetes, decreased baseline

serum medium-chain acylcarnitines and increased free

fatty acids associated with peripheral neuropathy, were

assessed by the MNSI index, one decade later. Participants

that developed neuropathy also had lower phosphatidyl-

cholines and higher lysophosphatidylcholines versus par-

ticipants that did not develop neuropathy. The

abundance of other lipid classes did not significantly vary

with neuropathy. These findings indicate lipid changes

related to impaired mitochondrial b-oxidation in partici-

pants that develop peripheral neuropathy.

Diabetes is the greatest risk for peripheral neuropathy,4,31

although dyslipidemia,3,5,8–11 obesity,2,3,30 and additional
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Figure 4. Phosphatidylcholine abundance by neuropathy status. (A) Overall, mean free fatty acid abundance was significantly decreased in

participants with (dark gray, high MNSI index) versus without neuropathy (light gray; low MNSI index; p = 0.016). (B) Heatmap of

phosphatidylcholine abundance by chain length (carbon number) and saturation (double bond number) for participants with (n = 27, high MNSI

index) versus without neuropathy (n = 42, low MNSI index). The scale represents acylcarnitines species that are increased (red) or decreased (blue)

in groups. A and B are based on generalized linear mixed models with a double bond number and MNSI index groups as main effect variables,

adjusted for other covariates. B, bars represent z-score standardized mean values � SEM. MNSI, Michigan Neuropathy Screening Instrument.
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components of the metabolic syndrome, such as hyperten-

sion,30,32 are additional important metabolic risk factors.

Herein, systolic and diastolic blood pressure were elevated

in participants with versus without neuropathy.13,28 More-

over, microalbuminuria and DKD at baseline correlated

with neuropathy at the follow-up in Pima participants with

type 2 diabetes.6 However, there were no significant differ-

ences in baseline glycemic (FPG, HbA1c) and basic lipid

(triglycerides, total cholesterol) profiles or anthropometric

measures (BMI). This may be due to the relatively smaller

sample size in the group with (n = 27) versus without

(n = 42) neuropathy or the presence of additional risk fac-

tors beyond glycemic and basic lipid profiles, such as inter-

mediate and complex lipids, which may associate with

future incident neuropathy. We previously noted no differ-

ences in basic lipid, glycemic, or anthropometric metrics in

type 2 diabetes participants with (n = 49) versus without

neuropathy (n = 48) in our larger ADDITION study.18

Since there were no differences in basic lipid profiles, we

next investigated the lipidomics profiles from stored serum

baseline samples.

We found a specific lipidomics profile of differential

aggregate levels of decreased medium-chain acylcarnitines,

increased free fatty acids, decreased phosphatidylcholines,

and increased lysophosphatidylcholines associated with

future incident neuropathy in Pima participants with type

2 diabetes. This agrees with metabolomics and lipidomics

profiles of incident peripheral neuropathy in the Danish

ADDITION cohort,18 which collected plasma at the time

of neuropathy assessment. Participants with neuropathy

had a trending increase in triacylglycerols in both the

ADDITION and Pima studies. We saw abundance

variation by carbon and double bonds in diacylglycerols

and other sphingo- and phospholipids in both the Pima

and ADDITION studies, although trends were more

uniform in ADDITION, especially for diacylglycerols,
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Figure 5. Lysophosphatidylcholines abundance by neuropathy status. (A) Overall, mean free fatty acid abundance was significantly increased in

participants with (dark gray, high MNSI index) versus without neuropathy (light gray, low MNSI index; p = 0.017). (B) Heatmap of

lysophosphatidylcholine abundance by chain length (carbon number) and saturation (double bond number) for participants with (n = 27; high MNSI
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sphingomyelins, ceramides, and phosphatidylethano-

lamines.18 Differences between the two studies may have

arisen from the distinct temporal assessments of lipid sig-

natures relative to peripheral neuropathy development in

the two studies, from our smaller sample size in the cur-

rent study, or from natural variation in the populations.

Few other studies have compared plasma or serum lipi-

domics of participants with type 2 diabetes to peripheral

neuropathy status. We recently assessed cross-sectional lipi-

domics in obese participants, independent of glycemic sta-

tus, and found peripheral neuropathy was characterized by

differential diacylglycerols, phosphatidylcholines, sphin-

gomyelins, ceramides, and dihydroceramides.19 Ziegler et al.

analyzed cross-sectional plasma signatures from participants

from the German Diabetes Study with recent-onset type 2

diabetes (n = 95) to cardiac autonomic neuropathy.33 Sev-

eral phosphatidylcholines and sphingomyelins correlated

inversely with cardiac autonomic neuropathy in participants

with type 2, but not type 1, diabetes, concluding this may

arise from dyslipidemia as a major driver of nerve damage

secondary to type 2 diabetes.33

We have also reported lipidomic analyses of other dia-

betic complications in the Pimas, including nephropathy13

and retinopathy.34 The neuropathy lipidomic signatures

from the current study were distinct to both the DKD and

the retinopathy signatures, although signatures in all three

diabetic complications centered around impaired b-
oxidation. This aligns with our mouse data of tissue-specific

metabolic and lipidomic differences in nerve, kidney, and

retina in type 2 diabetes.16,35 Overall, these studies under-

score the importance of baseline plasma lipidomics profiles

on the development, even a decade later, of type 2 diabetes

complications,13,34 including peripheral neuropathy.

Lipids are a diverse class of molecules with numerous

biological functions, especially in the nervous system.

Herein, the lipidomic signatures associated with neuropa-

thy in Pima participants with type 2 diabetes centered on

lipids related to mitochondrial function. Indeed, dysfunc-

tional mitochondrial dynamics underpin diabetic neu-

ropathy,36 including dyslipidemia, which impairs

mitochondrial trafficking20,21,37 and bioenergetics, leading

to energy failure and resulting nerve injury.37 In the cur-

rent study, serum linked to neuropathy was characterized

by elevated free fatty acids and diminished medium-chain

acylcarnitines. Free fatty acids are an important energy

source through mitochondrial b-oxidation. Fatty acids are

shuttled into mitochondria by conjugating with L-

carnitine, forming acylcarnitine intermediates, which are

converted back to the fatty acid acyl within mitochondria,

where they are metabolized by b-oxidation.38 Free fatty

acids accumulation and decreased medium-chain acylcar-

nitines suggest blockade in fatty acid to acylcarnitine con-

version and disrupted mitochondrial b-oxidation, a

scenario likely arising from fatty acid substrate excess,38

as occurs in dyslipidemia.

Complex phospholipids, such as the ratio of phos-

phatidylcholines to phosphatidylethanolamines, dictate

membrane curvature, regulating mitochondrial biogenesis

and bioenergetics.39,40 Herein, reduction phosphatidyl-

cholines signals potential changes to mitochondrial struc-

ture and, in turn, mitochondrial function. Moreover,

lysophosphatidylcholines, which were elevated in aggregate

in participants that developed neuropathy, correlate with

insulin resistance41 and are linked to retinal neurodegener-

ation in preclinical studies.42 Lysophosphatidylcholines are

also precursors to lysophosphatidic acid, which is related

to neuropathic pain,43 a frequent symptom in type 2 dia-

betes patients and peripheral neuropathy. Although lipido-

mics identified differential abundance in these lipid species

in participants with type 2 diabetes and neuropathy, pre-

clinical studies are needed to infer causality from these

specific lipids and/or elucidate pathomechanisms.

This study has several strengths. The Pima Indian type

2 diabetes cohort is long-established and very homoge-

nous and has been deeply phenotyped for several diabetic

complications.13,28,34 The great extent of homogeneity

minimizes potential confounders, creating a unique

opportunity to explore the biology of neuropathy in a

type 2 diabetes cohort. Physical examinations and data

collection followed well-specified research protocols,

resulting in high-quality data. Additionally, the mass

spectrometry quality control protocol ensured high-

quality lipidomic data on a large array of lipid classes,

with low coefficients of variations and minimal to no

batch-to-batch variability.

This study also has limitations. Serum lipidomics can

identify biomarkers of diabetic peripheral neuropathy, but

the relationship between serum versus nerve tissue lipids

and damage is uncertain. Our study did not assess nerve

conduction velocities as a neuropathy outcome; however,

the MNSI index has good diagnostic characteristics for

neuropathy (area under the curve of 0.86 for the receiver

operating characteristic curve).44 Moreover, the study did

not assess baseline MNSI index; however, diabetic neu-

ropathy prediction risk scores indicate participants likely

did not have neuropathy at baseline.26 As an observa-

tional study, we cannot infer causality between lipid spe-

cies abundances to later development of neuropathy;

however, our observations align with our preclinical

model studies, which inferred causality.15,20,21 The cohort

is relatively small and findings will need replication in lar-

ger cohorts, although findings in this cohort have broadly

been confirmed in other populations,18 especially for

DKD.13,45 Our study also noted multiple interesting non-

significant trends, which larger studies might be powered

to rigorously assess. Our study was too small for analyses
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by sex, though sex-dependent differences in the plasma

lipidome have been reported.46–48 Finally, as with other

Omic studies, our lipidomics platform generated a rela-

tively large number of lipids; hence, applying traditional

statistical methods to individualized lipids is limited by

our sample size and hence the potential of false discovery.

To overcome these limitations, we continuously applied

data reduction strategies. This included applying intrali-

pid class mixed models, which reduced multiplicity and

potential for false discovery, and enhanced statistical

power. Yet, the approach retained deep pathophysiologi-

cal insight by accounting for lipid profiles in relation to

neuropathy phenotype.

We conclude that aggregate abundance differences in

circulating medium-chain acylcarnitines, free fatty acids,

phosphatidylcholines, and lysophosphatidylcholines, early

in the course of the disease are linked to the later devel-

opment of human type 2 diabetic neuropathy. Our find-

ings have important clinical implications. They suggest a

potential diagnostic route through biomarker discovery

and risk stratification to identify type 2 diabetes patients

at the highest risk of peripheral neuropathy, facilitating

better management in this patient subset. Additionally,

further research validating and delineating the relation-

ship of serum lipid species to neuropathy in preclinical

models could enhance our understanding of pathogenesis

and open avenues for targeted therapeutic development.

Importantly, since lipidomics highlighted impaired mito-

chondrial b-oxidation, it suggests that conventional lipid-
lowering medication, such as statins and fenofibrates,

which act through cholesterol and apoprotein synthetic

pathways, may be ineffective for treating neuropathy.

Indeed, statin use does not appear to impact neuropathy

onset.49 As an alternative approach, this study under-

scores a possible need for therapeutics that optimize fatty

acid metabolism and enhance mitochondrial b-oxidation.
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Table S1 Identified lipids by adduct, mass-to-charge ratio

(m/z), and retention time (RT) in positive and negative

modes. The mass accuracy was �0.001 Da in positive

mode and �0.005 Da in negative mode, with an overall

mass error of <2 ppm. CE, cholesterol ester; CerP, cera-

mide-phosphate; CL, cardiolipin; DAG, diacylglycerol;

FFA, free fatty acid; LPC, lysophosphatidylcholine; LPE,

lysophosphatidylethanolamine; MAG, monoacylglycerol;

PA, phosphatidic acid; PC, phosphatidylcholine; PE,

phosphatidylethanolamine; PG, phosphatidylglycerol; PI,

phosphatidylinositol; PS, phosphatidylserine; pPC, plas-

menyl-phosphatidylcholine; pPE, plasmenyl-phos-

phatidylethanolamine; SM, sphingomyelin; TAG,

triacylglycerol.

Table S2. Correlation of MNSI index with baseline vari-

ables. *p = 0.017; BMI, body mass index; DBP, diastolic

blood pressure; FPG, fasting plasma glucose; MNSI,

Michigan Neuropathy Screening Instrument; SBP, systolic

blood pressure.

Figure S1. Various lipid class abundance by neuropathy

status. Heatmap of lipid abundances reveals no statistically

significant differences in participants with (n = 27; high

MNSI index) versus without neuropathy (n = 42; low

MNSI index) for (A) sphingomyelins (SM), (B) phos-

phatidylinositols (PI), (C) lysophosphatidylethanolamines

(LPE), (D) plasmenyl-phosphatidylethanolamines (pPE),

(E) cholesteryl-esters (CE), (F) phosphatidylethanolamines

(PE), (G) diacylglycerols (DAG), (H) triacylglycerols

(TAG).

Figure S2. Correlation between neuropathy severity and

lipids. Heatmap of Pearson correlation coefficients of

neuropathy severity (MNSI index) with each lipid by lipid

class by carbon number (x-axis) and double bond num-

ber (y-axis) for (A) acylcarnitines (AC), (B) free fatty

acids (FFA), (C) lysophosphatidylcholines (LPC), (D)

phosphatidylcholines (PC), (E) triacylglycerols (TAG), (F)

phosphatidylinositols (PI), (G) cholesteryl-esters (CE),

(H) diacylglycerols (DAG), (I) lysophos-

phatidylethanolamines (LPE), (J) phosphatidylethanolami-

nes (PE), (K) plasmenyl-phosphatidylethanolamines

(pPE), and (L) sphingomyelins (SM).

1404 ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
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The Impact of the COVID-19
Pandemic on Ethnic Minority
Groups With Diabetes
https://doi.org/10.2337/dc21-2495

Major ethnic disparities in diabetes care, especially for intermediate outcomes
and diabetes complications, were evident prior to the coronavirus disease 2019
(COVID-19) pandemic. Diabetes is a risk factor for severe COVID-19, and the com-
bination of these ethnic disparities in diabetes care and outcomes may have con-
tributed to the inequity in COVID-19 outcomes for people with diabetes. Overall,
ethnic minority populations have suffered disproportionate rates of COVID-19
hospitalization and mortality. Results from the limited number of studies of
COVID-19 in ethnic minority populations with diabetes are mixed, but there is
some suggestion that rates of hospitalization and mortality are higher than those of
White populations. Reasons for the higher incidence and severity of COVID-19–
related outcomes in minority ethnic groups are complex and have been shown to
be due to differences in comorbid conditions (e.g., diabetes), exposure risk (e.g.,
overcrowded living conditions or essential worker jobs), and access to treatment
(e.g., health insurance status and access to tertiary care medical centers), which all
relate to long-standing structural inequities that vary by ethnicity. While guidelines
and approaches for diabetes self-management and outpatient and inpatient care
during the pandemic have been published, few have recommended addressing
wider structural issues. As we now plan for the recovery and improved surveillance
and risk factor management, it is imperative that primary and specialist care serv-
ices urgently address the disproportionate impact the pandemic has had on ethnic
minority groups. This should include a focus on the larger structural barriers in soci-
ety that put ethnic minorities with diabetes at potentially greater risk for poor
COVID-19 outcomes.

A significant body of evidence indicates that many of the most vulnerable in our so-
ciety have faced the greatest burden of both direct and indirect consequences of
the coronavirus disease 2019 (COVID-19) pandemic, including the elderly, people
living in deprived areas, people with learning difficulties, the homeless, and mi-
grants. In particular, ethnic minority populations in many European countries and
North America are at greater risk of infection and severe outcomes due to COVID-19 
(1–3), although recent data on later waves and variants suggest some of these dis-
parities have reduced for some minority groups (4).
There is now strong evidence that having a long-term condition, such as diabe-

tes, increases risk of severe COVID-19 outcomes. Due to the greater prevalence of
comorbidities in some ethnic minority populations (5), this may be one factor ex-
plaining outcome disparities between ethnic groups (Fig. 1). However, despite the
large volume of literature and many reviews focusing on the association between
ethnicity and COVID-19, there is, to our knowledge, far less attention paid to
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examining differences in COVID-19 out-
comes by ethnic groups in patients with
diabetes.
Therefore, this Perspective summarizes

the literature on prepandemic ethnic dis-
parities in diabetes care as well as the
wider context of disrupted diabetes care
during the pandemic. It also provides an
overview of the limited literature on eth-
nic disparities in COVID-19 in people with
diabetes. Finally, this article concludes
with a summary of potential explanatory
mechanisms for ethnic disparities in
COVID-19, interventions implemented to
improve diabetes outcomes during the
pandemic, structural determinants that
require addressing, and recommendations
for future research.

PREPANDEMIC DISPARITIES IN
DIABETES CARE

Prior to the COVID-19 pandemic, numer-
ous studies had reported major ethnic
and socioeconomic disparities in diabetes
care, particularly for intermediate out-
comes and diabetes complications. For
patients with type 1 diabetes, inequalities
in access to technology and insulin pumps
also exist. The combination of these eth-
nic disparities in diabetes care and out-
comes has been a significant contributor
to the predictable and undesirable in-
equity in COVID-19 outcomes for peo-
ple with diabetes.

Internationally, ethnic and socioeco-
nomic disparities in intermediate dia-
betes outcomes have been repeatedly
demonstrated. For example, a 2013 U.S.
study found that the Hispanic population
was less likely to receive five diabetes
quality-of-care recommendations, includ-
ing twice-yearly HbA1c tests and yearly
foot exam, dilated eye exam, cholesterol
test, and flu vaccination (6). Black pa-
tients were also less likely to receive
HbA1c tests, eye exams, and flu vaccina-
tion, and Asian patients were less likely
to receive HbA1c tests and annual foot
and eye examinations. These differences
were eliminated after adjusting for insur-
ance status and education.
Similarly, in a nationally representative

study of 164 English primary care practi-
ces, Black patients and people from the
lowest socioeconomic status (SES) groups
had higher HbA1c than White patients
and people from the highest SES groups
(7). In a systematic review of 24 studies,
Black patients were �30% less likely to
have HbA1c and blood pressure control
but were �20–50% more likely to receive
eye or foot examinations than White
patients (8). A high school degree or
higher was associated with a greater
likelihood of HbA1c control and eye ex-
amination. Other social determinants
of health (i.e., income, access to care,
and food insecurity) were also related,

albeit more weakly, to these interme-
diate outcomes.
The results of disparities in diabetes

quality of care and intermediate outcomes
have translated into well-characterized
ethnic and socioeconomic disparities in
eye, kidney, and cardiovascular disease.
Black, Latino, and Asian patients all have
higher rates of diabetic eye disease than
non-Hispanic White patients (8). Addi-
tionally, Black, Latino, Asian, Filipino, and
mixed-ethnicity patients all have been
found to have higher rates of end-stage
renal disease than non-Hispanic White
patients within the Kaiser Permanente
Northern California integrated health care
delivery system (9). Furthermore, in a
2020 study of people with type 2 diabe-
tes, South Asian patients had a higher
cardiovascular disease risk than people
of White ethnicity (10).
Studies in China, Sweden, and the

U.S. have identified an association be-
tween low SES and increased diabetes
complication rates. For example, in a
Chinese cohort of over 25,000 patients
with type 2 diabetes, the least educated
population groups had the highest risk
for cardiovascular disease, cerebrovascu-
lar disease, and retinopathy, and the
lowest household income population had
the highest rate of retinopathy and neu-
ropathy (11). In a study of over 24,000
Swedish patients with type 1 diabetes,
similarly, the risk of death was three times

G

,

Figure 1—Potential reasons for COVID-19 disparities among ethnic minority populations.
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higher among patients in the two lower
income quintiles compared with the
highest income quintile, and the risk
for cardiovascular disease and stroke
was twofold (12). Higher education
was also associated with a lower risk
of stroke. In the U.S., risk of death
was �1.5 times greater among those
with the lowest education level and
without measures of financial wealth,
such as home ownership (13). Impor-
tantly, accounting for U.S. socioeco-
nomic differences by ethnicity narrows
the excess mortality attributed to diabe-
tes for White and Hispanic populations
but not for non-Hispanic Black popula-
tions (14).

IMPACT OF THE PANDEMIC ON
DIABETES CARE FOR ETHNIC
MINORITIES

Data from England suggest there was
between a 74% and 88% reduction in
care processes during the pandemic
compared with prepandemic levels (15).
Other work has also suggested reduced
consultation rates and hospital admis-
sions, 30% reduction in diabetes diagno-
ses, and 70% reduction in HbA1c testing
during the pandemic (16). Older patients
from deprived areas experienced the
largest reductions in health checks, but
high-quality data on the differences by
ethnic groups are lacking.
The few studies that have examined

the impact of the pandemic on diabetes
care have suggested that there have
been no ethnic disparities in diabetes
care. For example, in the U.K., a study
of 618,161 people with type 2 diabetes
from 1,744 general practices identified
similar lower rates of performing health
checks and prescribing diabetes medica-
tions by ethnicity (15). Interestingly, a
study of a large academic U.S. health
system reported a higher rate of eye ex-
ams among Black, Asian, and Hispanic
patients with diabetes compared with
White patients and no difference in
HbA1c and nephropathy testing (17). Of
note, a major shift to telemedicine oc-
curred during the pandemic, and one
study of 1,292 patients did not identify
ethnic disparities in telemedicine use
for subspecialty diabetes care but did
report lower rates of telemedicine use
among people with a non-English pri-
mary language and older adults (18).

ETHNIC DISPARITIES IN COVID-19
OUTCOMES IN PEOPLE WITH
DIABETES

Diabetes is a risk factor for severe
COVID-19, including intensive care unit
(ICU) admission and death (19). However,
despite multiple publications reporting
the association of ethnicity with COVID-19
outcomes in ethnic minority populations,
very few studies have examined differ-
ences in COVID-19 outcomes by both
ethnicity and diabetes (Table 1). The
largest is a National Population Database
study, which included 264,390 people
with type 1 diabetes and 2,874,720 people
with type 2 diabetes in England (20). Over-
all, in individuals with type 1 diabetes,
South Asian, Black, mixed, and other eth-
nic groups had significantly higher mor-
tality risk from COVID-19 versus White
populations (20). For people with type 2
diabetes, risk of in-hospital mortality was
greater for Asian, Black, and mixed eth-
nic groups but not for the other ethnic
groups (20). The other ethnic groups in-
cluded Vietnamese, Japanese, Filipino,
Malaysian, and other ethnicities.
Another U.K. study of over 19,000

COVID-19 high-dependency-unit and ICU
admissions found that of 3,524 patients
with diabetes, 58.5% were White, 21.9%
were Asian, 11.6% were Black, and 8%
were mixed or other ethnicity. There was
no evidence of a difference in COVID-19
mortality associated with type 2 diabetes
in subgroups defined by ethnicity (21).
Other U.K. data include a small, sin-
gle-center study of 39 patients with
end-stage renal disease secondary to
diabetic kidney disease, which re-
ported a higher prevalence of patients
of African-Caribbean ethnicity hospitalized
with COVID-19 (60%) versus White or
other ethnic groups (22).
In a multisite, cross-sectional, obser-

vational study of 113 people in the U.S.
with type 1 diabetes (n = 58 hospital-
ized), people of ethnic minority back-
ground (Black, Hispanic, and other) with
confirmed COVID-19 were, on average,
3.63 times more likely to be hospitalized
than non-Hispanic White patients (23). The
same research group also subsequently
reported a cohort of 180 patients with
type 1 diabetes and laboratory-confirmed
COVID-19, and they found that Black
patients were significantly more likely
to present with diabetic ketoacidosis

(DKA) than non-Hispanic White patients
(24). Additionally, in a multisite prospec-
tive study of 137 service locations and
313 patients with type 1 and type 2 dia-
betes, compared with the White group,
the Black group was significantly associ-
ated with hospitalization and worsening
illness severity within 114 days of a posi-
tive COVID-19 test (25). However, a ret-
rospective study of 6,104 people with
type 2 diabetes from an ethnically di-
verse southern U.S. sample found 239
(39%) tested positive for COVID-19, but
there were no significant differences in
mortality between Black and White pa-
tients (26).
In a retrospective study from the Uni-

versity of Michigan, among those with
diabetes, in the whole cohort Black pa-
tients were significantly more likely to
be tested for COVID-19 and have posi-
tive test results than White patients;
however, hospitalization, ICU admission,
and mortality were not different for
White and Black COVID-19 patients with
type 2 diabetes (5). Another multisite
study of 4,413 COVID-19 patients with
type 2 diabetes admitted to New York
hospitals reported that most patients
were non-White (67.3%), with 27.1%
Black, 17.2% Hispanic, and 24.9% mul-
tiethnic or other ethnicity (27). There
was no significant association between
ethnicity and mortality (27). Similarly, a
nationwide retrospective cohort study in
the U.K. (n = 19,256) reported no differ-
ence in mortality associated with type 2
diabetes in subgroups defined by ethnic-
ity (21).

Overall, results from the few studies
of COVID-19 in ethnic minority popula-
tions with diabetes are mixed, but there
is some suggestion that the rates of
hospitalization and mortality are higher
than those of White populations. Al-
though a number of larger population-
level studies have been performed, these
were all conducted in the U.K. or U.S.,
and there is a need for evidence from
other countries, particularly lower- and
middle-income countries. In addition, fur-
ther work is needed to examine dispar-
ities for more granular ethnic groups
(e.g., breaking down South Asian into
Indian, Pakistani, etc.), although efforts
may be hampered by poor ethnicity cod-
ing in routine health care data in many
countries.
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Table 1—Summary of studies on COVID-19–related outcomes by ethnic group in patients with diabetes

Reference Country Design Population Results

Corcillo et al. (22) U.K. Not stated Type 1 and 2 diabetes High prevalence of patients of Afro-Caribbean
ethnicity hospitalized with COVID-19; 73% and
54% prevalence in renal transplant and hemodialysis
groups, respectively. The mortality rate of the
cohort was 36%.

Holman et al. (20) U.K. Population cohort Type 1 and 2 diabetes In individuals with type 1 diabetes, South Asian (HR
1.57, 95% CI 1.16–2.12), Black (HR 1.77, 95% CI
1.25–2.49), mixed (HR 1.77, 95% CI 1.25–2.49), and
other ethnic groups (HR 1.89, 95% CI 1.03–2.37)
had significantly higher mortality risk from COVID-19
than White populations. For people with type 2
diabetes, risk of in-hospital mortality was greater
for Asian (HR 1.08, 95% CI 1.01–1.15), Black (HR
1.63, 95% CI 1.51–1.77), and mixed ethnic groups
(HR 1.30 95% CI 1.10–1.55) but not for the other
ethnic groups (HR 1.01, 95% CI 0.86–1.18).

Dennis et al. (21) U.K. Retrospective cohort Type 2 diabetes No difference in mortality associated with type 2
diabetes in subgroups defined by ethnicity.

Crouse et al. (26) U.S. Retrospective data registry Type 2 diabetes In COVID-19–positive patients (n = 604), diabetes
was associated with increased mortality (OR
3.62, 95% CI 2.11–6.2), adjusting for age, sex,
ethnicity, obesity, and hypertension. Ethnicity
was not an independent predictor of mortality.

Ebekozien et al. (24) U.S. Observational Type 1 diabetes Non-Hispanic Black (11.7 [IQR 4.7]) and Hispanic
(9.7 [IQR 3.1]) patients had higher median HbA1c
than White patients (8.3 [IQR 2.4]). More non-
Hispanic Black (55%) and Hispanic (33%) patients
presented with DKA than White patients (13%).
Adjusting for confounders, non-Hispanic Black
patients continued to have greater odds of
presenting with DKA than non-Hispanic White
patients (OR 3.7, 95% CI 1.4–10.61).

Gold et al. (63) U.S. Prospective Type 1 and 2 diabetes Among 305 patients, 121 (39.7%) had diabetes, of
whom 103 (41.7%) were of Black ethnicity and
56 (32.0%) were of other ethnicities. Clinical
outcomes (discharged alive, still hospitalized,
needed invasive mechanical ventilation, and death)
were similar between Black and non-Black
individuals.

Gregory et al. (25) U.K. Prospective cohort Type 1 and 2 diabetes Compared with patients without diabetes, patients
with type 1 diabetes had adjusted ORs for
hospitalization risk of 3.90 (95% CI 1.75–8.69)
and worsening illness severity of 3.35 (95% CI
1.53–7.33). For patients with type 2 diabetes,
adjusted ORs were 3.36 (95% CI 2.49–4.55) for
hospitalization, 3.42 (95% CI 2.55–4.58) for
worsening illness severity, and 3.21 (95% CI
1.54–6.70) for death. Adjusted risk of worsening
illness severity for Black versus White ethnic
groups was 1.88 (95% CI 1.47–2.41).

Gu et al. (5) U.S. Retrospective cohort Type 2 diabetes In the COVID-19–positive cohort (n = 1,139), Black
patients were more likely to be hospitalized (OR
1.72, 95% CI 1.15–2.58). No difference was
found in ICU admission by ethnicity after
adjusting for covariates. Type 2 diabetes was
associated with hospitalization in White (OR
2.59, 95% CI 1.49–4.48) but not Black (OR 1.17,
95% CI 0.66–2.06) patients.

Continued on p. 5
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POTENTIAL PREDISPOSING
FACTORS FOR ETHNIC
DISPARITIES IN COVID-19

Ethnic disparities in rate, severity, and
mortality from COVID-19 infection were
evident early in the pandemic. Under-
standing the impact of ethnicity on
COVID-19–related outcomes was initially
hampered by a lack of data reporting pa-
tient ethnicity. However, with a greater
appreciation, as the pandemic evolved,
of associations of ethnicity with poorer
COVID-19 outcomes, studies are now
shedding light on the potential factors
predisposing ethnic minorities to poorer
clinical COVID-19 outcomes. The exact
reasons for the higher incidence and se-
verity of COVID-19–related outcomes in
minority ethnic groups are complex and
involve social, economic, cultural, and
lifestyle factors and pathophysiological
differences (28). These parameters then
modulate, within ethnic populations, expo-
sure to severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), vulnerability
to the disease, social environment, con-
trol measures, and biological differences
(Fig. 1).

Increased Exposure to COVID-19
Greater exposure to the virus raises
the likelihood individuals will contract
COVID-19. During the pandemic, workers
with essential occupations had increased
frequency of contact with other individu-
als, for example, workers in health care
settings, those who work indoors in
crowded spaces, or workers making fre-
quent contact with multiple people, such
as those in transport and retail. Indeed,
ethnic minority groups were overrepre-
sented in a nationwide investigation of
occupations classified as essential during
the pandemic (29). This included medical
staff, such as registered nurses, medical
assistants, and bus drivers. A study of
frontline health care workers (n = 99,795)
versus the general community (n =
2,035,395) found higher risk of a positive
COVID-19 test result for frontline health
care workers (hazard ratio [HR] 3.40)
after adjusting for multiple parameters,
including their elevated likelihood of re-
ceiving a COVID-19 test (30). Secondary
post hoc analyses found that frontline
minority workers are at increased risk of
a positive COVID-19 test compared with

White coworkers. In New York City (NYC),
frontline workers were overrepresented
in Black (29.4%) and Hispanic (35.5%)
populations (31). Therefore, one possible
reason predisposing ethnic minorities to
poorer outcome is greater exposure to
the virus through overrepresentation of
these groups in essential frontline jobs.

Increased Vulnerability to COVID-19
Another potential contributing factor to
adverse COVID-19 outcomes, which was
considered relatively early in the pan-
demic, is the high prevalence of comorbid
conditions in ethnic minority populations
(32), which is associated with increased
hospitalization rate, ICU admission, and
mortality. A study of UK Biobank data
with 5,623 COVID-19 cases found that
BMI was associated with a positive
test in all patients, but that higher
BMI (>30 kg/m2) was a stronger deter-
minant of a positive test in Black and
minority ethnic patients than in White
patients (33). Evaluation of NYC data
found a relationship in the two boroughs
with the highest COVID-19 mortality rate
and the highest obesity rate, which was

Table 1—Continued

Reference Country Design Population Results

Kabarriti et al. (47) U.S. Retrospective Type 1 and 2 diabetes Of 5,902 patients who tested positive for COVID-19,
509 (8.6%) were non-Hispanic White, 1,935
(32.8%) were non-Hispanic Black, 1,905 (32.3%)
were Hispanic, 171 (2.9%) were Asian, and 1,382
(23.4%) were other/unknown/decline to answer.
Overall, 74 (14.5%) non-Hispanic White, 162 (8.4%)
non-Hispanic Black, 175 (9.2%) Hispanic, 36 (21.1%)
Asian, and 388 (28.1%) unknown/other ethnic
group patients had diabetes. Overall, in adjusted
analysis, Hispanic or non-Hispanic Black patients
had significantly improved survival versus
non-Hispanic White patients.

Myers et al. (27) U.S. Type 2 diabetes Of 4,413 patients examined by multivariate analysis,
male sex, older age, and admission hyperglycemia
associated with increased mortality and intubation
but not ethnicity, insurance type, or HbA1c level.

O’Malley et al. (23) U.S. Multisite observational Type 1 diabetes Of 58 hospitalized COVID-19 patients, 26 were admitted
to ICU and 5 male patients died. Hospitalization
was more likely for increasing age, minority
ethnicity (OR 3.63, 95% CI 1.42–9.70), and
cardiovascular disease.

Price-Haywood et al. (64) U.S. Retrospective Diabetes (does not
state which type)

Of 3,481 COVID-19 patients, 2,451 (70.4%) were
non-Hispanic Black and 1,030 (29.6%) were
non-Hispanic White. Overall, 454 (18.5%) Black
and 112 (10.9%) White patients had diabetes.
In adjusted analysis, Black ethnicity was not
associated with mortality.

IQR, interquartile range.
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most prevalent among Black and His-
panic residents (34). Notably, however,
the study did not fully adjust for all po-
tential risk factors. Another NYC study
found that poorer neighborhoods had
greater hypertension risk among Black
residents (relative risk [RR] 3.4) and dia-
betes risk among Hispanic residents (RR
5.5) compared with residents of poorer
White neighborhoods (31). Furthermore,
poorer predominantly Black and Hispanic
neighborhoods had more ICU admissions
than poorer predominantly White neigh-
borhoods. In addition, a nationwide U.S.
county-level investigation found, after
multiple adjustments, that counties with
higher percentages of Black residents
had a greater prevalence of comorbid
conditions and COVID-19 diagnoses (RR
1.24) and deaths (RR 1.18) (35).

Disadvantaged Social Environment
Beyond potential health determinants,
such as comorbidities, on COVID-19 out-
comes for Black and Hispanic patients,
several socioeconomic factors have been
investigated. Urban setting, household
crowding, income, lack of transporta-
tion, health insurance availability, and
health care access could conceivably im-
pact COVID-19 outcomes (29–31,35,36),
although there is some discordance across
studies (37). These determinants may also
be differentially present by ethnicity, al-
though few COVID-19 studies have been
stratified by ethnicity.

Analysis of NYC electronic health re-
cords (n = 23,300) found a correlation
between social disadvantage (compared
by quintiles) and higher likelihood of Black
or Hispanic ethnicity, of chronic comorbid
conditions (e.g., diabetes, obesity, and
hypertension), and higher hospitaliza-
tion risk from COVID-19 (38). County-
level analysis also found, after multiple
adjustments, correlations between coun-
ties with greater burden of COVID-19
cases and the proportion of Black and
Hispanic residents and counties with
greater burden of COVID-19 deaths and
the proportion of Black and Native Ameri-
can residents (36). A greater proportion
of multiunit households and households
lacking a vehicle correlated positively with
cases and deaths, respectively. Another
study also found a relationship between
public transportation use (i.e., house-
hold lacking vehicles) (39) and mean

household size (40) with COVID-19 cases,
which are likely contributors in disad-
vantaged communities. In a nationwide
U.S. county-level study, lack of health
insurance was a greater risk factor for
COVID-19 diagnosis in counties with a
percentage of Black residents above the
national average (35).
In addition to housing, transportation,

income, and insurance status, opioid and
other substance use disorders are con-
tributors to adverse COVID-19 outcomes
in the U.S. Nationwide, Black individuals
with opioid use disorders (odds ratio [OR]
4.16) and substance use disorders (OR
2.17) were at higher COVID-19 risk than
White individuals (41), although the analy-
sis did not adjust for comorbidities.

Poor Control Measures
Control measures are used to limit viral
spread in the community through aware-
ness campaigns. However, ethnic minori-
ties may experience language barriers,
lower access to public health messag-
ing, poor uptake or access to screening,
and structural discrimination, leading to
suboptimal control measures. County-
level analysis by a U.S. study found
that individuals with limited English
proficiency were more likely to suffer
COVID-19 deaths after multiple adjust-
ments (36). In a nationwide study, ethnic
minority status and language subindex
correlated positively with COVID-19 inci-
dence and mortality rates after adjusting
for population density, urbanicity, and
COVID-19 testing rate (42). Regarding
uptake of public health messaging, a
cross-sectional U.S. survey of 1,435 adults
found that non-Hispanic White (30.7%)
and Asian (25.0%) participants were like-
lier to correctly answer all 14 questions
concerning COVID-19 versus Hispanic
(19.7%) and non-Hispanic Black (15.8%)
participants (43). Thus, it is possible that
preventative control measures through
public health campaigns are failing in
ethnic minority communications.
An additional possible predisposing

factor is medical mistrust, which can
result from prior experience of uneth-
ical medical practices. Though under-
standable, this mistrust can represent
a barrier to seeking medical care in
the present. In a California cohort of
Black individuals with HIV (n = 101),
most (97%) held at least one general
COVID-19 mistrust belief and over

50% held COVID-19 vaccine or treat-
ment hesitancy beliefs (44). In a large
U.K. study of 32,361 adults in the Uni-
versity College London COVID-19 Social
Study, distrust of vaccines was higher
among people of ethnic minority back-
grounds than among White people (45).
Therefore, overall, in addition to greater
exposure and susceptibility, people from
ethnic minorities may also be predis-
posed to more serious COVID-19 out-
comes due to poorer control measures.

Biological Differences
Finally, it is important to note that al-
though systematic reviews and meta-
analyses associate ethnicity with poorer
COVID-19 outcomes, some studies re-
port no disparities or even protective
effects (46–49). Nevertheless, in studies
that do identify risk in Black, Hispanic,
or other minority ethnic groups, this
risk persists even after adjusting for co-
morbidities and socioeconomic factors
(2,50–53). This suggests there are bio-
logical differences underlying differen-
tial responses of ethnicity to COVID-19.
One possibility, given its pivotal role in
promoting viral entry into host cells, is
differential ACE2 expression by ethnicity
(54) as well as of other molecules re-
lated to SARS-CoV-2 pathophysiology,
e.g., immune function. Another possible
aspect is single nucleotide polymor-
phisms in genes involved in SARS-CoV-2
infection, such as TMPRSS2, in addition
to ACE2 (55,56). Caution in interpreta-
tion is required, however, because these
potential mechanisms require further
work. It is also possible that plausible
biological mechanisms will be politicized
to minimize criticisms of structural rac-
ism, which underpins social inequalities
driving long-standing health inequalities
in ethnic minority populations.
Overall, emerging evidence implicates

multiple potential determinants of ethnic
disparity in COVID-19 outcomes. Moving
forward, a better understanding will be
facilitated by stratifying study data sets
by ethnicity (the most granular ethnic
group data should be used when avail-
able). Additionally, most studies to date
have been correlative. Although it will
be challenging, future investigations
should establish causality in order to
implement evidence-based policies to
alleviate disparities.
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NEXT STEPS AND FUTURE
RESEARCH PRIORITIES

As we now plan for recovery, improved
surveillance, and risk factor manage-
ment, it will be imperative that primary
and specialist care services urgently ad-
dress the disproportionate impact the
pandemic has had on ethnic minority
groups. Recommended interventions for
diabetes patients during the pandemic,
which has disproportionately impacted
ethnic minority populations, focused on
individual-level strategies and barriers to
diabetes care (57–60) but excluded the
larger structural barriers, which placed
ethnic minorities with diabetes at par-
ticular risk for poor COVID-19 outcomes
from the outset. These barriers include
structural inequities in adequate housing,
food, education, employment opportuni-
ties, and neighborhood resources, among
others, which are important determinants
of health for both diabetes and COVID-19
independently but particularly for indi-
viduals in high-risk populations within
both groups (e.g., ethnic minorities).
Prioritizing affordable housing, a living

wage, economic investments in ethnic
minority communities, and policy changes
to mitigate ethnic residential segregation
are some long-term strategies to address
the underlying housing and related eco-
nomic challenges faced by ethnic minor-
ities, particularly low-income minorities.
Implementing these changes would
strengthen the resilience of this pop-
ulation in weathering pandemics and
natural disasters as well as in managing
chronic diseases, such as diabetes, which
require stable housing, refrigeration (for
many types of insulin storage), and safe
spaces for physical activity as part of
optimal self-management.
Structural interventions, like equal ac-

cess to high-quality education and em-
ployment opportunities, implementing a
living wage, and job retraining for those
impacted by the changing economy or
who are reentering the workforce, can
affect the short-term and long-term health
trajectories of ethnic minority individuals
with diabetes. Regular employment usually
provides access to health insurance (for
U.S. residents), and the use of support-
ing federal policies to provide paid sick
leave and quarantine leave for COVID-19
is another way, along with pandemic
mitigation, to ensure individual assistance
reaches patients.

The pandemic also impacted food in-
security, which saw a large rise during
this period. Before the pandemic, over
35 million Americans faced food insecu-
rity, which rose to over 50 million, dis-
proportionately affecting families and
children (61). Food insecurity also dis-
proportionately impacts ethnic minorities,
low-income individuals, and other socially
marginalized populations. Previous studies
showed that for patients with diabetes,
food insecurity is associated with worse
diabetes self-management, up to twice
the odds of poor diabetes control, and
higher hospitalization rates (62). Support-
ing economic policies that reduce pov-
erty and food policies that reduce food
insecurity, such as increased eligibility for
the Supplemental Nutrition Assistance
Program in the U.S., will help improve di-
abetes outcomes.
As we move into the recovery phase,

postpandemic research should focus on
developing and evaluating interventions
to address these disparities in the short
and long term for all ethnic minority pop-
ulations with long-term conditions such
as diabetes. This should involve both indi-
vidual-level and wider systems-level ap-
proaches. In addition, a number of other
priorities require further attention. Given
limited published reports, there is a need
to utilize large population cohorts to
further examine disparities in COVID-
19 outcomes in ethnic minority popu-
lations with diabetes. It will also be
important to further examine the impact
of the pandemic on diabetes care for
ethnic minorities, as limited work has
been done in this area. Other outstand-
ing issues include whether there are
therapeutic differences in patients from
ethnic minority populations with diabe-
tes who were admitted with COVID-19
or who are positive for COVID-19 com-
pared with White populations and if
there are differential effects of thera-
pies in ethnic minority groups with di-
abetes. Are new models of care, such as
telemedicine, widening health dispar-
ities for ethnic minority populations with
diabetes?
In summary, the structural inequities

highlighted by the coronavirus pandemic,
which have driven many of the dispar-
ities in COVID-19 morbidity and mortality,
have exacerbated existing health dispar-
ities in diabetes among ethnic minority
populations. While there have been many
helpful guidelines and approaches for

diabetes self-management as well as
outpatient and inpatient care during
the pandemic, few have recommended
addressing structural drivers. Only by tak-
ing a long-term, holistic view of health
and health care will we, and particularly
our most vulnerable populations, be bet-
ter able to weather future pandemics.
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Metabolomics identifies shared lipid
pathways in independent amyotrophic
lateral sclerosis cohorts
Stephen A. Goutman,1,2,† Kai Guo,1,2,† Masha G. Savelieff,2,† Adam Patterson,1,2
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Amyotrophic lateralsclerosis (ALS) isafatalneurodegenerativedisease lackingeffectivetreatments.This isdue, inpart, toa
complexand incompletelyunderstoodpathophysiology.Toshed light,weconducteduntargetedmetabolomicsonplasma
fromtwoindependentcross-sectionalALScohortsversuscontrolparticipants to identify recurrentdysregulatedmetabolic
pathways.UntargetedmetabolomicswasperformedonplasmafromtwoALScohorts(cohort1,n=125;cohort2,n=225)and
healthycontrols (cohort 1,n=71; cohort 2,n=104). Individualdifferentialmetabolites inALScasesversuscontrolswereas-
sessedbyWilcoxon,adjustedlogisticregressionandpartial leastsquares-discriminantanalysis,whilegrouplassoexplored
sub-pathwayleveldifferences.Adjustmentparameters includedage,sexandbodymass index.Metabolomicspathwayen-
richmentanalysiswasperformedonmetabolites selectedusing theabovemethods.Additionally,weconductedasexsen-
sitivity analysis due to sex imbalance in the cohort 2 control arm. Finally, a data-driven approach, differential network
enrichmentanalysis (DNEA),wasperformedonacombineddataset to further identify importantALSmetabolicpathways.
Cohort2ALSparticipantswereslightlyolderthanthecontrols (64.0versus62.0years,P=0.009).Cohort2controlswereover-
representedinfemales(68%,P<0.001).Themostconcordantcohort1and2pathwayscentredheavilyonlipidsub-pathways,
including complex and signalling lipid species andmetabolic intermediates. Therewere differences in sub-pathways that
wereenrichedinALSfemalesversusmales,includinginlipidsub-pathways.Finally,DNEAofthemergedmetabolitedataset
of both ALS and control cohorts identified nine significant subnetworks; three centred on lipids and two encompassed a
range of sub-pathways. In our analysis, we saw consistent and important sharedmetabolic sub-pathways in bothALS co-
horts, particularly in lipids, further supporting their importance asALS pathomechanisms and therapeutics targets.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a fatal and progressivemotor
neuron disease,1 which lacks effective treatments or cures.
Therefore, understanding the disease mechanisms2 is important
to identifying novel therapeutic targets. ALS pathogenesis is com-
plex and influenced by genetic,3 epigenetic4 and environmental5,6

factors. An organism’s metabolome derives from the cumulative
effect of genetic, epigenetic, transcriptomic and proteomic forces,
superimposed with environmental effects. Thus, metabolomics is
a useful tool for investigating complex diseases that arise from
multiple influences,7 including ALS.8 Moreover, the metabolome
can reflect dysregulation from pathological processes, providing
clues to potential treatment avenues. Specifically, in ALS, oxidative
stress was identified as a disease characteristic through the obser-
vation of oxidizedmetabolites, e.g. nitric oxide and its toxic metab-
olite, peroxynitrite,9 or oxidized lipids.10 This line of research
supported antioxidants as an ALS therapeutic, which led to clinical
trials of edaravone,11 which culminated in US Food and Drug
Administration (FDA) approval, constituting one of only two drugs
available for treating ALS.

To date, a handful of studies have employed untargeted
metabolomics to identify differential metabolites and metabolic
pathways in ALS versus control participants.12–15 These studies
uncovered multiple dysregulated pathways, including li-
pid,14,16,17 amino acid,14,18–21 and polyamine18 metabolism.
Although extremely insightful, these studies were limited to
approximately 400 metabolites or less. Seeking further under-
standing, we recently utilized a commercial untargeted metabo-
lomics platform of up to 3300 detectable compounds to yield
insight into ALS mechanisms.22 Our analysis included 899
metabolites, which spanned both novel and previously identified
sub-pathways in ALS. Additionally, replication metabolomics
studies are lacking in ALS, posing a significant roadblock, which
prevents metabolomics applications in ALS from making truly
meaningful advances.

In the current study, we sought to overcome this roadblock by
performing a metabolomics analysis of an independent replica-
tion cohort using the same commercial platform as our initial co-
hort.22 Replication cohorts are essential to understanding the
reproducibility of metabolomics for identifying potential disease
biomarkers for diagnostic applications8 and pathomechanisms
for drug development, which is especially pertinent for a complex,
heterogeneous disease like ALS. We report the first ALS metabolo-
mics replication study, to our knowledge, to identify potentially
important, recurrent metabolic pathways and build prediction
models from two independent cohorts to assess the feasibility of
metabolomics for discovery in ALS. We identified shared and im-
portant pathways in the original and replication cross-sectional
ALS cohorts using knowledge-based enrichment analysis, which
centred on fatty acid and sphingomyelin metabolism as well as
creatine and xanthine metabolism.We also combined the two da-
tasets and implemented differential network enrichment analysis
(DNEA),23 a data-driven approach, which does not rely on known
pathway annotation, allowing the method to uncover new poten-
tial metabolite correlations. Lastly, we generated prediction mod-
els leveraging metabolic data from the original cohort, which we
employed to predict cases in the replication cohort. Collectively,
these data confirm an association between distinct metabolite
and lipid signatures in ALS and uncover new areas of research
into ALS pathogenesis, biomarker identification and therapy
development.

Materials and methods
Participants and biosamples

Our enrollment strategy is published.6,22 Briefly, we recruited ALS
patients older than 18 years and able to communicate in English
seen at the University of Michigan Pranger ALS Clinic. Control par-
ticipants were also recruited through the University of Michigan
Institute for Clinical and Health Research. Participants provided
their age, sex, height, andweight and underwent a clinical examin-
ation, including assessment of the ALS functional rating score–
revised (ALSFRS-R) and other ALS characteristics. Participants
also provided plasma samples, which were non-fasted, because it
was deemed unethical to request ALS patients to fast. Studies
show lack of dietary effects on the plasma lipidomics profile24

and low intra-individual variation in non-fasted plasma25; thus,
deep grained plasma metabolomics/lipidomics signatures of dis-
ease exist, independent of diet. We collected plasma samples
from unfasted ALS participants via peripheral venipuncture, cen-
trifuged at 2000g for 10 min at 4°C, aliquoted into cryovials and
stored at −80°C, following good clinical practice. Samples were col-
lected in exactly the samemanner for cohort 1 and cohort 2, follow-
ing a standard operating procedure conforming to the Centers for
Disease Control and Prevention guidelines. Additionally, all sam-
ples were stored at −80°C, tominimize changes to samplemetabol-
ite composition.26 Verbal and written informed consent were
obtained from all participants and the study was approved by the
University of Michigan institutional review board (HUM00028826).

Metabolomic profiling

Untargeted metabolomics profiling of plasma samples was per-
formed by ultra-high performance liquid chromatography-tandem
mass spectroscopy (UPLC-MS/MS) by Metabolon (Durham, NC).27,28

Multiple recovery and internal standards were added to plasma
samples for evaluating extraction efficiency and instrument per-
formance, respectively, before the sample extraction process using
methanol. Following sample extraction,metabolites were analysed
by reverse-phase UPLC-MS/MS, in both positive and negative ion
mode, and hydrophilic interaction chromatography UPLC-MS/MS.
In addition to the spiked internal standards within each sample, a
pooled ‘technical replicate’ generated from all study samples was
periodically injected into the UPLC-MS/MS to assess instrument
performance and calculate overall process and platform variability.
Metabolites were identified by retention time/index,
mass-to-charge ratio, and chromatographic data against authenti-
cated standards and validated byMetabolon through data curation.
Day-to-day variability was accounted for by rescaling the daily me-
dian for each metabolite to one and scaling that metabolite within
each sample proportionately against the median. Missing values
were replaced by the minimal value detected for that metabolite
in the entire cohort, per Metabolon protocols.27,29

Metabolites detected in >80% of samples (missingness <20%)
were included in downstream analyses. This differed from our re-
cent publication of the original cohort,22 which was more focused
on the discovery of ALS mechanisms and hypothesis develop-
ment, and included metabolites detected in >60% of samples
(missingness <40%). In this present analysis, we were more inter-
ested in rigorous test reliability and thus employedmore stringent
missingness criteria, reanalysing the original cohort 1 and analys-
ing the replication cohort 2 with the missingness cutoff <20%.
Missingness was generally low (Supplementary Tables 1 and 2),
and most metabolites were detected in 99.5–100% of samples
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(Supplementary Fig. 1). Thus, despite themore stringent criteria of
metabolites with missingness <20% in this analysis, the overlap
with metabolites with missingness <40% from the previous ana-
lyses was high and similar metabolites were selected using the
two missingness cutoffs (Supplementary Fig. 2).

Differential metabolite identification

Analytical methods

The statistical analysis plan in this report follows our recent publi-
cation,22 but draws upon cases and controls from both the original
cohort (cohort 1 ALS cases, cohort 1 controls)22 and a new second
replication cohort (cohort 2 ALS cases, cohort 2 controls). Thus,
ALS case and control demographics were summarized and com-
pared using chi-square and Wilcoxon rank-sum tests, as appropri-
ate, across these four groups. Somemissing demographic data from
the initial publication have since been obtained, accounting for
slight differences in the previous and current reported medians
for cohort 1. Metabolite missingness was summarized across
the original and replication datasets. As in our prior publication,
we performed a series of case and control metabolite analyses
and then compared the overlap in selected metabolites
(Supplementary Fig. 3). An ‘unadjusted’ model used the non-
parametric Wilcoxon rank-sum test to compare non-normally dis-
tributed metabolites with Benjamini–Hochberg P-value correction
for multiple comparisons. An ‘adjusted’model used logistic regres-
sion, adjusted for age, sex and bodymass index (BMI) and regressed
each natural log-transformed and standardized metabolite against
case/control status. Participants were dropped from the analysis if
they weremissing a BMI value. P-values were adjusted for multiple
comparisons using Benjamini–Hochberg correction.

Partial least squares-discriminant analysis (PLS-DA) was per-
formed using the R package mixOmics30 separately on the original
and replication case and control cohorts (Supplementary Fig. 3).
Differences in metabolites between cases versus controls were vi-
sualized with score plots of the variable importance in projection
(VIP).31,32 Metabolites with significant contributions to group separ-
ation had VIP>1. The 10-fold cross-validation to select the tuning
parameter for the PLS-DA analysis is shown in Supplementary Fig.
4A and B. To assess similarities in sub-pathways selected in the ori-
ginal and replication cohorts,weagainusedgroup lasso, adjusted for
age, sex and BMI, using the gglasso R package with natural log-
transformed and standardized metabolite data (Supplementary
Fig. 3). Five-fold cross-validation was used to select the tuning par-
ameter corresponding to a sparse model within 1 standard error
(SE) of the minimum cross-validation error. Once the tuning param-
eter, corresponding to the group lasso penalty was finalized, group
lasso was refit to the full dataset to obtain the final model. The five-
fold cross-validation to select the tuning parameter for the group
lasso analysis is shown in Supplementary Fig. 4C and D.

Overlapping metabolites and sub-pathways selected by each
model (Wilcoxon, logistic regression, PLS-DA, group lasso) from
each original cohort 1 and replication cohort 2 were represented
in Venn diagrams.

Metabolite correlation with ALSFRS-R

Heatmaps were generated from the relative abundance of the 20
top differential metabolites in ALS versus controls, shared by
both cohort 1 and cohort 2, as a function of the ALSFRS-R score at
the time of plasma collection. Relative abundances were scaled

by row. ALS participants were sorted by log2(ALSFRS-R), from high
to low score.

Construction of case prediction models

To examine the feasibility of predicting metabolite-based ALS
cases, machine learning classification models were constructed
using PLS-DA, group lasso and random forest (RF). Prediction accur-
acywas calculated by the area under the curve (AUC) for eachmod-
el, which were visualized through receiver operating characteristic
(ROC) curves generated by the R package pROC.

Metabolism pathway analysis

We used the R package richR (https://github.com/hurlab/richR/) for
pathway enrichment analysis (Supplementary Fig. 3). Sub-pathways
were annotated by Metabolon. Over-represented sub-pathways
were determined from the metabolites selected by unadjusted
Wilcoxon, adjusted logistic regression, PLS-DA and group lasso
models. A hypergeometric test was performed for each candidate
sub-pathway. Sub-pathways with a P-value <0.05 were deemed sig-
nificantly enriched.

Sex sensitivity analysis

To assess the impact of the sex imbalance, we performed a sex sen-
sitivity analysis. Briefly, the original datasets were separated based
on sex, each of whichwas analysed for differential metabolites and
enriched pathways between case and control using the above ana-
lyses. Then, the resultswere compared betweenmale and female at
the metabolite- and pathway-levels.

Statistical software

All statistical and prediction analyses were performed using R stat-
istical computing software.

Differential network enrichment analysis

To further understand the metabolic alterations underlying ALS,
we merged the two datasets (cohort 1 and 2) and analysed them
using the data-driven DNEA approach.

Metabolite selection and data treatment

The cohort 1 and 2 datasets, containing the same metabolite com-
pound identifiers, were merged, numbering 954 total metabolites.
Drug-related metabolites and metabolites with missingness <20%
in either or both datasets were excluded, leaving 640 total metabo-
lites. Missing values for thesemetaboliteswere imputed using each
metabolite’sminimum value. All measurements were subsequent-
ly log-transformed.

Covariate adjustment, autoscaling and dataset merging

We assessed batch effects within and between runs from both co-
horts using principal components analysis (PCA). For each dataset
separately, metabolites were linearly adjusted for age, sex and
BMI. Out of 525 participants, only 15 had missing BMI values.
Several imputation methods to approximate BMI values were
tested, including simple (mean/median imputation) and machine-
learning (linear regression, random forest, support vector regres-
sion) approaches. A linear model using the abundance of a select
number of metabolites that correlated with BMI generated the
best results. Thus, BMI values were imputed using linear models
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based on the top 13 and 23 metabolites from cohort 1 and cohort 2,
respectively,which correlatedmost stronglywith BMI. After adjust-
ment, each cohort 1 and cohort 2 datasetwas separately autoscaled
(mean centred and scaled by the standard deviation) to obtain an
N(0,1) distribution for each metabolite. The adjusted and normal-
ized datasets from the two original and replication cohorts were fi-
nally merged into a single dataset. PCA analysis demonstrates
elimination of batch effects (Supplementary Fig. 5).

Differential network enrichment analysis method

We employed DNEA to identify metabolite subnetworks that dif-
ferentiate ALS from control samples. DNEA methodology has
been described previously.23,33 Briefly, DNEA computes a partial
correlation network using metabolomics data from two condi-
tions (i.e. ALS and control) jointly. Due to an imbalance in the
number of samples in ALS versus control groups, we employed a
subsampling procedure coupled with partial correlation network
estimation to obtain robust network edges, as described in Iyer
et al.23 The network was then clustered into densely-connected
metabolite subnetworks. Next, we performed an enrichment ana-
lysis using the NetGSAmethod,34 which takes into account differ-
ential metabolite abundances as well as the differences in
network structure between cases and controls. DNEA results con-
sist of computed subnetworks and their respective P-values and
false discovery rate (FDR)-adjusted q-values, which correspond
to significant subnetwork differences between cases and controls.
We applied DNEA to the full dataset as opposed to each dataset
separately to have a sufficient sample size, n, compared with
the metabolite count, p, for the partial correlation network
computation.

Data availability

Anonymized data will be shared by request from any qualified
investigator.

Results
Original and replication ALS cohorts reflect typical
ALS populations

The original cohort included 125 ALS and 71 control participants,
and the replication cohort included 225 ALS and 104 control partici-
pants (Table 1). Age at plasma collection differed between groups
overall (P=0.013); replication ALS cases were slightly older than
replication controls (P= 0.009). Replication ALS cases also had a
lower proportion of females versus replication controls. There
were no statistically significant differences in BMI or race between
the four groups. There were no differences between the original
and replication ALS groups in ALS family history, age at diagnosis,
El Escorial criteria, onset segment, ALSFRS-R at plasma collection,
time between symptom onset and diagnosis, time between diagno-
sis and blood draw and percentage of participants with feeding
tubes. The original and replicationALS cohorts both reflect a typical
ALS population, withmedian diagnostic ages of 62.0 and 63.0 years,
intervals between symptom onset and diagnosis of 1.01 and 1.07
years and onset segment of bulbar 30.4 and 26.7%, cervical 30.4
and 38.8% and lumbar 39.2 and 34.9% for the original and replica-
tion cohorts, respectively. Plasma was collected within [median
(25th–75th percentile)] 0.57 (0.36–0.75) years of diagnosis in the ori-
ginal cohort 1 and within 0.60 (0.36–1.12) years of diagnosis in the
replication cohort 2.

Metabolite profiling in original and replication
cohorts

In the original cohort 1, we identified and evaluated 1051 known
metabolites by descriptive statistics by case/control status
(Supplementary Table 1), of which 258 had missingness >20% and
were removed from further analyses. In the replication cohort 2,
we identified and evaluated 1019 knownmetabolites by descriptive
statistics by case/control status (Supplementary Table 2), of which
315 had missingness >20% and were removed from further ana-
lyses. Metabolites identified in the original but not the replication
cohort are listed in Supplementary Table 3. Conversely,metabolites
unique to the replication cohort are listed in Supplementary
Table 4. Metabolites were matched by ChemID, since Metabolon
changed some metabolite names between the two cohorts. In our
prior publication,22 very fewdrugmetabolites satisfiedmissingness
criteria. Those that did, such as riluzole, only correlated weakly
with other measured metabolites and therefore exerted a minimal
impact onmetabolite associations. Furthermore, another study de-
monstrated there were no differences in metabolites identified
after washing out typical ALS drugs.35 Thus, we further excluded
any drugmetabolites, whichwill not unduly bias case/control asso-
ciations. A total of 793 and 703 metabolites for the cohorts 1 and 2,
respectively, were used for differential metabolite and pathway
analysis.

Differential metabolites in ALS cases versus controls

Wilcoxon identified 268 and 335 significant differential metabo-
lites in the original and replication cohorts, respectively (adjusted
P-value <0.05), visualized by volcano plot (Supplementary Fig. 6).
Of these, 101were unique to the original cohort and 168 to the rep-
lication cohort and 167 were shared (Supplementary Fig. 7A).
Next, logistic regression, adjusted for age, sex and BMI, identified
289 and 317 metabolites in the original and replication cohorts,
respectively, presented inManhattan plots at the sub-pathway le-
vel (Supplementary Fig. 8). Of these, 99were unique to the original
cohort, 127 to the replication cohort, and 190 were shared
(Supplementary Fig. 7B). There were differences among metabo-
lites selected by Wilcoxon versus age-, sex- and BMI-adjusted lo-
gistic regression (Supplementary Fig. 9), suggesting that clinically
important variables in ALS, such as age, sex and BMI, may signifi-
cantly affect metabolite relationships between cases versus
controls.

PLS-DA identified 275 and 230 metabolites in the original and
replication cohorts (Supplementary Fig. 7C), respectively, with VIP
> 1 that separated cases from controls (Fig. 1A and B). Of these,
136 were unique to the original cohort and 91 to the replication co-
hort, whereas 139 were shared by both cohorts (Supplementary Fig.
7C). The top 50metabolites, with the highest VIP and largest contri-
bution to case/control separation, are presented in a VIP score plot
(Fig. 1C and D). Among these top 50 metabolites, 19 were common
between the original and replication cohorts. As previously re-
ported,22 we also performed group lasso because it considers sub-
pathway structure to evaluate significant ALS and control metabol-
ite differences. Age-, sex- and BMI-adjusted group lasso identified
251 and 299 differential metabolites [odds ratio (OR)≠ 1] in the
original and replication cohorts, respectively (Supplementary
Fig. 7D), which represented 35 and 42 sub-pathways, respectively.
Of these metabolites, 127 were unique to the original cohort
and 175 to the replication cohort, whereas 124 were shared
(Supplementary Fig. 7D). Heatmaps visualize relative abundance
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differences betweenALS versus controls for all group lassometabo-
lites in the original and replication cohorts (Supplementary Fig. 10).
Among the top 50 metabolites, 14 were common between the ori-
ginal and replication cohorts.

Finally, Venn diagrams illustrate the unique number ofmetabo-
lites for each analysis and for each cohort (Supplementary Fig. 9).

Differential metabolites correlate with ALSFRS-R

To assess whether metabolites correlate with clinical status, we
plottedheatmaps of the relative abundance of the 20 top differential
metabolites in ALS versus controls, shared by both cohort 1 and co-
hort 2, as a function of theALSFRS-R score at the time of plasma col-
lection (Fig. 2). When we sorted ALS participants by ALSFRS-R from
high to low score, this generated an overall trend of decreasing me-
tabolites with worsening ALS status. Interestingly, and alignedwith
the significant sub-pathways, several sphingolipidswere among the
metabolites that correlated with ALSFRS-R, such as lignoceroyl
sphingomyelin (d18:1/24:0), sphingomyelin (d18:1/20:0, d16:1/22:0)
and sphingomyelin (d18:1/14:0, d16:1/16:0), as well as acylcarnitines
[e.g. lignoceroylcarnitine (C24)]. However, although sphingomyelin
abundance is elevated in ALS cases versus participants, these

specific sphingolipid species were lower in patients with more ad-
vanced disease.

Case prediction models

We leveraged our two independent cohorts to construct case pre-
diction models. The original cohort 1 dataset was used to build
PLS-DA, group lasso and RF predictionmodels to identify ALS cases
in the replication cohort 2. Prediction accuracy was calculated by
AUCs and visualized by ROC curves (Fig. 3). Metabolites that con-
tributed to models are outlined in Supplementary Tables 5–7.
Group lasso and PLS-DA had very similar AUCs (0.945 and 0.944, re-
spectively), which were slightly higher versus RF (AUC of 0.903). As
anticipated, creatine and creatinine were among the most strongly
contributing metabolites to all three models, likely secondary to
muscle loss and not to the causative disease process. Thus, they
may not be specific to ALS.

Metabolites related to antioxidant defense and polyamine me-
tabolism were high on the list in the group lasso model, amino
acid metabolism in the PLS-DA model and xenobiotics and amino
acids in the RF model. Additional strongly influential metabolites
(top 10) include sphinganine and sphingadienine (members of
‘Sphingolipid Synthesis’) in the group lasso prediction model,

Table 1 Participant demographics

Covariate Original Cohort 1 Replication Cohort 2 P-value

ALS cases (n=125) Controls (n=71) ALS cases (n=225) Controls (n=104)

Age at plasma collection, yearsa 63.0 (53.3–69.6) 60.5 (53.4–64.8) 64.8 (56.7–71.3) 62.0 (55.7–67.5) 0.013
Sexa <0.001
Female 51 (40.8) 29 (39.4) 101 (45) 71 (68.0)
Male 74 (59.2) 42 (60.6) 124 (55) 33 (32.0)

BMI at study entry, kg/m2b 25.8 (23.0–29.7) 27.3 (24.6–31.1) 26.0 (22.6–30.2) 27.3 (24.3–30.4) 0.051
Racea

Asian 0 (0) 0 (0) 3 (1.3) 3 (2.9)
Black or African American 2 (1.6) 2 (2.8) 5 (2.2) 6 (5.8)
Not reported 1 (0.9)
White or Caucasian 123 (98.4) 69 (97.1) 217 (96.5) 94 (90.4)

Family history of ALS 0.68
No 112 (89.6) 195 (86.7)
Yes 10 (8.0) 25 (11.2)
Unknown 2 (1.6) 4 (1.8)
Missing 1 (0.8) 1 (0.4)

ALSFRS-R at plasma collection 33 (27–37) 31 (25–36) 0.11
Age at diagnosis, yearsa 62.2 (52.7–68.7) 63.8 (54.6–70.7) 0.24
El Escorial criteriaa 0.17
Suspected 3 (2.4) 13 (5.8)
Possible 19 (15.2) 30 (13.0)
Probable, LS 37 (29.6) 59 (26.3)
Probable 42 (33.6) 60 (26.8)
Definite 24 (19.2) 63 (28.1)

Onset segmenta 0.30
Bulbar 38 (30.4) 60 (26.7)
Cervical 38 (30.4) 87 (38.8)
Lumbar 49 (39.2) 78 (34.9)

Time between diagnosis and blood draw, yearsa 0.57 (0.36–0.75) 0.61 (0.36–1.13) 0.33
Time between symptom onset and diagnosis, yearsa 1.01 (0.68–1.51) 1.07 (0.70–1.84) 0.53
PEG tube present, % 8 (6.4) 27 (12.0) 0.56

Table of descriptive statistics for the overall participant study population. Continuous variables represented as themedian (25th–75th percentile) and for categorical variables as

n (%). P-values correspond to Wilcoxon rank-sum test for continuous variables and chi-squared test for categorical variables. LS = lab supported; NA = not available; PEG =

percutaneous endoscopic gastrostomy.
aMedian, 25th percentile and 75th percentile are computed using all cases and controls (no missing subjects).
bMedian, 25th percentile and 75th percentile are computed using 119 original cohort cases, 67 original cohort controls (six cases and four controls are missing), 218 replication

cohort cases, 84 replication cohort controls (seven cases and three controls are missing).
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which were less discriminating in the PLS-DA and RF models.
Nevertheless, several sphingomyelins, e.g. sphingomyelin (d18:1/
18:1, d18:2/18:0) and sphingomyelin (d18:2/16:0, d18:1/16:1), were
in the top 100metabolites of the PLS-DA and RFmodels. Thus, over-
all, all models performed well and could predict ALS cases with
good accuracy. This supports metabolomics as a feasible approach
for ALS biomarker discovery, although future studies will need to
include disease mimics to assess specificity.

Differential sub-pathways in ALS cases versus
controls

As before,22 we next performed pathway enrichment analysis to
identify over-represented sub-pathways based on differential me-
tabolites identified by the various analysis methods. In the original
cohort, Wilcoxon, adjusted logistic regression, PLS-DA and group
lasso enriched 12, 13, 12 and 23 sub-pathways, respectively
(Fig. 4). For the replication cohort, Wilcoxon, adjusted logistic re-
gression, PLS-DA and group lasso enriched 16, 13, 14 and 25 sub-
pathways, respectively (Fig. 4). There were few fully concordant
sub-pathways that were selected across all four analyticalmethods
in both the original and replication cohorts. However, the concord-
ant sub-pathways selected by multiple methods in both cohorts
centred heavily on lipid sub-pathways, including ‘long chain satu-
rated fatty acid’, ‘long chain polyunsaturated fatty acid (n3 and n6)’,
‘long chain monounsaturated fatty acid’, ‘fatty acid metabolism
(acyl carnitine, polyunsaturated)’ (Supplementary Fig. 11) and
‘sphingomyelins’. With few exceptions, acylcarnitines, which are
partially metabolized intermediates, of all chain lengths and satur-
ation level were elevated in ALS cases versus controls. ‘Xanthine’
and ‘creatine’ were also repeatedly selected.

There were sub-pathways that were highly selected bymultiple
analytical methods but weremostly consigned to one cohort or the
other. For instance, lipid ‘ceramides’, ‘hexosylceramides’, antioxi-
dant ‘gamma-glutamyl amino acid’ and xenobiotics ‘benzoate’
were widely selected in the original cohort, whereas lipid ‘sphingo-
sines’, ‘fatty acid metabolism (acyl carnitine, hydroxyl)’, ‘fatty acid
metabolism (acyl carnitine, dicarboxylate)’ and energy ‘TCA (tri-
carboxylic acid) cycle’ were selected in the replication cohort.
There was overlap in some of these sub-pathways between the
two cohorts. The most significant sub-pathway was ‘sphingomye-
lins’ by group lasso of the original cohort, which was also selected
in the replication cohort.

Sensitivity analysis for sex imbalances

The original cohort 1 was well-balanced for sex; however, females
were overrepresented in the control group of the replication cohort
2, which led to differences in the sex composition of the original
and replication cohort. Therefore, we conducted a sensitivity ana-
lysis to evaluate whether the imbalance contributed to uncertainty
in the outcomes. Moreover, we36,37 and others38 have noted that
sex is an important clinical factor in ALS; thus, analysis by sex
may yield additional insight. We repeated the Wilcoxon, logistic
regression, PLS-DA and group lasso analyses in male cohort 1
(n = 74 ALS, n= 42 control) and female cohort 1 (n= 51 ALS, n= 29)
separately, which were compared to the combined original cohort
1, and additionally inmale cohort 2 (n= 123 ALS, n= 33 control) and
female cohort 2 (n= 101 ALS, n= 70 control) separately, whichwere
compared to the combined replication cohort 2 (Fig. 5 and
Supplementary Fig. 12).

Figure 1 PLS-DAanalysis of ALS cases versus controls for original and replication cohorts. (A andB) PLS-DA score plot of ALS cases (red) versus controls
(blue) for (A) original cohort 1, and (B) replication cohort 2, individually; each dot represents an individual participant. (C andD) TheVIP score plot of the
top 50 PLS-DAmetabolites, whichmost significantly separate ALS cases from controls for (C) original cohort 1 and (D) replication cohort 2, individually.
A total of 275 (original) and 230 (replication) metabolites had VIP >1. Among the top 50 PLS-DA metabolites, 19 were shared between the original and
replication cohorts. LV = latent variables.
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Some interesting observations arose from the sex sensitivity
analysis. Although ‘fatty acid metabolism (acyl carnitine, polyun-
saturated)’ was almost invariably selected by all analysis methods,
in both sexes, certain lipid focused sub-pathways were selected
more frequently and/or significantly in ALS females, either in the
original or replication cohorts, such as ‘long chain saturated fatty
acid’, ‘long chain polyunsaturated fatty acid (n3 and n6)’, ‘long
chain monounsaturated fatty acid’, ‘sphingosines’ and ‘diacylgly-
cerol’. One exception stood out in ‘sphingomyelins’, which was
more often and/or significantly selected in ALS males from either
the original or replication cohorts. These sex-dependent lipid dif-
ferences, especially in sphingomyelins, were present irrespective
of health or disease, when we analysed the control and ALS groups
separately bymale versus female, within both cohort 1 and cohort 2
(Supplementary Fig. 13). We found overall sphingomyelin abun-
dance was lower in healthy males versus females,39,40 which per-
sisted in ALS, albeit to a lesser extent, presumably due to
dysregulated sphingomyelin metabolism in ALS (Supplementary
Fig. 14 and Supplementary Tables 8 and 9).

Another interesting finding was ‘benzoate metabolism’, which
was selected in our original but not our replication cohort (Fig. 4).
Examination of the sex analysis suggests this might arise due to
sex imbalance in the replication cohort. When the original cohort
was stratified by sex, benzoate metabolism was most frequently

and/or significantly selected in ALSmales (Fig. 5). Therefore, benzo-
ate metabolism may not have been selected in the replication co-
hort because it was underrepresented in control males.

Differential network enrichment analysis

Weemployed DNEA to identifymetabolite subnetworks that differ-
entiate ALS from control samples. DNEA is a data-driven, function-
al enrichment approach, which facilitates discovery of novel,
functionally active metabolite modules, without depending on
prior knowledge of biochemical interactions. Additionally, it identi-
fies biochemical interactions that are present in either healthy or
ALS samples, or present in both. DNEA is especially useful for me-
tabolites with incomplete pathway knowledge, e.g. lipids and ex-
ogenous metabolites. DNEA also eliminates batch effects between
the twoALS cohorts (n= 349) and control cohorts (n=174) by adjust-
ing and autoscaling data. Once the datasets were merged, DNEA
analysis identified a total of 15 different metabolite subnetworks,
nine of which were significantly enriched at the 0.01 FDR cutoff
(Supplementary Tables 10 and 11, Fig. 6 and Supplementary Figs
15–23).

Themost significant subnetwork S1 comprised candidates from
a variety of sub-pathways, encompassing ‘benzoate metabolism’

and ‘food component/plant’, both related to xenobiotics as well as

Figure 2 Correlation of metabolite abundance with ALSFRS-R. Cross-sectional heatmap visualization of the 20 top differential metabolites in ALS ver-
sus controls, shared by both cohort 1 and cohort 2, as a function of ALSFRS-R score at the time of plasma withdrawal. The relative abundance of the
metabolites significantly correlated with ALSFRS-R in both (A) cohort 1 and (B) cohort 2. Relative abundances and log2(ALSFRS-R) were scaled by row.
ALS participantswere sorted by log2(ALSFRS-R), fromhigh score (left, pink) to low score (right, green), i.e. progressive disease,which results in an overall
trend of decreased metabolites.
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fatty acid and amino acid metabolites (Supplementary Fig. 15). The
second most significant subnetwork S2 was primarily contributed
by xenobiotics sub-pathways, ‘benzoate metabolism’ and ‘xan-
thine metabolism’ (Supplementary Fig. 16). Regarding lipid-centric
transformations, long-chain and various fatty acid and complex li-
pid metabolic sub-pathways contributed the most metabolites to
subnetworks S3, S8 and S9 (Fig. 6 and Supplementary Figs 17, 22
and 23). These subnetworks contained more ALS edges, indicating
biochemical interactions that were present in the pathological con-
dition. Subnetwork S8 contained a large number of complex lipids,
mostly sphingomyelins, but also ceramides and dihydrosphingo-
myelins. Subnetwork S9 encompassed multiple species in signal-
ling, e.g. diacylglycerols and complex lipid sub-pathways, e.g.
phosphatidylcholines, phosphatidylethanolamines, phosphatidy-
linositols and lysophospholipids.

In contrast to thesemore focused aforementioned subnetworks,
subnetworks S5 (Supplementary Fig. 19) and S7 (Supplementary
Fig. 21) converged on metabolites from diverse super-pathways.
Subnetwork S7 was particularly interesting, embodying several
metabolic ALS characteristics, e.g. energy (TCA cycle), amino acid,
antioxidants and creatine. Purine/pyrimidine41 and xenobiotics
metabolism were also featured. Subnetwork S5 similarly had a di-
verse profile.

Discussion
In the current study,we compared themetabolomeof a secondnew
ALS and control cohort to our previously published original cohort
1 (n=125 ALS, n=71 control), where we reported multiple
ALS-associated metabolites and pathways.22 Our goal was to iden-
tity recurrent dysregulated metabolites and pathways in ALS. The
original investigation was a hypothesis-generating study; thus, it
employed a less stringent missingness criteria of 60% cutoff.22

Our replication effort reanalysing cohort 1 and analysing new co-
hort 2 (n= 225 ALS, n= 104 control) employed amore rigorousmiss-
ingness criteria of 80% cutoff to identify the metabolites and

pathwaysmost strongly associated and replicated inALS.We lever-
aged the two independent cohorts to examine recurrent metabo-
lites and pathways, correlate metabolites to clinical status and
build prediction models. As a final step, we merged the original
and replications cohorts in a data-driven DNEA analysis to derive
a more integrated view of plasma metabolome structure in ALS.
This approach does not rely on prior biochemical knowledge, but
rather clusters metabolites into subnetworks dictated solely by ex-
perimental measurements, in this case, by partial correlations be-
tween metabolites across samples.

When we examined the overlap in original and replication co-
horts by metabolites, many were shared, but several also were
not shared. For the PLS-DA and group lasso analyses, which rank
metabolites by VIP and OR, the overlap between cohorts was 19
and 14 metabolites, respectively, when restricting our analysis to
the top 50 metabolites. Additionally, when we examined the top
20 differential metabolites in ALS versus controls, which were
shared by cohort 1 and cohort 2, we found that metabolite abun-
dance decreased with decreasing ALSFRS-R score and advancing
disease. Interestingly, this was the case for several sphingomyelin
species, although sphingomyelin abundance generally correlated
positively with ALS status. It is possible that a temporal element
in sphingomyelin levels may exist,42 with an initial rise followed
by a dip, which might account for the pattern seen with ALSFRS-R
score. Therefore, though only cross-sectional, this finding indicates
thatmetabolomic profilesmay correlate with clinical status in ALS,
and future longitudinal studies could inform the importance of crit-
ical metabolites in the disease course.

Furthermore, even thoughmetabolite overlapwas not fully con-
cordant between cohort 1 and cohort 2, the cohort 1 metabolite da-
taset could be used to construct several prediction models, which
identify ALS cases in the replication cohort. Our AUCs are higher
than previously reported in ALS studies,13,14 possibly due to our lar-
germetabolite dataset and sample numbers13,14 or becausewe ana-
lysed metabolomics profiles from symptomatic ALS participants.13

Our predictionmodel results support the viability of utilizingmeta-
bolomics for ALS biomarker discovery, shown, for the first time,

Figure 3 Case predictionmodels. ROC curves for ALS case predictionmodels generated by group lasso, PLS-DA and RF from cohort 1 applied to cohort
2. Prediction accuracy was calculated for each model by the AUC.
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Figure 4 Pathway enrichment of Wilcoxon-, adjusted logistic regression-, PLS-DA- and group lasso-selected metabolites for original and replication
cohorts. Significantly enriched sub-pathways from metabolites selected by Wilcoxon, adjusted logistic regression, PLS-DA and group lasso models il-
lustrated in dot plots for original cohort 1 and replication cohort 2. Rich factor refers to the proportion of selected metabolites relative to total sub-
pathway metabolites. Metabolite number (node size) refers to the number of sub-pathway metabolites. Node colour indicates the significance level
according to −log10(P-value).
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using two independent cohorts. Future research will need to in-
clude diseasemimics to evaluate specificity for ALS versus possible
differential diagnoses to determine the diagnostic utility in a real-
world setting.

Although identifying individual differential metabolites sheds
insight on pathogenesis and may identify new biomarkers,

metabolites exist along a series of biochemical transformations,
which contribute to a biological process. Therefore, pathway ana-
lysis of all significant differential metabolites emphasizesmetabol-
ic networks rather than discrete metabolites and provides more
meaningful insight on entire pathway dysregulation in disease
pathogenesis. As with individual metabolites, there were shared

Figure 5 Pathway enrichment by sex of Wilcoxon-, adjusted logistic regression-, PLS-DA- and group lasso-selected metabolites for original and rep-
lication cohorts. Significantly enriched sub-pathways by sex frommetabolites selected by (A)Wilcoxon, (B) adjusted logistic regression, (C) PLS-DA and
(D) group lassomodels illustrated in dot plots for original cohort 1 and replication cohort 2. Rich factor refers to the proportion of selectedmetabolites
relative to total sub-pathwaymetabolites. Metabolite number (node size) refers to the number of sub-pathwaymetabolites. Node colour indicates the
significance level according to −log10(P-value). C1, cohort 1; C1-F, cohort 1 females; C1-M, cohort 1 males; C2, cohort 2; C2-F, cohort 2 females; C2-M,
cohort 2 males.
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sub-pathways identified within the original and replication co-
horts, but also sub-pathways that were unique to either cohort.

Sub-pathways consistently selected in both the original and
replication cohort centred heavily on lipid metabolism. The most
significant sub-pathway ‘sphingomyelin’, selected by group lasso
in the original cohort as well as the three othermethods, continued
to be selected in the replication cohort, but not by group lasso.
Other recurrent lipid pathways in the original and replication co-
horts included various long-chain fatty acids, acyl intermediates
and ceramides. Similarly, in the DNEA analysis, subnetworks S3,
S8 and S9 were highly populated by lipid species.

With regards to subnetworkS8, this subnetwork containedmost-
ly elevated sphingomyelins, dihydrosphingomyelins, ceramides and
hexosylceramides (significant) in ALS, which is aligned with other
studies of ALS participant plasma,13,14,35 spinal cord43,44 and CSF,16

and ALS mouse studies.17,43–45 Impaired sphingolipid metabolism
is a central, and at this point relatively well-validated, aspect of
ALS pathogenesis, although the details and underlying aetiology, es-
pecially in sporadic disease, remain incompletely understood. The
increase in ceramides and glucosylceramides inALS has been linked
to enhanced glucocerebrosidase activity in mutant superoxide dis-
mutase 1 (SOD1G93A) mice,44 although conversely glucosylceramide
synthase expression is upregulated in SOD1G86R mouse muscle.42

These differences may arise from distinct model systems, but also
from natural evolution during the disease course.42 Nevertheless,
this dysfunction in sphingolipid synthesis could be integral and po-
tentially causative to disease progression, as seen in a model of
monogenic childhood-onsetALSwithmutant serinepalmitoyltrans-
ferase subunit 1 (SPTLC1).46 In an induced pluripotent stem cell ALS
model, allele specific mutant SPTLC1 knock-in increases sphinga-
nine and ceramide levels versus wild-type allele.46 Indeed, we ob-
served elevated sphinganine and ceramides in our sporadic ALS
cohort, indicating impaired sphingolipid metabolism could be cen-
tral toALS pathogenesis. Ceramides are pro-apoptotic andpotential-
ly excito-43 or neurotoxic,47 contributing to neurodegeneration
(Fig. 7). Additionally, high fatty acid levels (see below) increase cera-
mides and possibly dihydroceramide intermediates48 and sphingo-
myelins,49,50 as observed in both the original and replication
cohorts and the combined ALS dataset.

Whenexamining subnetwork S9, this subnetworkcontainedvari-
ous mostly downregulated complex lipids in ALS, though only some
phosphatidylcholines and lysophospholipids were significantly de-
creased. Our findings agree with some reports,45 but conflict with
others,13,16 which may arise from the specific phosphatidylcholine
species16 or the stage in ALS development.13 Phosphatidylcholines
and phosphatidylethanolamines are primarily synthesized fromdia-
cylglycerols through the Kennedy pathway51 and phosphatidylinosi-
tols from diacylglycerol intermediates.52 Phosphatidylcholines,
phosphatidylethanolamines and phosphatidylinositols are import-
ant membrane constituents; loss of phosphatidylethanolamines is
especially central to mitochondrial dysfunction through impaired
mitochondrial membrane curvature, fission/fusion and bioenerget-
ics.53 In addition to their role in membrane structure, phosphatidyl-
cholines and phosphatidylethanolamines are precursors to diverse
signallingmolecules, e.g. diacylglycerols,51whichcontrol variousbio-
logical processes, such as proliferation, survival andmigration.54 Our
study emphasizes the importance of continued research in the area
of complex and bioactive lipids and lipid signalling in ALS.

Subnetwork S3 comprised free long-chain fatty acids of all sat-
uration levels (saturated, monounsaturated, polyunsaturated;
highly significant), which were universally elevated in ALS partici-
pants. Subnetwork S9 encompassed increased fatty acid intermedi-
ate acylcarnitines (significant), linked to β-oxidation, along with
raised diacylglycerols (significant) in ALS plasma. Though noted
in some studies,13,17 these observations regarding free fatty acids,
acylcarnitines, and diacylglycerols in symptomatic sporadic ALS,
are relatively novel and align with our growing understanding of
ALS ‘hypermetabolism’.55

ALS ‘hypermetabolism’ is characterized by elevated resting en-
ergy expenditure,55 possibly related to glucose uptake,56 and low
BMI and fat-free mass; thus, β-oxidation may be very relevant to
ALS pathogenesis (Fig. 7). Increased levels of non-metabolized
free fatty acids and partially metabolized intermediate acylcarni-
tines could indicate dysfunctional or at capacity β-oxidation,57

which ties in with impaired fatty acid uptake and utilization as
well as mitochondrial dysfunction. A study found SOD1G93A mice
cleared triacylglycerol from plasma post feeding to a greater extent
versus control mice,58 which could elevate plasma free fatty acids,

Figure 6 DNEA analysis subnetworks S8 and S9 overview. Subnetworks (A) S8 (Padj=1.11× 10−3) and (B) S9 (Padj=2.74×10−3) from the data driven
DNEA analysis. Nodes represent metabolites, which are colour-coded by sub-pathway; larger nodes indicate metabolites higher in ALS; smaller nodes
indicate metabolites lower in ALS. Only metabolites from sub-pathways contributing three or more metabolites to the subnetworks are colour-coded;
metabolites from sub-pathways contributing less than three metabolites are white. Edges present in controls, blue; edges present in ALS, pink; edges
present in both, black. Fully annotated subnetworks S8 and S9 are available in Supplementary Figs 22 and 23 and member metabolites and their dir-
ection change and significance are in Supplementary Table 10.
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as we observed, if tissues do not compensate by enhanced uptake.
In both our original and replication cohorts, acylcarnitines of all
lengths and saturation levels were universally elevated in ALS,
with few exceptions, indicating an overall lack of catabolic
β-oxidation. Enhanced muscle lipolysis is reported in SOD1G86R

mice,59 along with increases in mRNA59 and protein60 levels of
β-oxidation enzymes, such as carnitine palmitoyltransferases
(CPTs) and fatty-acid-binding proteins. In a mutant TAR
DNA-binding protein 43 (TDP-43) flymodel, acylcarnitine accumu-
lation was observed, along with differential carnitine palmitoyl-
transferase expression.61 It is possible that hypermetabolism
may revolve around glycolysis as a compensatory mechanism62

to impaired β-oxidation.
Subnetworks S5 and S7 containedmetabolites from several sub-

pathways related to ALS pathogenesis, including energy metabol-
ism, which, as noted above for β-oxidation, appears to be a central
ALS theme. Among them were metabolites related to TCA and gly-
colysis energy metabolism,13,14,16,17,35,63 as well as amino acid me-
tabolism, e.g. histidine, lysine, ‘leucine, isoleucine and valine’
(otherwise known as branched-chain amino acid)18,20,21 and

creatine.14,19,64 Purine/pyrimidine41 and xenobiotics metabolism
were also featured. Members of the glycolysis, gluconeogenesis
and pyruvate metabolism sub-pathways were mostly elevated in
ALS, including glucose, lactate and pyruvate metabolites, whereas
the level of TCA substrates and intermediates did not follow very
significant or evident trends within this S7 subnetwork. The litera-
ture also reports elevated glycolysis,35,65 although it is less clear re-
garding TCA metabolism.66 From our own results, it is not possible
to deduce a pathway direction for these interrelated metabolites in
glycolytic and TCA metabolism. It may be difficult to infer shifts in
metabolic processes from steady state metabolite evaluations by
metabolomics, and fluxomics are needed to elucidate TCA metab-
olite flux in ALS.67 Additionally, some amino acid sub-pathways
in subnetwork S7may also eventually feed into energymetabolism,
e.g. glycine, serine and threonine, tyrosine and phenylalanine
metabolism.68

Creatine was significantly increased, and creatinine significant-
ly decreased in ALS, as in the literature,14,19 but is likely linked to
muscle loss as part of the disease process. Oxidative stress is an ex-
tremely prominent ALS characteristic,69 which led to one of only

Figure 7 Potential mechanisms of lipid and energy dysregulation in ALS. Plasma metabolomics in two independent ALS cohorts revealed recurrent
dysregulation in pathways related to lipid metabolism and energy. Lipids encompassed classes associated with multiple biological processes.
Acylcarnitines (ACs) were mostly and significantly upregulated in ALS and could be indicative of impaired β-oxidation, which also feeds into the
TCA cycle. TCA metabolites also differentiated ALS from control plasma; however, there was no pattern of up versus downregulation across specific
TCA species. Impaired β-oxidation and TCA metabolism could lead to a compensatory increase in glycolysis. Dysfunctional sphingolipid metabolism
leads to elevated ceramides (CERs), which are excito- and neurotoxic and trigger apoptosis. Various phospholipids, importantmembrane constituents,
weremostly downregulated in ALS plasma, though only phosphatidylcholines attained significance. Phosphatidylethanolamines (PEs) regulatemem-
brane curvature, and hencemitochondrial function, and were non-significant subnetwork S9 members. Diacylglycerols (DAGs), which can be synthe-
sized fromphosphatidylcholines and phosphatidylethanolamines, were universally upregulated andmostly significant in ALS plasma. Diacylglycerols
activate protein kinase C (PKC), which has diverse biological properties, including important roles in the peripheral nervous system related to synaptic
transmission and neuromuscular junction function. Future investigationwill be required to evaluate these pathways inALS relevant tissues, i.e.motor
nerves, spinal cord, frontal and temporal brain lobes, and longitudinally, to assess whether these transformations are causative or downstream of
pathogenesis. NMJ = neuromuscular junction. Created, in part, with ACD/ChemSketch and BioRender.com.
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two FDA-approved ALS therapies, edaravone.11 Gamma-glutamyl
amino acid, glutathione metabolism and vitamin A were selected
in both the original and replication cohorts and weremostly down-
regulated in ALS. Deficits in antioxidants have previously been
noted in ALS, such as for glutathione,70,71 tocopherol14 and ascor-
bate.19,63 However, since clinical trials of antioxidant therapies
have been unsuccessful72 and edaravone only minimally slows
ALS progression, antioxidant dysregulation is likely not causative
and may occur downstream of disease initiation, like creatine/
creatinine.

Sex is an important clinical variable in ALS.73 We recently re-
ported that elevated neutrophil counts correlated with ALS pro-
gression, but that the trend was especially pronounced in female
participants.36 We also found that sex influenced the association
of the natural killer cell cytotoxicity marker, NKp30, with ALS pro-
gression by ALSFRS-R score.37 These findings implicate sex differ-
ences in immune system aspects of ALS. We took advantage of
the sex imbalance in the control group of cohort 2 in the replication
to conduct a sensitivity analysis and examine potential sex differ-
ential effects on plasma metabolomics in ALS. We found that al-
though lipid metabolism pathways continued to be selected in
both males and females in both cohorts, certain sub-pathways
weremore significant in females, such as long-chain fatty acidme-
tabolism, diacylglycerols and sphingosines, whereas others were
more important in males, e.g. sphingomyelin. Several xenobiotics
pathways, such as benzoate and xanthine metabolism, were also
more often and/or significantly selected in male ALS participants.
Metabolic differences among ALS males and females could explain
variation in published studies and may be important considera-
tions for any therapeutics targeting metabolism in ALS. These dif-
ferences could also yield new avenues of research to better
understand why the incidence of ALS is highest in males.74

Our study has strengths and limitations. Among the strengths
are the extensive number of detectable and identifiablemetabolites
in the metabolomics platform and large size of both cohorts.
Additional strengths include the validation design of the original
study in this replication effort, especially with the more stringent
missingness criteria, and analyses using several statistical meth-
ods, including the data driven DNEA approach. Despite numerous
strengths, our study hasweaknesses.Most salient to a neurodegen-
erative disease is the tissue issue, since plasmamaynot necessarily
reflect the peripheral and central nervous system milieu.
Furthermore, since plasma collection was cross-sectional, the
study does not establish causality among any of the observedmeta-
bolic sub-pathways. The study also does not correlate the metabo-
lome with clinical progression, although this is a future area of
investigation, which is required to delineate correlative from
causative shifts inmetabolic profiles in ALS. However, the long pro-
dromal phase in ALS poses significant challenges. From a technical
perspective, both our cohorts consisted mainly of White partici-
pants and our replication study was not well balanced for sex, al-
though this limitation prompted us to conduct analyses for sex
differences. Additionally, plasma samples were not collected
from fasted participants because it was deemed an unethical re-
quest. Finally, batch effects were present since samples were run
a year apart, although data were autoscaled for the DNEA analysis,
removing any batch influence.

Overall, our metabolomics replication study highlighted recur-
rently dysregulated lipidmetabolism inmultiple sub-pathways, in-
dicative of altered β-oxidation, mitochondrial bioenergetics and
complex lipid signalling. Targeted lipidomics looking at specific li-
pid classes and lipid species along the ALS continuum could

provide new insight into disease pathogenesis. Future directions
could also addressmetabolic flux tomove past steady state evalua-
tions. Preclinicalwork along a time continuumcould shed addition-
al insight on early metabolic changes and in motor nerves and
spinal cord tissue. The concurrent dysregulation in transcriptome
and epigenome in ALS may also advocate a multi-omics approach.
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Tofacitinib Suppresses Natural
Killer Cells In Vitro and In Vivo:
Implications for Amyotrophic
Lateral Sclerosis
Claudia Figueroa-Romero†, Alina Monteagudo†, Benjamin J. Murdock†, Joshua P. Famie,
Ian F. Webber-Davis , Caroline E. Piecuch, Samuel J. Teener , Crystal Pacut ,
Stephen A. Goutman and Eva L. Feldman*

Department of Neurology, University of Michigan, Ann Arbor, MI, United States

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease with
few therapeutic options. However, the immune system, including natural killer (NK) cells, is
linked to ALS progression and may constitute a viable therapeutic ALS target. Tofacitinib
is an FDA-approved immunomodulating small molecule which suppresses immune cell
function by blocking proinflammatory cytokine signaling. This includes the cytokine IL-15
which is the primary cytokine associated with NK cell function and proliferation. However,
the impact of tofacitinib on NK activation and cytotoxicity has not been thoroughly
investigated, particularly in ALS. We therefore tested the ability of tofacitinib to suppress
cytotoxicity and cytokine production in an NK cell line and in primary NK cells derived from
control and ALS participants. We also investigated whether tofacitinib protected ALS
neurons from NK cell cytotoxicity. Finally, we conducted a comprehensive
pharmacokinetic study of tofacitinib in mice and tested the feasibility of administration
formulated in chow. Success was assessed through the impact of tofacitinib on peripheral
NK cell levels in mice. We found tofacitinib suppressed IL-15-induced activation as
measured by STAT1 phosphorylation, cytotoxicity, pro-inflammatory gene expression,
and pro-inflammatory cytokine secretion in both an NK cell line and primary NK cells.
Furthermore, tofacitinib protected ALS neurons from NK cell-mediated cytotoxicity. In
mice, we found tofacitinib bioavailability was 37% in both male and female mice; using
these data we formulated mouse containing low and high doses of tofacitinib and found
that the drug suppressed peripheral NK cell levels in a dose-dependent manner. These
results demonstrate that tofacitinib can suppress NK cell function and may be a viable
therapeutic strategy for ALS.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive
neurodegenerative disease resulting in death of the motor
neurons (1). The average patient lifespan is 2 to 4 years from
disease diagnosis, and few therapeutic options exist. However, an
increasing body of literature suggests that the immune system
is involved in the pathogenesis of ALS (2, 3), with specific
immune cell populations likely contributing to disease
progression in ALS mouse models (4–9). Similarly, in human
ALS patients, changes in peripheral immune cell numbers and
activation state correlate with disease progression (10–13).
Unfortunately, suppressing the immune system can have
unintended and sometimes fatal consequences. General
immune suppression increases susceptibility to pathogens and
cancer (14); it may also accelerate ALS progression (15, 16) since
several immune populations perform protective functions,
which slow disease progression (10, 11). The loss of protective
immune cell populations likely explains previous failures
of immunosuppressive drugs for ALS. Conversely, certain
immune cell populations accelerate ALS (6–10, 12, 13); thus,
targeting these specific immune populations may be a more
nuanced and potentially effective approach for slowing disease
progression than global immune suppression.

Generally, immune cells do not attack the body’s own cells
under homeostatic conditions. However, natural killer (NK) cells
destroy the body’s own cells when they become cancerous,
infected, or damaged (17, 18). NK cells may also contribute to
ALS progression (7, 8, 10, 13); we and others have found elevated
NK cell levels in the peripheral blood of ALS patients (10, 11) and
NK cells accumulate in the spinal cord of ALS mice (7, 8, 19).
Moreover, during ALS, motor neurons stop expressing major
histocompatibility complex proteins, which mark them as self,
protecting them from NK cell-mediated cytotoxicity (20, 21).
This suggests a particular vulnerability of motor neurons to NK
cells in ALS. Finally, NK cells drive a pro-inflammatory
microglia phenotype and simultaneously suppress protective
regulatory T cells during ALS (7). Thus, drugs targeting NK
cells may prove a viable therapeutic option for ALS, both by
blocking NK cell cytotoxicity as well as preventing a pro-
inflammatory cascade in the central nervous system.

Tofacitinib is a small molecule pharmaceutical approved for
treating multiple immune disorders, including rheumatoid
arthritis (22), ulcerative colitis (23), and psoriasis (24). The
drug suppresses pro-inflammatory immune activation by
blocking the JAK/STAT pathway of the adaptive immune
system (25, 26) while preserving innate immune activity and
regulatory function (27, 28). However, cytokines associated with
NK cell survival and function, including IL-15, signal through
the JAK/STAT pathway as well (29–32) and would also be
blocked by tofacitinib (33). Indeed, several studies suggest
tofacitinib suppresses NK cell numbers in the peripheral blood
of mice (34, 35) and humans (36). However, little research has
been performed to examine the impact of tofacitinib on NK cell
activation. Thus, tofacitinib could potentially block NK cell
cytokine production and cytotoxicity in addition to lowering
overall levels, providing added benefits as an ALS treatment.

In addition, tofacitinib would target NK cells and pro-
inflammatory pathways while preserving protective immune
function (28) thus overcoming previous failures of previous
immune-based therapies for ALS (37).

The present study therefore evaluated the ability of tofacitinib
to suppress NK cell cytokine expression and cytotoxicity in vitro,
both in an NK cell line and in primary NK cells derived from
ALS participants. We also investigated whether tofacitinib
suppressed NK cell cytotoxicity to inducible neurons
(iNeurons) differentiated from ALS patient-derived inducible
pluripotent stem cells (iPSCs). Finally, we examined tofacitinib
pharmacokinetics in mice as well as the impact in vivo on the
immune system, since these data have not been previously
established and are crucial to future preclinical studies of ALS.
Our study found that tofacitinib suppresses NK cell cytotoxicity
and cytokine production in vitro and suppresses NK cell levels in
vivo in mice after oral administration in food. These data
demonstrate that tofacitinib may be a viable ALS treatment
and establish a foundation for future preclinical studies.

METHODS

Study Participants
Healthy control participants without a history of neurodegenerative
disease, chronic inflammatory disease, collagen vascular disease, or
immunomodulatory medication use were recruited through the
University of Michigan Institute for Clinical & Health Research. In
parallel, ALS participants meeting a diagnosis of ALS by El Escorial
Criteria were recruited during clinical visits at the University of
Michigan Pranger ALS Clinic as previously described (13). All study
participants provided oral and written informed consent and the
study received ethics board approval by the University of Michigan
Medical School Institutional Review Board (HUM00028826).

Cell Lines and Primary Human NK Cells
Cell Lines
The NK-92 NK cell line (ATCC Cat# CRL-2408, RRID :
CVCL_3755) and K-562 leukemia cell line (ATCC Cat# CCL-
243, RRID : CVCL_0004) were acquired from ATCC (Manassas,
VA). NK-92 cells were grown in NKmedia [Alpha’sModification of
Medium Essential Eagle media (STEMCELL Technologies
cat #36453) supplemented with 12.5% horse serum (Gibco cat
#16050122), 12.50% fetal bovine serum (FBS, Sigma Aldrich cat
#F4135), 1% penicillin/streptomycin (Gibco cat #15140122), 0.2
mM myo-inositol (Sigma-Aldrich cat #17508), 0.02 mM folic acid
(Sigma-Aldrich cat #F8758), and 0.1 mM b-mercaptoethanol
(Sigma cat #M7522) and 645.2 nM IL-2 (PeproTech cat #200-
02)]. K-562 cancer cells were grown in K-562 media [Iscove’s
Modified Dulbecco’s Medium (STEMCELL Technologies cat
#36150) with 10% FBS and 1% penicillin/streptomycin (Gibco cat
#15140122)]. Human-derived iPSC lines #1021 (control) and #265
(sporadic ALS, sALS) were obtained from the University of
Michigan ALS Biorepository (38). Control and ALS iPSCs were
used to generate iNeurons by suppressing the polypyrimidine-tract-
binding (PTB) protein, as previously described (39). Briefly, iPSCs
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were cultured on poly-D-lysine (50 µg/L, Sigma cat #p1149)/
laminin (1:100, Sigma cat #L2020) coated plates in iPSC media
[E8 media (Gibco cat #A1517001) supplemented with iROCK
Y27632 (Fisher cat #BDB562822)] in 6-well plates at a density of
1x105 cells/well. The following day (Day 1), the media was changed
to iNeuron media #1 [E8 media supplemented with 1X N2
supplement (Gibco, cat #17502-048), 1X NEAA supplement
(Gibco cat #11140-050), 10 ng/mL BDNF (Peprotech cat #450-
02), 10 ng/mL NT3 (Peprotech cat #450-03), 0.2 µg/mL mouse
laminin (Sigma cat #L2020), 2 mg/mL doxycycline (Sigma cat
#D3447)]. On Day 2, the cells were changed to iNeuron media #2
[½ E8, ½ DMEM/F12 (Gibco cat #11320-033), 1X N2 Supplement,
1XNEAA supplement, 10 ng/mL BDNF, 10 ng/mLNT3, 0.2 µg/mL
laminin, 2 mg/mL doxycycline]. On Day 3, cells were changed to
iNeuron media #3 [Neurobasal-A (Gibco cat #12349-015), 1X B27
supplement (Gibco cat #17504-044), 1X Glutamax supplement
(Gibco cat #35050-061), 10 ng/mL BDNF, 10 ng/mL NT3, 0.2 µg/
mL mouse laminin, 2 mg/mL doxycycline]. Additional media #3
was added on Day 6 and Day 8. iNeurons were differentiated for 10
days prior to treatment.

Primary NK Cells
10 mL of whole blood was collected from control and ALS
participants, as previously described (10, 12, 13). NK cells were
enriched using RosetteSep Human NK isolation cocktail
(STEMCELL Technologies cat #15025) and cultured in NK
media supplemented with 645.2 nM IL-2 or IL-2 + 2.33 nM
IL-15 (PeproTech cat #200-15) for co-culture assays. All cells
were grown at 37°C in 5% CO2.

NK-92 IL-15 Stimulation and Tofacitinib
Treatment Paradigms
NK-92 cells were cultured using two IL-15/tofacitinib paradigms
(Figure 1A). In the first paradigm (P1), NK-92 cells were
cultured for two hours with 2.33 nM IL-15 in serum-free NK
media prior to overnight treatment with 50 nM tofacitinib
(Selleckchem cat #CP-690550). In the second treatment
paradigm (P2), NK-92 cells were cultured overnight with 50
nM tofacitinib in serum-free NKmedia prior to two-hour culture
with 2.33 nM IL-15. 50 nM concentration of tofacitinib was used
based on previous in vitro immune studies (40, 41). For each
treatment paradigm, three groups of NK-92 cells were generated:
cells receiving no IL-15 and no tofacitinib (Unstimulated), cells
receiving only IL-15 (Stimulated) or cells receiving IL-15
stimulation and tofacitinib treatment (Treated). NK-92 cells
were then collected, washed, and analyzed for STAT1
phosphorylation (P-STAT), cytotoxicity towards K-562 cells,
granzyme B and perforin expression, or cytokine gene
expression (see below).

Primary NK Cell Stimulation and
Tofacitinib Treatment
1x105 human primary NK cells were cultured in a 48-well plate
(Corning cat #3524) in NK media supplemented with 645.2 nM
IL-2 + 2.33 nM IL-15 ± 50 nM tofacitinib for two hours at 37°C
in 10% CO2. Unlike NK-92 cells, primary NK cells were provided

additional IL-2 cytokine stimulation to enhance survival in
culture (data not shown) (42). The cells were washed and
pelleted for subsequent western blot, quantitative real-time
PCR (qRT-PCR), and cytotoxicity analysis.

Western Blot Analysis
NK-92 or primary NK cells were lysed in RIPA buffer (Pierce/
Thermo Fisher Scientific cat #89901) supplemented with
cOmplete mini, EDTA-free protease inhibitors (Roche cat
#11836170001), sonicated, and centrifuged. Protein samples
were resolved by SDS-PAGE in 10% acrylamide gels,
transferred to Immobilon-FL PDVF membranes (Millipore cat
#IPFL00010), and immunoblotted with the indicated primary
antibodies: rabbit anti-STAT1 (D1K94) (Cell Signaling
Technologies, CST, cat #14994S), rabbit anti-P-STAT1 (Y701)
(CST cat #9167S), and rat anti-a-tubulin (Abcam cat #ab6160;
RRID : AB_305328). Goat anti-rabbit (cat #7074S; RRID :
AB_2099233) and anti-biotin horseradish peroxidase (HRP)-
linked (cat #7075P5) secondary antibodies were used at 1:2000
(CST) and anti-rat IgG HRP-conjugated secondary antibody was
used at 1:5000 (R&D cat #HAF005; RRID : AB_1512258).
Densitometric analysis was performed Quantity One v.4.6.5
(Bio-Rad).

Cytotoxicity Assays
NK-92 Cells and K-562 Cells
Pre-treated NK-92 cells (Paradigm 1 or 2) were plated at a
density of 1x106 NK-92 cells and co-cultured with 1x105 K-562
cells for two hours at a 10:1 ratio in a final volume of 500 mL
followed by flow cytometric analysis of K-562 and NK-92 cell
viability dye levels (positive levels indicating cell death,
see below).

NK-92 Cells and iNeurons
1x106 NK-92 cells were starved for 2 hours in serum-free NK
media, then treated with 50 nM tofacitinib or vehicle (dimethyl
sulfoxide, DMSO) for 30 minutes prior to stimulation with 2.33
nM IL-15 for 4 hours (similar to the intervention treatment
paradigm, P2). Treated NK-92 cells were re-suspended in 0.5 mL
iNeuron media #3 and co-cultured for 2 hours with 10-day old
iNeurons plated at 2x105 cells/well (NK-92:iNeuron = 5:1). At
the end of the incubation, the media containing the NK-92 was
removed and the iNeurons were washed with 1X PBS and
released from the plates with Accutase (Innovative Cell
Technologies cat #AT-104) for viability analysis via flow
cytometry (see below).

Primary NK Cells and K-562 Cells
1x105 human primary NK cells were co-cultured with 1x105 K-
562 cells at a 1:1 ratio were seeded to a 48-well plate (Corning)
with NKmedia for 2 hours at 37°C in 5% CO2 under one of three
conditions: with 645.2 nM IL-2, with IL-2 + 2.33 nM IL-15, or
with IL2 + IL-15 + 50 nM tofacitinib. Following co-culture,
conditioned media was then collected and stored for subsequent
analysis (see below). K-562 and primary NK cells were then
washed with flow buffer [1000 mL 1X PBS + 20 mL FBS + 0.01 g
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FIGURE 1 | Tofacitinib inhibits NK-92 cells function in vitro. (A) NK-92 cells were cultured with serum-free media under two culture paradigms: Paradigm 1 (P1)
intervention treatment, whereby NK-92 cells were treated with IL-15 for two hours and then cultured overnight in the presence of tofacitinib (Treated), and Paradigm
2 (P2) prevention treatment where NK-92 cells were treated overnight with tofacitinib prior to two-hour IL-15 stimulation. (B) Stimulated and Treated NK-92 cells
were assessed for STAT1 phosphorylation (P-STAT) following both culture paradigms. Representative immunoblots for Stimulated and Treated P-STAT1 and a-
tubulin (internal reference) are shown. Quantitative data represent densitometric analysis, where total STAT1 and P-STAT1 signals were first normalized to a-tubulin
then to P-STAT1 levels in Unstimulated cells; n = 5 independent experiments. (C) Unstimulated, Stimulated, and Treated NK-92 cells were co-cultured with K-562
cancer cells (10:1 ratio) following initial P1 or P2 culture paradigms. Flow cytometry was used to identify K-562 cells in the co-culture, and cell death was assessed
by viability dye staining. K-562 cell death was quantitated for Stimulated and Treated NK-92 cells and normalized to Unstimulated NK-92 cells; n = 10 independent
experiments. (D) Expression of the intracellular NK cell proteins perforin and granzyme B was determined by flow cytometry on Unstimulated, Stimulated, and
Treated NK-92 cells using intracellular flow cytometry following P1 and P2 culture paradigms. Representative histograms are shown; gray peaks = Unstimulated NK-
92 cells, red peaks = Stimulated NK-92 cells, blue peaks = Treated NK-92 cells show MFI. MFI from Stimulated and Treated cells were normalized to protein levels
in Unstimulated NK-92 cells for quantitation; n = 6 independent experiments. (E) Gene expression of IL-10, TNF-a, and IFNg cytokines was assessed in
Unstimulated, Stimulated, and Treated NK-92 cells following P1 and P2 paradigms using qRT-PCR. Data for Stimulated and Treated cells were normalized to
GAPDH expression then to the Unstimulated cells; n = 3-4 independent experiments. (F) Extracellular expression of IL-10, TNF-a, IFN-g, granzyme B, and perforin
was assessed for Stimulated and Treated NK-92 cells using a CD8/NK cell multiplex analysis following P1 and P2 treatment paradigms (n = 8-13 independent
experiments). For all experiments, quantitative data is shown as the mean ± SEM; (A–E) comparisons were made by Student’s t-test; (F) comparisons were made
using a paired t-test or a Wilcoxon test based on normality of the data. Horizontal dashed lines represent normalized Unstimulated NK-92 cell levels. *P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001.
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NaN3] and plated for analysis of both cell types using flow
cytometry and viability dye (see below).

Quantitative Real-Time PCR (qRT-PCR)
RNA was isolated from NK-92 or primary NK cells using the
RNeasy isolation kit (Qiagen cat #74104) and with RNA/DNA/
RNase-free DNase treatment (Qiagen cat#79254). cDNA was
generated using 0.5 mg of NK-92 RNA or 40 ng primary NK cell
RNA and 5X iScript RT (Bio-Rad cat#1708840) in a 20 mL
reaction following the manufacturer’s protocol. The reactions
were run in a PTC-200 Peltier Thermal Cycler (MJ Research).
qRT-PCR was performed in triplicate using 10-mL reactions
consisting of sequence specific TaqMan™ primers for human
IL-10 (Hs00961622_m1), TNF-a (Hs00174128), IFN-g
(Hs00989291_m1), GAPDH (Hs02758991_g1), and yWHAZ
(Hs03044281_g1); 2X gene expression Master Mix (Applied
Biosystems/Thermo Fisher Scientific, cat #4369016) and 2 mL
cDNA. CT values were used to calculate DCT and DDCT using
GAPDH or yWHAZ as the internal references. Data were
expressed as the mean of the relative quantity of gene
expression (2−DDCT).

Multiplex Analysis of Cytokines and
Secreted Proteins
The release of cytokines and pro-apoptotic factors by NK-92 and
primary NK cells was assessed using the LEGENDplex Human
CD8/NK Cell Panel (Biolegend, cat# 740267) according to the
manufacturer’s instructions. In brief, fluorescent beads were
incubated with conditioned media from NK-92 or primary NK
cells co-cultured with K-562 cancer cells, and flow cytometry (see
below) was used to quantify IL-10, TNF-a, IFN-g, granzyme B,
and perforin in the conditioned media.

Mice
Mice were purchased from Jackson Laboratory (Bar Harbor,
ME). Male and female C57BL/6 mice (Stock #000664; RRID :
IMSR_JAX:000664) were used for initial tofacitinib
pharmacokinetic assays. For tofacitinib efficacy studies, male
and female non-carrier, wild-type (WT) control littermates of
SOD1G93A ALS mice were used (B6.Cg-Tg(SOD1*G93A)1Gur/J;
Jackson Stock #004435). All mice were housed under specific
pathogen-free conditions. Animals were fed 5L0D chow ad
libitum when not treated. All mouse studies were performed in
accordance with University of Michigan Institutional Animal
Care & Use Committee approved protocols (approval
#PRO00010247). Mouse studies were conducted in accordance
with the United States Public Health Service’s policy on Humane
Care and Use of Laboratory Animals.

Tofacitinib Administration to Mice and
Plasma Collection for Pharmacokinetic
Assays
Tofacitinib was suspended at 2 mg/mL in PBS containing 5%
DMSO and 10% PEG-400, which was administered by
intravenous (IV) injection (10 mg/kg, 10 mice) or per os (PO)
via gavage (20 mg/kg, 10 mice). At the given time points (0.083,

0.167, 0.25, 0.5, 1, 2, 4, 7, 16, and 24 hours), blood samples were
collected using heparinized calibrated pipettes. Samples were
centrifuged at 2000g for 10 minutes. Subsequently, plasma was
collected from the upper layer and frozen at -80°C for
later analysis.

Liquid Chromatography
Sample Preparation
To precipitate plasma proteins, 150 mL of acetonitrile containing
internal standard and 30 mL of ice-cold acetonitrile were added to
30 mL of plasma. The mixture was vortexed for 10 minutes and
centrifuged at 15,000 x g for 10 minutes. The supernatant was
transferred to a 96-well plate (Fisher Scientific) for liquid
chromatograph-tandem mass spectrometry (LC–MS/MS).

Sample Specificity
The chromatograms of blank plasma versus blank plasma spiked
with internal standard (CE302) showed that the blank plasma did
not interfere with tofacitinib and internal standard determination.

Calibration Curve
Analytical curves were constructed with 12 nonzero standards by
plotting the tofacitinib peak area ratio to the internal standard
versus the concentration in plasma. The concentration range was
evaluated from 1 to 10000 ng/mL for drug level quantification in
plasma. A blank sample (matrix sample processed without
internal standard) was used to exclude contamination or
interference. The curve was built with linear regression with
weighing (1/X2). The linearity of the relationship between peak
area ratio and concentration was demonstrated by the
correlation coefficients (r = 0.9990).

Quality Control (QC) Samples
The accuracy and precision were evaluated at four concentration
levels (2 ng/mL, 400 ng/mL, 4500 ng/mL, and 9000 ng/mL) with
three individual replicates at each concentration. The QC stock
solution was prepared from separate weighing. QC samples were
prepared at four levels (2 ng/mL, 400 ng/mL, 4500 ng/mL, and
9000 ng/mL). QC samples were run before, in the middle, and
after running the samples. At least 50% of QCs at each level were
within 15% of their nominal concentration. The intra-batch
precision was calculated and expressed as relative standard
deviation. Data indicate that the assay method was reliable
and reproducible.

Analysis
Tofacitinib concentrations in mouse plasma were determined by
a liquid chromatography tandem mass spectrometry (LC–
MS/MS) method developed and validated for this study. The
LC-MS/MS method was preformed using an AB-4500 Qtrap
(Sciex, Concord, ON, Canada) mass spectrometer with
electrospray ionization source interfaced with a Shimadzu
high-performance LC system. Separation was performed on an
XBridge C18 column (50 × 2.1 mm ID, 3.5 µm; Waters, Milford,
MA, USA) at a flow rate of 0.4 mL/minute. The mobile phase
consisted of A (water with 0.1% formic acid) and B (acetonitrile
with 0.1% formic acid). The gradient was 0.0-0.5 minutes, 2% B;
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0.5-2.0 minutes, 2-95% B; 2.0-3.6 minutes, 95% B; and 3.6-4.1
minutes, 95-2% B. The mass spectrometer was operated in
positive mode with multiple reaction monitoring for analysis.
The multiple reaction monitoring transitions were m/z 313.1 >
173.1 for tofacitinib and 455.2 > 425.2 for the internal standard.
The gas temperature was 500°C with an ionspray voltage of
5500 V, gas 1 and gas 2 of 30 psi, and curtain gas of 30 psi.
Analyst Software (version 1.6) from Applied Biosystems (MDS
SCIEX; Carlsbad, CA, USA) was used to control the LC-MS/MS
system, as well as for data acquisition and processing. All
pharmacokinetic parameters were estimated using non-
compartmental analyses with Phoenix WinNonlin software
(Certara, Princeton, NJ).

Tofacitinib Mouse Chow
Low-dose (5 mg/kg) and high-dose (30 mg/kg) chow was
manufactured by Research Diets (New Brunswick, NJ). To
determine the initial tofacitinib content in the chow, chow
from two cages of mice was weighed daily for a week to
determine the daily chow consumption per cage. The average
chow consumption for each mouse was then calculated, and low-
and high-dose chow was formulated based on average
consumption. For the peripheral immune analysis, male and
female mice were placed on low-dose, high-dose, or normal
chow (control animals) for two weeks prior to harvest.

Blood Leukocyte Collection
Peripheral immune cells were harvested as previously described
(9). At the time of harvest, mice were euthanized with sodium
pentobarbital, whole blood was collected from the vena cava and
measured using a 1 mL syringe (BD Biosciences, Franklin Lakes,
NJ), and transferred to a BD Vacutainer® blood collection tube
(BD Biosciences) coated with 3.6 mg of EDTA. Red blood cells
were lysed with 9.5 mL red blood cell lysis buffer [150 mM
NH4Cl, 10 mM KHCO3, 0.1 mM EDTA (Thermo Fisher
Scientific) with 13.8 mM HEPES, pH 7.2-7.5 (Thermo Fisher
Scientific)] for 20 minutes on a rocker at room temperature.
Leukocytes were pelleted (1000 rpm, 10 minutes, 4°C, with
brake), supernatant siphoned off, washed twice with flow
cytometry buffer [1X PBS, 2% FBS (Thermo Fisher Scientific),
0.1% NaN3] and resuspended in 1 mL flow cytometry buffer.
Cells were counted by hemocytometer (Hausser Scientific,
Horsham, PA), and kept on ice until staining for flow cytometry.

Flow Cytometry
Intracellular Perforin and Granzyme B Staining
of NK-92 Cells
All samples were washed and resuspended at a density of ≤106 cells/
25 µL, plated in U-bottom 96-well plates (Fischer cat #07-200-760),
and spun down at 1200 rpm for 10minutes. Samples were incubated
with 10 µg/mL human TruStain FcX™ blocking solution (Biolegend
cat #422302; RRID : AB_2818986) at 4°C for 30 minutes prior to
immune staining. Following blocking stage, NK-92 cells were
stained with CD56 and HLA and washed with flow buffer (PBS +
2% FBS). Cells were then permeabilized using Cytofix/cytoperm
(BD cat #554714; RRID : AB_2869008) and stained with antibody

for perforin (Biolegend cat #353303; RRID : AB_10915476) and
granzyme B (Biolegend cat #515403; RRID : AB_2114575). Control
stains were performed with non-specific IgG antibody (Biolegend
cat #400111; RRID : AB_2847829 and #400137). Cells were then
transferred to polystyrene tubes (12x75 mm) (BD Biosciences) and
analyzed on a BD LSRFortessa™ flow cytometer with FACSDiva™

software (BD Biosciences) and FlowJo (FlowJo, Ashland, OR).

NK-92 and Primary NK Cytotoxicity Assays
Following collection and wash, co-cultures of NK and K-562 cells
were incubated with Fixable Viability Dye eFluor™ 506 (1:500)
(eBioscience cat #65-0866-14) during the blocking stage. Samples
were then incubated with surface stains CD56 (Biolegend
cat #318318; RRID : AB_604107), CD11a (Biolegend cat#301207;
RRID : AB_10660819), and CD71 (Biolegend cat #334110; RRID :
AB_2563117) at 4°C for 30 minutes. K-562 cells were identified as
CD56-, CD11a-, CD71+. Samples were fixed using Stabilizing
Fixative (BD cat #338036; 1:3 dilution).

iNeurons
All samples were washed, resuspended at a density of ≤106 cells/
25 µL, plated in U-bottom 96-well plates, and blocked at 4°C for
30 minutes prior to staining. Cells were then stained for annexin
V (Invitrogen cat #12-8102-69) and with the viability dye 7-
amino-actinomycin D (7AAD; Invitrogen cat #00-6993-50),
according to the manufacturer’s instructions, and fixed for
analysis, as above, consistent with previously reported
protocols in neurons (43, 44).

Mouse Peripheral Immune Cells
All samples were washed and resuspended at a density of ≤106

cells/25 µL, plated in U-bottom 96-well plates (Fischer), and
spun down at 1200 rpm for 10 minutes. Samples were incubated
with 10 µg/mL mouse TruStain FcX™ blocking solution
(Biolegend cat #101320; RRID : AB_1574975) at 4°C for 30
minutes prior to staining. Samples were incubated with
antibodies against myeloid and lymphoid surface markers as
previously described (9). In brief, cells were stained with
antibodies against CD45, CD11b, Ly6C, and Ly6G to analyze
myeloid populations and CD45, CD3, CD4, CD8, NK1.1, and
CD49b to analyze lymphocyte and NK cell populations.

Statistics
All statistics were performed using GraphPad Prism version 8.0.0
(San Diego, CA). All datasets were assessed for normality using
normality using Shapiro-Wilk (45). For comparing between two
groups, either a two-tailed Student’s t-test (normally distributed
data) or Mann-Whitney (non-normally distributed data) were
used. For cytokine expression by NK-92 cells a paired t-test or a
Wilcoxon test (paired data with non-normal distribution) was
used when data was not normally distributed. A Wilcoxon test
was used for comparing NK-92 cytotoxicity to iNeurons and
comparing primary NK cell cytotoxicity to K-562 cancer cells.
For comparing peripheral immune cell levels, two-way ANOVA
with multiple comparisons was used. P-values < 0.05 were
considered statistically significant.
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RESULTS

Tofacitinib Inhibits NK-92 Cells
Function In Vitro
Previous studies demonstrate that tofacitinib lowers NK cell
levels in vivo (34–36, 46); however, little is known about the
effect of tofacitinib on NK cell activation. Blocking NK cell
activation in addition to lowering levels could potentially
increase tofacitinib efficacy for treating NK cell-mediated
diseases, such as ALS. Thus, we explored whether tofacitinib
reduces NK cell cytotoxicity, cytokine production, and trafficking
in vitro. We initially employed a commercially available NK cell
line, NK-92 cells, and two treatment paradigms to explore the
impact of tofacitinib on NK cell function (Figure 1A). In the first
treatment paradigm (P1, intervention treatment) NK-92 cells
were activated with IL-15 for two hours (30–32) and cultured
overnight in the presence of tofacitinib. In the second paradigm
(P2, prevention treatment), NK-92 cells were first pre-treated
with tofacitinib overnight and then activated for two hours with
IL-15. In parallel, Unstimulated cells (which received no IL-15
stimulation, serum stimulation, or tofacitinib treatment) were
also cultured overnight and analyzed simultaneously with P1 or
P2 NK-92 cells. For both paradigms, NK-92 cells were further
divided into two groups: NK-92 cells cultured with IL-15 without
tofacitinib (Stimulated) and NK-92 cells cultured with both
IL-15 and tofacitinib (Treated). This resulted in a total of five
NK-92 groups (Unstimulated, P1 Stimulated, P1 Treated, P2
Stimulated, and P2 treated) that were analyzed in parallel.

First, we confirmed that tofacitinib treatment blocks IL-15
signaling in NK-92 cells in both intervention and prevention
paradigms. Tofacitinib disrupts JAK/STAT signaling by blocking
STAT protein phosphorylation (47). Therefore, we measured
phosphorylated STAT1 (P-STAT1) levels in Unstimulated,
Stimulated, and Treated NK cells and normalized values levels
in Untreated NK-92 cells to account for run-to-run variation.
Immunoblot analysis indicated that tofacitinib treatment
significantly reduced P-STAT1 in both culture paradigms (10-
fold in P1 and 13 fold in P2, Figure 1B) demonstrating that
tofacitinib blocks IL-15 signaling in NK-92 cells.

We next tested whether tofacitinib treatment suppresses NK
cell function by assessing cytotoxicity, the intrinsic ability of NK-
92 cells to eliminate other cells. NK-92 cells in both intervention
and prevention treatment paradigms (Unstimulated, Stimulated,
or Treated) were co-cultured with K-562 leukemia cells. K652
cell death, as measured by cellular viability dye via flow
cytometry, was used to quantify NK-92-killing activity (48)
(Figure 1C); cytotoxicity of Stimulated and Treated NK-92
cells was normalized to Unstimulated NK-92 cells. We found
that IL-15-treated NK-92 cells doubled the rate of K-562 cancer
cells killing under both paradigms. However, under both
intervention and prevention treatment paradigms, blocking
IL-15 with tofacitinib significantly reduced the ability of NK-92
cells to induce K-562 cell death, showing that tofacitinib reduces
the ability of NK cells to eliminate target cells. To ensure that
tofacitinib is suppressing NK-92 cytotoxicity rather than
reducing cellular viability, we also examined NK-92 survival

using viability dye. We found no significant differences in NK-92
viability following tofacitinib treatment (data not shown).

To support these findings, we next examined the impact of
tofacitinib on NK-92 expression of intracellular granzyme B and
perforin, both of which play key roles in NK cell-mediated
cytotoxicity (49). Intracellular granzyme B and perforin levels
from Unstimulated, Stimulated, or Treated NK-92 cells
(Figure 1D) were quantified by the median fluorescent
intensity (MFI) from intracellular flow cytometry; values from
Stimulated and Treated NK-92 cells were then normalized to the
MFI from Unstimulated NK-92 cells. We found that tofacitinib
significantly lowered intracellular perforin levels in the
prevention paradigm (P2), with a trending reduction in the
intervention paradigm (P1). Tofacitinib also induced a
trending reduction towards reduced granzyme B levels. These
data suggest tofacitinib may reduce NK cell cytotoxicity, partly
by suppressing the expression of proteins that induce target
cell death.

In addition to direct cytotoxicity, we examined the ability of
tofacitinib to suppress NK cell cytokine production, which
enhances neuroinflammation in ALS (7). NK-92 cells were
cultured under both paradigms, and cytokine IL-10, TNF-a, and
IFN-g mRNA expression levels were measured by qRT-PCR and
normalized to Unstimulated cells. Overall, TNF-a, IL-10, and IFN-g
gene expression increased in both paradigms following IL-15
stimulation, but this increase was reversed by tofacitinib treatment
(Figure 1E). To confirm these findings, we next examined the
secretion of pro-inflammatory and pro-apoptotic factors using a
bead-based multiplex analysis paired with flow cytometry.
Conditioned media from Stimulated and Treated culture
conditions was analyzed for levels of IL-10, TNF-a, IFN-g,
granzyme B, and perforin. Similar patterns of NK cell suppression
were seen following both tofacitinib treatment paradigms. As
observed with qRT-PCR, both IL-10 and IFN-g levels were
suppressed during the P1 and P2 treatment paradigms
(Figure 1F). Similarly, granzyme B and perforin expression were
suppressed following the P2 treatment paradigm, demonstrating
that tofacitinib suppresses the release of pro-inflammatory and pro-
apoptotic factors by NK-92 cells. Together, these data demonstrate
that tofacitinib suppresses the ability of NK cells to generate
cytokines in addition to blocking their cytotoxicity in response to
pro-inflammatory stimulation.

Next, we explored whether tofacitinib protects neurons from
NK cell-mediated cytotoxicity in an in vitro ALS model. To do
so, we co-cultured NK-92 cells with iPSC-derived iNeurons. Two
iNeuron cell lines were used: one derived from a control
participant and one derived from an ALS participant (50).
Following differentiation and ten days of growth, iNeurons
were co-cultured for four hours with IL-15-stimulated NK-92
cells with and without tofacitinib. Annexin V and 7AAD were
used as markers to quantitate iNeuron cell death by flow
cytometry (43, 44), and mCherry was used to identify
iNeurons within the co-culture (Figure 2A). However, dead
NK-92 cells autofluoresce and appear positive for mCherry,
and NK-92 cells cultured in iNeuron media #3 display
increased NK cell death. Thus, dead NK-92 cells also appeared
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within the Annexin V+ and 7AAD+ gates for iNeurons,
potentially skewing the data. To account for this this, we
compared Annexin V and 7AAD flow plots for mCherry+
iNeurons versus mCherry+ NK-92 cells cultured alone in
iNeuron media and found that NK 7AAD fluorescence levels
for NK cells were higher than that of iNeurons. Thus, dead
iNeurons were identified based on moderate 7AAD staining; cell

death rates for iNeurons co-cultured with Stimulated and
Treated NK-92 cells were then examined. We found that
control-derived iNeurons showed similar rates of cell death
whether cultured with or without tofacitinib treatment
(Figure 2B). In contrast, there was a significant reduction in
the rate of cell death for ALS-derived iNeurons that were
cultured with Treated NK cells versus Stimulated NK cells.
Together these results demonstrate that tofacitinib can protect
ALS neurons from NK cell-mediated cytotoxicity.

Tofacitinib Inhibits Primary NK Cells
Function Ex Vivo
We next extended these findings to determine whether
tofacitinib suppresses cytotoxicity in primary NK cells from
control and ALS participants (see Table 1 for demographics).
Primary NK cells were isolated from the peripheral blood of
control and ALS participants. We first confirmed that tofacitinib
suppresses JAK/STAT signaling in primary NK cells from
control and ALS participants, similar to NK-92 cells. As
measured by STAT1 phosphorylation via immunoblotting,
tofacitinib significantly reduced P-STAT1 levels in primary
ALS and control NK cells versus those stimulated with IL-2
and IL-15 (Figure 3A). Next, cytokine gene expression was
examined in control and ALS primary NK cells following
cytokine stimulation and treatment (Figure 3B). In ALS NK
cells, tofacitinib treatment significantly decreased TNF-a and
IFN-g expression from primary ALS NK cells. A similar trend
was observed in the cytokine gene expression of control primary
NK cells. As with the NK-92 cell line, we also examined whether
tofacitinib inhibits the release of pro-inflammatory and pro-
apoptotic factors using a multiplex analysis. Conditioned media
from primary NK cells cultured with IL-15 with and without
tofacitinib was analyzed for the secretion of TNF-a and IFN-g
(Figure 3C). There was a trend towards reduced TNF-a
secretion from primary NK cells isolated from control
participants and reduced TNF-a and IFN-g secreted from
primary NK cells isolated from ALS participants.

Finally, we examined whether tofacitinib suppresses the
cytotoxicity of primary NK cells isolated from control and ALS
participants. After isolation, primary NK cells were co-cultured
with K-562 target cancer cells, and the rate of K-562 cell death
was used to quantitate primary NK cell cytotoxicity. Since K-562
viability can fluctuate, the rate of K-562 cell death in co-culture
was normalized to the rate of K-562 cells cultured alone
(Figure 3D). The cytotoxicity of both control and ALS
primary Stimulated NK cells (IL-2 + IL-15) did not
significantly differ from NK cells stimulated with IL-2 alone
(data not shown). In contrast, primary NK cells treated with
tofacitinib displayed significantly lower cytotoxicity to K-562
cells than Stimulated NK cells (Figure 3E). As with NK-92 cells,
exposure to tofacitinib did not alter the viability of primary NK
cells (data not shown). Together, these results demonstrate that
primary NK cells are already stimulated in the peripheral blood
of control and ALS participants, but tofacitinib can nevertheless
suppress primary NK cell cytotoxicity by inhibiting JAK/
STAT signaling.

A

B

FIGURE 2 | Tofacitinib decreases the cytotoxicity of NK-92 to motor neurons
in an in vitro ALS model. iNeurons were differentiated from control- or ALS-
participant derived iPSCs and were co-cultured for four hours with pretreated
NK-92 cells (IL-15 ± tofacitinib); cell death was quantitated by flow cytometry.
(A) Gating strategy for quantitating cell death of iNeurons cultured alone, of NK-
92 cells cultured alone, and iNeuron and NK-92 cell co-culture. Dead iNeurons
were characterized by positive fluorescence levels of annexin V (apoptosis) and
moderate levels of 7AAD viability dye (cell death). (B) The rate of iNeuron death
was quantitated in control- and ALS-derived iNeurons following co-culture with
NK-92 cells; data were normalized to cell death rates from co-culture with
Unstimulated NK-92 cells; n = 6 independent experiments. Comparisons were
by paired t-test to assessed paired, non-normally distributed data. *P < 0.05.
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Tofacitinib Pharmacokinetics in Mice
Next, we wanted to optimize tofacitinib pharmacokinetics to
administer to ALS mice in future studies, since NK cells are
implicated in ALS pathogenesis (7, 13). However, symptoms in
ALS mice do not emerge until after 90 days of age, and their
lifespan is about 160 days of age in low-copy mouse strains (9).
Therefore, preclinical studies of tofacitinib in SOD1G93A mice
will require long-term treatment. Unfortunately, previous studies
testing tofacitinib in mice were either short-term studies with
daily gavage (35) or longer-term studies using osmotic
minipumps (51). For long-term diseases, administering
tofacitinib daily by gavage is not logistically feasible and can
induce significant animal losses (52). Conversely, minipumps
cannot administer high treatment doses and require repeated
surgeries. Thus, we wished to evaluate the efficacy of tofacitinib
formulated into chow as a method of long-term administration
for future preclinical studies.

Although tofacitinib pharmacokinetics had been performed
in rats and human participants, little data are available in
mice. Therefore, our first step was to assess tofacitinib
pharmacokinetics after a single orally (PO, per os, gavage) or
intravenously (IV) administered tofacitinib dose to male and
female C57BL/6 mice. Blood was collected at multiple time
points (5, 10, 15, 30, 60, 120, 240, 420, 960, 1440 minutes) post
IV and PO administration and the kinetics of blood tofacitinib
assessed. Tofacitinib bioavailability was roughly 37% in both
male and female mice, i.e., roughly 37% of the initial dose
administered orally reaches the peripheral blood (Table 2).
Interestingly, we observed that other pharmacokinetic
parameters differed between male and female mice. For

instance, the maximal plasma level was higher in female versus
male mice after both IV and PO dosing, while drug clearance was
higher in male mice. These data indicate that tofacitinib can be
administered orally by chow with similar drug uptake in males
and females, though there may be sex-specific differences in drug
metabolism resulting in altered plasma levels.

Efficacy of Low- and High-Dose
Tofacitinib in Mouse Chow
Finally, we tested tofacitinib efficacy formulated in chow on NK
cell levels in mice. Based on the pharmacokinetic data, chow was
formulated to deliver a daily dose of 5 mg/kg (low-dose) or 30
mg/kg (high-dose) to male and femaleWT control mice (i.e., WT
littermates on an SOD1G93A background) for two weeks. At the
end of the treatment period peripheral immune cell levels were
assessed by flow cytometry for the percentage and total number
of NK cells, neutrophils, Ly6C- monocytes, Ly6c+ monocytes,
CD4 T cells, and CD8 T cells. Both low- or high-dose tofacitinib
treatment significantly lowered NK cell percentage in a dose-
dependent manner (Figure 4A). Moreover, both doses
significantly reduced total NK cell counts in peripheral blood
versus normal chow, and there was a trend towards fewer
circulating NK cells in of high- versus low-dose mice
(Figure 4B). In contrast, tofacitinib treatment did not
significantly reduce the percentage or total number of
neutrophils, Ly6C+ monocytes, CD4 T cells, or CD8 T cells.
Interestingly, high-dose mice had significantly lower percentage
and total number of circulating Ly6C- monocytes, which is
consistent with our previous study utilizing NK cell depletion
(13). Together, these results demonstrate that tofacitinib can be

TABLE 1 | Subject demographics for primary NK cell analyses.

Western Blot Cytokine Gene Expression Cytokine Protein Secretion Cytotoxicity

Control (n = 3) ALS (n = 4) Control (n = 3) ALS (n = 8) Control (n = 5) ALS (n = 4) Control (n = 12) ALS (n =32)

Age(Mean ± SD)
years

70.5 ± 5.3 60.7 ± 13.4 66.2 ± 10.9 65.0 ± 8.2 69.32 ± 3.9 65.61 ± 6.7 61.7 ± 13.3 64.2 ± 9.0

Sex (%) male 66.6 25.0 33.3 37.5 60.0 50.0 50.0 56.3
ALSFRS-R at
Blood Draw

N/A 23.0 ± 7.7 N/A 28.4 ± 10.3 N/A 35.8 ± 6.1 N/A 26.1 ± 8.3

Site of Onset N/A Bulbar (50.0%)
Cervical (25.0%)
Lumbar (25.0%)

N/A Bulbar (25.0%)
Cervical (25.0%)
Lumbar (50.0%)

N/A Bulbar (50.0%)
Cervical (25.0%)
Lumbar (25.0%)

N/A Bulbar (18.8%)
Cervical (34.4%)
Lumbar (46.8%)

Race White (100%)
Black (0%)Asian
(0%)Not
reported (0%)

White (100%)
Black (0%)Asian
(0%)Not
reported (0%)

White (100%)
Black (0%)Asian
(0%)Not
reported (0%)

White (75.0%)
Black (25.0%)
Asian (0%)Not
reported (0%)

White (100%)
Black (0%)Asian
(0%)Not
reported (0%)

White (100%)
Black (0%)Asian

(0%)Not
reported (0%)

White (100%)
Black (0%)Asian
(0%)Not
reported (0%)

White (90.6%)
Black (9.4%)
Asian (0%)Not
reported (0%)

Ethnicity Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic
(0%)Not reported
(0%)

Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic

(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Not Hispanic
(100%)Hispanic
(0%)Not
reported (0%)

Time from Onset
to Collection
(Mean ± SD)
years

N/A 5.0 ± 4.2 N/A 7.7 ± 6.8 N/A 2.7 ± 1.6 N/A 4.1 ± 3.9

Time from
Diagnosis to
Collection (Mean
± SD) years

N/A 3.6 ± 3.4 N/A 5.2 ± 6.7 N/A 1.6 ± 1.5 N/A 2.7 ± 3.6

N/A, not applicable.
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A

C

B

D E

FIGURE 3 | Tofacitinib inhibits primary NK cells in vitro. Primary NK cells were enriched from the whole blood of control and ALS participants. (A) P-STAT1 was
assessed using Western blot. Primary NK cells were incubated with IL-2 alone, IL-2 + IL-15, or IL-2 + IL-15 + tofacitinib for 2 hours. Protein extracts were resolved by
SDS-PAGE and immunoblotted for total STAT1, phosphorylated STAT1 (P-STAT1), and a-tubulin (internal reference). Graph represents densitometric analysis where
total STAT1 and P-STAT1 signals were normalized to a-tubulin then normalized to NK cells receiving IL-2 alone; n = 2-4 participants. (B) Cytokine gene expression was
assessed using qRT-PCR for TNF-a and IFNg. Data were normalized to yWHAZ expression and normalized to the IL-2 NK cells; n = 3-8 participants. (C) Extracellular
expression of TNF-a and IFN-g was assessed for primary NK cells cultured with IL-15 ± tofacitinib (n = 5 control and n = 4 ALS). (D) Primary NK cells were assessed for
cytotoxicity. Primary NK cells were cultured for two hours with K-562 cancer cells (1:1 ratio) + IL-15 ± tofacitinib; K-562 cell death was assessed using flow cytometry to
quantitate e506 viability dye fluorescence. (E) Data were quantitated by normalizing to K-562 cells cultured without NK cells; n = 12 control and n = 32 ALS. For (A, B),
data are presented as mean ± SEM with dashed line showing cells cultures with IL-2 alone; comparisons were made by Student’s t-test. For (C), comparisons were
made using a paired t-test. For (E), comparisons were made by Wilcoxon test to assessed paired, non-normally distributed data. *P < 0.05, ***P < 0.001,
****P < 0.0001.
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administered in chow mouse models and suppresses NK cell
levels in a dose-dependent manner.

DISCUSSION
Previous studies have shown that tofacitinib treatment
suppresses NK cell levels (34–36, 46), but there is limited
information on the impact of tofacitinib on NK cell function
(41). Similarly, preclinical mouse disease studies of tofacitinib
have been short-term or used administration routes unsuitable to
long-term studies. Addressing these shortcomings is of utmost
importance to test tofacitinib for regulating NK cell function and
counts in future preclinical ALS studies, since NK cells are
implicated in ALS progression (7, 13). Therefore, in the
current study, we evaluated tofacitinib on NK cell function in
vitro and conducted a pharmacokinetic study in vivo. We used
the pharmacokinetic data to formulate tofacitinib in chow, a
suitable format for long-term oral administration. We evaluated

the impact of a 2-week tofacitinib chow regimen on circulating
NK cell levels in WT mice. We found tofacitinib suppressed IL-
15-mediated JAK/STAT pathway stimulation, cytotoxicity to
cancer cells and iNeurons, granzyme B and perforin
expression, and cytokine expression in the NK-92 cell line.
Importantly, in the context of ALS, tofacitinib also significantly
lowered cytotoxicity of IL-2/IL-15-stimulated primary NK cells
isolated from ALS participants and healthy controls, as well as
cytokine levels. Finally, tofacitinib bioavailability was similar in
male and female mice, although there were sex differences in
some parameters; formulation in chow at both low- (5 mg/kg)
and high-dose (30 mg/kg) tofacitinib after 2 weeks lowered
peripheral NK cell levels in WT control mice.

These findings suggest that tofacitinib may be a viable
therapeutic strategy to regulate the NK cell population in ALS.
NK cells accumulate in the spinal cord of ALS mice (8, 13, 19,
53). In individuals with ALS, NK cells are increased in the
peripheral blood (10, 11) and co-localize with motor neurons

A B

FIGURE 4 | Impact of orally administered tofacitinib on peripheral immune populations in mice. WT control mice (half male and half female) were treated for two
weeks with low- (5 mg/kg) and high- (30 mg/kg) dose tofacitinib administered in standard chow. Immune cells were then analyzed in peripheral blood using flow
cytometry; (A) percentage of all CD45+ immune cells as well as (B) total numbers of cells was examined for six immune populations. Data show mean ± SEM.
Comparisons by ANOVA; n = 4 mice per group. *P<0.05, **P<0.01, ***P<0.001; monos, monocytes.

TABLE 2 | Tofacitinib pharmacokinetic parameters in plasma following IV and PO administration.

Route Sex Dose C0/Cmax Tmax AUC(0-24) AUC(0-inf) t½ CL/CL_F Vss/Vz_F %F
Unit mg/kg ng/mL h h*ng/mL h*ng/mL h mL/h/kg mL/kg %

IV M 10 3554.4 N/A 676.76 678.09 1.85 14747.23 39278.78 N/A
PO M 20 960 0.25 505.74 508.48 0.91 39332.99 51817.31 37.4
IV F 10 6516.9 N/A 980.54 982.90 0.72 10173.94 10549.83 NA
PO F 20 1114.3 0.167 713.26 719.57 0.90 27794.47 36093.12 36.4

IV, intravenous, PO, per os; C0, concentration at time 0; Cmax, maximum observed concentration; Tmax, time to reach Cmax; AUC(0-24), area under the concentration-time curve from
time zero to 24 hours; AUC(0-inf), area under the concentration-time curve from time zero to infinite; CL, systemic clearance; CL_F, apparent clearance; Vss, volume of distribution at steady
state; Vz_F, volume of distribution associated with the terminal elimination phrase; terminal elimination half-life (t½) was calculated based on data points (≥3) in the terminal phase with
correlation of coefficient >0.90; %F, bioavailability; N/A, not applicable.
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in postmortem spinal cord tissue, driving microglial activation
via IFN-g expression (7). Indeed, as ALS progresses, motor
neurons lose surface markers, which protect against NK cells-
mediated cytotoxicity (20), rendering them more susceptible to
attack. In addition to increased NK cell levels, they are also more
highly activated in individuals with ALS, correlating with disease
progression (13). Depleting NK cells from SOD1G93A ALS mice
extends survival (7, 13). Thus, reducing NK cell levels, blocking
NK cell cytotoxicity, and suppressing IFN-g release from NK
cells may slow motor neuron loss and suppress central nervous
system inflammation, increasing survival in ALS.

Previous studies have established that tofacitinib blocks
immune cell activation and activity by interfering with the JAK/
STAT pathway (25), promoting pro-inflammatory cytokine
signaling between cells (27, 54, 55). Blocking cytokines, such as
IFN-g, with tofacitinib prevents inflammatory T cell activation,
which effectively treats autoimmune disorders, such as rheumatoid
arthritis, ulcerative colitis, and psoriasis (22–24). In the case of NK
cells, blocking JAK/STAT signaling suppresses the IL-15 pathway
(33), which is a crucial mediator of both NK cell survival and
activation (29, 56, 57). This likely explains the reduced peripheral
NK cell levels observed after tofacitinib treatment in both mouse
and humans (34–36, 46). However, in addition to maintaining NK
cell homeostasis, IL-15 is also a potent stimulator of NK cell
function (30–32). Thus, tofacitinib should also block IL-15-
mediated NK cell activation. Our current study definitively
shows this: tofacitinib treatment suppresses pro-inflammatory
cytokine production and cytotoxicity in both NK-92 cells and
primary NK cells. This is particularly salient to ALS, since direct
NK cell cytotoxicity as well as IFN-g production likely contribute
to disease progression (7). The importance of these findings is
further corroborated by our results showing that tofacitinib
significantly reduces NK cell cytotoxicity towards iNeurons
generated from ALS patient-derived iPSCs.

The current study also suggests that tofacitinib suppresses NK
cell levels in an ALS mouse model. However, although preclinical
mouse models are crucial for evaluating drug efficacy in vivo, no
comprehensive studies have examined tofacitinib pharmacokinetics
nor the long-term impact of the drug on peripheral immunity in
mice. There are challenges associated with long-term drug
administration. One possible solution is the use of osmotic
minipumps as it has been previously shown (51). However,
minipumps typically administer either a low drug dose over a
long period of time or a high dose over a short period of time. A
higher dose of tofacitinib, such as 30 mg/kg, would require frequent
pump replacement and multiple surgeries. Not only is this
logistically difficult, but frequent surgeries would be potentially
life-threatening for mice in advanced stages of disease. In
contrast, daily oral tofacitinib administration tofacitinib to mice
via gavage is not logistically feasible over long time periods either as
the rate of death associated with technique is 15% over a six week
period (35, 52). Moreover, these previous studies did not examine
tofacitinib pharmacokinetics – particularly bioavailability –
meaning the final concentration in the peripheral blood following
oral administration was not known. In the present study we found
that tofacitinib bioavailability in mice (around 37%) differed from

humans, where bioavailability is 74% (58). Perhaps unsurprisingly,
bioavailability in mice is closer to that in rats (29%) (59).
Interestingly, we found that plasma tofacitinib levels differed
between male and female mice, even after IV administration,
suggesting the sexes may clear the drug at different rates. These
sex-specific tofacitinib pharmacokinetics differences are potentially
important for future ALS treatment, since we have previously
described sex-based immune differences in ALS (12, 13).

Consistent with other methods of tofacitinib administration,
treating mice orally with tofacitinib in chow successfully
suppressed circulating NK cell levels in a dose-dependent
manner in WT mice on a SOD1G93A genetic background.
Together with our in vitro findings, these results suggest that
tofacitinib modulates NK cell levels and activity and should be
tested in preclinical mouse models of ALS. However, an in-depth
series of studies will be required, as the mechanisms of NK cell
involvement in ALS is incompletely understood. One mechanism
by which NK cells contribute to ALS is the destruction of damaged
motor neurons within the CNS, as motor neurons are uniquely
vulnerable to NK cells during disease progression (20).
Alternatively, NK cells may be involved in other disease
mechanisms. NK cells may play an important role in driving
early microglial activation (7) which has been implicated in ALS
pathology (60–62), and they may also contribute to peripheral
nerve damage in ALS, as increased expression of major
histocompatibility complex I was associated with slower disease
progression in mouse models of ALS (63). The role of NK cells in
the loss of neuromuscular junction (NMJ) integrity during ALS
has also not been examined.

Preclinical studies must also account for the impact of
tofacitinib on other immune cell populations that modulate
ALS progression, both in the periphery and the CNS. Immune
cells are both protective and destructive in ALS (2, 10), so
preserving protective immune function is of the utmost
importance when designing and utilizing immune-based
therapies. While the current study demonstrated that
tofacitinib suppresses NK cell numbers in the peripheral blood,
changes were also observed in other cell populations. Ly6C-
monocytes, which patrol the body and are involved in fibrosis
and wound repair (64), were significantly reduced in mice treated
with the higher tofacitinib dose; analogous monocytes in human
patients may have a protective effect (65). Similarly, there was a
trend towards reduced CD4 and CD8 T cell levels following
tofacitinib treatment, particularly in mice treated with the high
dose. While these observations did not reach statistical
significance, it is important to account for these changes, as
these immune cell types play a central role in ALS, in particularly
CD4 T cells (4, 10). Since the cellular lifespan of NK cells (66–68)
is much shorter than that of T cells (69) it may be possible to
preserve T cell levels by utilizing on/off drug treatment cycles.
This possibility should also be explored in future clinical trials.

In addition, preclinical tofacitinib studies should account for
the impact of sex in ALS mouse models. Though the impact of
sex on tofacitinib-NK cell interaction was not explored in the
current study, we have previously demonstrated that sex alters
the impact of several immune cell populations in ALS, including
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NK cells (12, 13). Moreover, depletion of NK cells also impacts
male and female mice differently, both in terms of survival and
neuroinflammation (13); therefore, tofacitinib studies should
likewise account for sex differences given the reduction in
peripheral NK cell levels following tofacitinib treatment.
Altogether, in vivo tofacitinib studies in ALS mice should
examine a myriad of mechanisms and factors including
peripheral and CNS immune cell populations, peripheral and
CNS gene expression, motor neuron survival, and NMJ integrity.
Studies will need to examine drug dosing, drug timing, and will
need to account for the impact of sex.

The current study does have several limitations. First, primary
NK cells are more difficult to culture than NK-92 cells and were
therefore not co-cultured with iNeurons. iNeurons are also not
motor neurons, thus, it is unclear to what degree ALS iNeurons
recapitulate true motor neurons in vivo. Moreover, in mice, we
only examined the effect of tofacitinib on NK cell numbers rather
than on NK cell function. Many of the in vitro assays require large
cell numbers, and tofacitinib treatment reduced overall NK cell
levels, making these analyses in vivo difficult. Finally, while we
have previously shown that both age and sex alter the activity of
immune cells during ALS, including NK cells (12, 13), the present
study did not explore the impact of these factors on tofacitinib
suppression of NK cells. Nonetheless, our results conclusively
show that tofacitinib suppresses NK cell function in vitro,
suppresses NK cell levels in vivo, and can be administered orally
in chow for use in preclinical ALS mouse models. These findings
also indicate tofacitinib may be used to treat long-term diseases
mediated by NK cell function, such as ALS.
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Abstract
Background Environmental exposures contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal and 
progressive neurological disease. Identification of these exposures is important for targeted screening and risk factor 
modification.
Objective To identify occupational exposures that are associated with a higher risk of ALS using both survey and standard 
occupational classification (SOC) coding procedures, and to highlight how exposure surveys can complement SOC coding.
Methods ALS participants and neurologically healthy controls recruited in Michigan completed a detailed exposure assess-
ment on their four most recent and longest held occupations. Exposure scores were generated from the exposure survey, and 
occupations were assigned to SOC codes by experienced exposure scientists.
Results This study included 381 ALS and 272 control participants. ALS participants reported higher duration-adjusted occu-
pational exposure to particulate matter (OR = 1.45, 95% CI 1.19–1.78, p < 0.001), volatile organic compounds (OR = 1.22, 
95% CI 1.02–1.45, p = 0.029), metals (OR = 1.48, 95% CI 1.21–1.82, p < 0.001), and combustion and diesel exhaust pollutants 
(OR = 1.20, 95% CI 1.01–1.43, p = 0.041) prior to ALS diagnosis, when adjusted for sex, age, and military service compared 
to controls. In multivariable models, only occupational exposure to metals remained significant risk (OR = 1.56, 95% CI 
1.11–2.20, p = 0.011), although in an adaptive elastic net model, particulate matter (OR = 1.203), pesticides (OR = 1.015), 
and metals (1.334) were all selected as risk factors. Work in SOC code “Production Occupations” was associated with a 
higher ALS risk. SOC codes “Building and Grounds Cleaning and Maintenance Occupations”, “Construction and Extraction 
Occupations”, “Installation, Maintenance, and Repair Occupations”, and “Production Occupations” were all associated with 
a higher exposure to metals as determined using survey data.
Discussion Occupational exposure to particulate matter, volatile organic compounds, metals, pesticides, and combustion 
and diesel exhaust and employment in “Production Occupations” was associated with an increased ALS risk in this cohort.

Keywords Amyotrophic lateral sclerosis · Occupation · Risk factors · Exposome · Metals

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neuro-
degenerative disease that results in degeneration of the 
motor neuron cells located in the brain, brainstem, and 
spinal cord causing painless progressive weakness involv-
ing cranial and limb muscles along with respiratory fail-
ure (Goutman 2017). This relentless progression leads 
to death within 2–4 years from symptom onset for most 
individuals that develop this disease. In addition to the 
motor involvement, up to half of patients with ALS will 
manifest cognitive changes. The major pathologic hall-
mark of ALS is aggregation of transactive response (TAR) 
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DNA-binding protein 43 (TDP-43) in multiple brain areas. 
Approximately 85% of ALS is considered sporadic with 
no one single mutation underlying the disorder. Among 
the remaining 15% of familial cases, the most common 
genetic form is secondary to a hexanucleotide expansion 
in chromosome 9 open reading frame 72 (C9orf72). While 
the full picture of what causes ALS is incomplete, a com-
bination of genetic and environmental factors is strongly 
implicated as underlying disease risk and progression  
(Goutman 2017).

The fact that ALS exhibits incomplete heritability and 
follows a multistep model of disease adds credence to 
the hypothesis that environmental exposures contribute 
to disease (Al-Chalabi and Hardiman 2013; Al-Chalabi 
et al. 2014). A recent meta-analysis identified exposures 
to lead, heavy metals, pesticides, agricultural chemicals, 
solvents, and electric shock as strong ALS risk factors 
(Wang et al. 2017). Other risk factors are also linked to 
ALS including smoking, military service, and physical 
activity (Al-Chalabi and Hardiman 2013). Our group has 
shown that self-reported residential pesticide exposure and 
concentrations of persistent organic pollutants in blood 
are associated with a higher odds of having ALS (Su et al. 
2016; Yu et al. 2014). Further, we have shown that higher 
concentrations of these persistent organic pollutants in 
blood are associated with a faster disease progression. 
(Goutman et al. 2019)

Identifying the specific exposures that contribute to ALS 
risk is a critical step toward better understanding disease 
pathogenesis and developing mechanism-based therapies. 
This knowledge will point to specific exposures that should 
be avoided to decrease ALS risk and prevent disease (Gout-
man and Feldman 2020). The occupational setting is an 
important exposure environment, and occupational expo-
sures to metals including lead, pesticides, silica, asbestos, 
organic dust, contact with animals or fresh animal products, 
endotoxins, polycyclic aromatic hydrocarbons, and diesel 
motor exhaust have all been associated with an increased 
ALS risk (Visser et al. 2019; Malek et al. 2014; Dickerson 
et al. 2019). Specific occupational sectors associated with 
an increased ALS risk include mechanics, manufacturing, 
mechanical, military, painting, precision metal, and/or con-
struction industries (Andrew et al. 2020, 2017; Fang et al. 
2009). Additional investigations are needed to elucidate 
which occupations have a high ALS risk and the job- and 
task-specific exposures that increase this risk.

The overall goal of this work is to identify occupational 
exposures that contribute to the risk of developing ALS. We 
also show how survey data can be used to develop occupa-
tional exposure scores for use in ALS disease risk models 
and demonstrate how these scores complement traditional 
job codes by providing greater specificity and personal-level 
details that may affect exposure and risks.

Methods

Participants

All patients with an El Escorial diagnosis of ALS seen at 
the University of Michigan (UM) Pranger ALS Clinic were 
asked to participate as ALS participants. Controls were 
identified for this study using an online recruitment data-
base hosted by the Michigan Institute for Clinical & Health 
Research, which allows University of Michigan research 
teams to contact individuals that express interest in research 
participation. Interested controls were selected if they met 
inclusion criteria and fit the demographic ranges of ALS 
participants. Controls were excluded if they had a neurode-
generative condition or had a first- or second-degree blood 
relative with ALS. All participants were older than 18 years 
and provided verbal and written consent in English, and con-
trols received $50 compensation for study participation and 
donated blood and urine samples at enrollment. The study 
received Institutional Review Board approval (HUM28826). 
Details of this study are previously published. (Su et al. 
2016; Yu et al. 2014; Goutman et al. 2019).

Survey administration and follow‑up

Following consent, participants were provided a written 
questionnaire and completion instructions. In the event a 
questionnaire was not returned, follow-up phone calls were 
placed to the participants to encourage completion; for ALS 
participants, survey completion was also encouraged at fol-
low-up clinic visits. In circumstances where a response was 
incomplete or illegible, follow-up phone calls were placed 
to the participants. In some deceased ALS participants or 
those with severe dysarthria, next of kin were able to provide 
clarification to responses.

Survey description and exposure scores derivation

The survey was constructed from instruments available 
from the Agency for Toxic Substances and Disease Registry 
(ATSDR) (ATSDR 2000) and input from experts trained in 
exposure science. The questionnaire queried exposures at 
four jobs: the most recent; the job before the most recent; 
and the next two longest held jobs. For ALS participants, 
jobs that began after onset of symptoms were excluded, as 
were jobs for ALS participants without an onset date. Each 
respondent was also asked to provide a complete job history 
including job title, description, and years worked.

The questionnaire data provided insight into the 9 expo-
sure types: particulate matter (PM), volatile organic com-
pounds (VOCs), pesticides, metals, biologicals, combustion/
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diesel exhaust, electromagnetic radiation, radiation, and cor-
rosives (Table S1). Within each exposure type, we developed 
multiple exposure factors to assess the potential for exposure 
from specific sources or activities. For example, PM expo-
sure may be contributed by occupational tasks, such as weld-
ing, handling dust-generating materials (e.g., talc, powders, 
fibers), and being exposed to diesel exhaust. Further, chronic 
exposure will be increased with jobs held for long periods.

The exposure factors were quantified using the survey 
data, typically using responses to combination of questions 
(Table S1). For example, occupational PM exposure uti-
lized two factors (likelihood of general PM exposure, and 
exposures to specific PM sources), and a total of 18 survey 
questions. This analysis was repeated for each qualifying 
job reported by each participant. An occupational exposure 
score was obtained for each exposure type and job by sum-
ming the exposure factor scores weighted by our assess-
ment of the contribution of the factor to the overall expo-
sure; these were subsequently normalized (0 indicated no 
exposure potential; 1 indicated the highest possible exposure 
potential) to facilitate comparisons among exposure types. 
Finally, the duration-adjusted occupational exposure score 
used the occupational exposure score multiplied by the dura-
tion of the job, based on the individual’s job history (job 
start and end dates). Thus, the occupational exposure score 
represents whether the participant was ever exposed on a 
particular job, whereas the duration-adjusted occupational 
exposure score accounts for the duration of exposure on up 
to four jobs.

Assignment and review of job codes

Job titles and descriptions for all occupations (N = 2169, 
prior to removing excluded jobs, such as those occurring 
after symptom onset or consent) were processed using two 
automated job coding platforms: Standardized Occupation 
Coding for Computer-assisted Epidemiological Research 
(SOCcer (Russ et al. 2016), available via National Can-
cer Institute, https:// soccer. nci. nih. gov/ soccer/); and The 
National Institute for Occupational Safety and Health 
(NIOSH) Industry and Occupation Computerized Coding 
System (NIOCCS; available from https:// www. cdc. gov/ 
niosh/ topics/ coding/ code. html). For SOCcer, model ver-
sion 2.0 was selected and the input file included job titles 
and job tasks. The system returned 10 SOC codes per job 
and the fit score for each. For NIOCCS, the 2010 coding 
scheme was selected, and the input file included Industry 
Title, Occupation Title, and Job Duties. Both packages 
were accessed in April 2020. Because both platforms pro-
vided the SOC (Standard Occupational Classification), we 
elected to use SOC as the coding mechanism. The SOCcer 
and NIOCCS output files were then merged, resulting in 
multiple SOCs for each of the participants’ jobs. Because 

SOCs assigned by automated platforms can involve con-
siderable uncertainty, particularly for exposure assessment 
purposes, we subjected results to a series of validation 
steps, as discussed below. These steps were performed 
blinded to ALS or control participant status.

The assigned job codes/titles were first prioritized for 
manual review using a priority score of 0, 1, 2 or 3, repre-
senting “indeterminate,” “low,” “medium,” or “high” pri-
ority for review, respectively. Indeterminate was assigned 
(22 jobs) if the self-described job title and description 
were judged insufficient to utilize the SOCcer or NIOCCS 
procedure (although these still provided a result in many 
circumstances), e.g., titles of “CEO,” “owner,” “division 
controller,” “management,” or “engineering equipment 
officer” without additional job descriptors were judged 
insufficient to allow classification. Low priority was 
assigned if SOC codes were consistent with high fit, or if 
there was little potential for significant occupational expo-
sure based on the job title, job description and SOC codes. 
Second, participants with job titles that suggested low pri-
ority but with descriptors that provided supporting infor-
mation received an additional point (no score exceeded 3), 
e.g., a job title of secretary (ordinarily receiving a score
of 1) for an individual who worked in a military facility
was assigned a score of 2. This review was facilitated by
sorting by the initially assigned SOCcer codes. Third, we
identified jobs for manual review by considering those jobs
with priority scores of 2 or 3 if the SOCcer and NIOCCS
algorithm outcomes did not agree (n = 382), and all jobs
with priority scores of 2 or 3 if the SOC fit score was low
(< 0.3; n = 298). For these jobs, we examined the SOC
assignment, and the respondent-provided job titles and
descriptors. In some circumstances, we overrode the SOC
assignment, drawing first from the top 100 SOC codes
assigned, but utilizing additional SOC codes if none of the
top 100 were appropriate.

To maintain independence from the survey-derived 
exposure scores detailed in the previous section, the vali-
dation steps did not use survey information. An exposure 
scientist (C.G.) provided both the initial prioritization and 
the manual review, which was then checked by a second 
exposure scientist (S.A.B.), and in a few circumstances, the 
assignment was revised. After this review, we estimated 
the misclassification rate using a randomly selected subset 
(excluding participant jobs that were manually revised and 
indeterminate jobs). In this subset of jobs (n = 117), 8.6% 
(n = 10) were judged to be incorrect. However, all of these 
jobs occurred in the low priority set. While our analysis 
is limited in sample size and other regards, it suggests 
that while the automated coding procedures have a non-
negligible misclassification rate, most mistakes occur in 
occupations with relatively little potential for occupational 
exposure.
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Data management

All survey data were entered into Redcap by research staff. 
A number of quality assurance techniques were employed: 
(1) Redcap logic and data validation tools were utilized; (2)
in a random sample of surveys, data were double entered and
reviewed; and (3) audits of data were performed to ensure
logical responses. Participant were contacted if appropriate
for any follow-up questions.

Statistical analysis

Demographic characteristics of study participants were col-
lected and responses for occupational exposure scores were 
tabulated by ALS and control status and by demographic 
characteristics (age, sex, education) for all participants. 
Continuous data were summarized by mean, standard devia-
tion, median, and interquartile range, and categorical data 
by counts and percentages. Differences between groups were 
determined via t-test for continuous variables and chi-square 
tests for categorical variables. For eight subjects with miss-
ing military service, single imputation with the mode was 
used.

Occupational exposure score analysis

Descriptive statistics and missingness for each occupational 
exposure score were summarized by ALS-control status. 
Differences between ALS participants and controls were 
evaluated using permutation tests. Occupational exposure 
scores were regressed one-at-a-time against ALS/control 
status adjusted for age (quartiles), sex, and military ser-
vice to identify associations between exposure and ALS 
risk. Nonlinearity in the one-at-time associations between 
exposure scores and ALS/control status was assessed using 
generalized additive models adjusted for age (quartiles), sex, 
and military service. We also considered both an unpenal-
ized and adaptive elastic net penalized multivariable logistic 
regression model including all nine occupational exposure 
scores adjusted for age (quartiles), sex, and military service 
to account for moderately high correlations among several 
exposures. All analyses were performed for both the occu-
pational exposure score and duration-adjusted occupational 
exposure scores. We present the duration-adjusted occu-
pational exposure scores in the main text given that they 
account for the duration of exposure and provide the non-
duration-adjusted scores in the supplement.

SOC code analysis

The number of unique ALS participants and controls, and the 
corresponding job-years worked, was tabulated within each 
two-digit SOC code. One sample test of proportions was 

performed for an enrichment of ALS participants relative to 
the overall distribution of ALS and control participants in 
the study population. For each two-digit SOC code, unad-
justed and adjusted logistic regression models were used 
to associate job-years worked with ALS/control status. We 
then fitted an adjusted logistic regression model with adap-
tive lasso penalization including all two-digit SOC codes 
simultaneously to select the two-digit SOC codes associ-
ated with ALS risk. From there, job-years corresponding to 
the selected two-digit SOC codes associated with a higher 
odds of being an ALS participant were then subdivided into 
job-years worked 10 years prior to symptom onset (ALS 
participants) or survey consent (controls), 10–20 years prior 
to symptom onset/survey consent, and more than 20 years 
prior to symptom onset/survey consent, and subsequently 
inputted into adjusted logistic regression models to poten-
tially identify important windows of exposure. Models were 
adjusted for age (quartiles), sex, and military service. The 
selected two-digit SOC codes were subdivided into six-digit 
SOC codes to see if particular types of jobs within the two-
digit SOC code were driving the association.

Joint analysis with exposure scores and SOC codes

Aggregated six-digit SOC codes were clustered based on the 
average exposure for the nine occupational exposure scores 
using the Euclidean distance as the distance metric to iden-
tify patterns of exposure by more granular occupational cat-
egorizations. Descriptive statistics for selected occupational 
exposure scores were tabulated for each two-digit SOC code. 
Associations between years worked in each two-digit SOC 
code and the selected occupational exposure scores were 
estimated using linear regression models and additive mod-
els, adjusted for age (quartiles), sex, and military service. 
The two-digit SOC codes associated with ALS/control status 
were subdivided into six-digit aggregated SOC codes, and 
then fit using linear regression models associating job-years 
worked within the six-digit SOC code and selected occupa-
tional exposure scores adjusted for age (quartiles), sex, and 
military service.

Analyses were performed for both occupational exposure 
score and duration-adjusted occupational exposure scores. 
Exposure scores were calculated using Excel and subsequent 
statistical analyses were performed in R.

Results

Participants

Between June 30, 2010 and February 12, 2020, com-
pleted surveys were received by 653 individuals: 381 from 
ALS and 272 from control participants (Table 1). This 
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represents a 55% survey participation rate for the ALS 
group. Participation numbers by age category are shown 
in Table S2. ALS participants were slightly older than con-
trols, 63.0 versus 61.2 years (p = 0.025) and had a smaller 
percentage of females, 45.1% versus 52.9% (p = 0.059). 
Educational attainment was statistically different as well 
with ALS participants having a larger percentage of high 
school or less education, 27.8% versus 8.5% (p < 0.001). 
ALS participants reflected a typical population with 18.4% 
meeting a definite El Escorial Diagnosis, 28.9% with bul-
bar onset, and 1.04 years median time from symptom onset 
to diagnosis.

Occupational exposure scores

Participants provided self-reported occupational exposure 
histories for up to 4 jobs, the most recent (but before symp-
tom onset for ALS), the one before the most recent, and 
the other 2 longest held jobs; a total of 1,867 unique jobs 
were reported after excluding jobs occurring after symp-
tom onset (or after consent for controls). For jobs meeting 
the above criteria, ALS cases provided an average of 2.63 
jobs and controls had 3.18 jobs. ALS participants had an 
average work duration of 31.0 years and control participants 
28.6 years.

Table 1  Participant 
Demographics

Table of descriptive statistics for the study population. For continuous variables, Median (25th–75th per-
centile), and for categorical variables, N (%). P values for continuous and categorical variables correspond 
to analysis of variance tests and chi-squared tests, respectively
*Median and Interquartile Range calculated for 380 ALS participants, with one ALS case having a missing
diagnosis date

Covariate Overall (N = 653) ALS (N = 381) Controls (N = 272) P value

Age at survey consent (years) 62.5 (55.1–69.2) 63.0 (55.5–70.0) 61.2 (54.5–68.3) 0.025
Sex 0.059
 Female 316 (48.4) 172 (45.1) 144 (52.9)
 Male 337 (51.6) 209 (54.9) 128 (47.1)

Military Service 0.066
 Neither 556 (85.1) 320 (84.0) 236 (86.8)
 Enlisted 89 (13.6) 61 (16.0) 28 (10.3)
 Missing 8 (1.2) 0 (0.0) 8 (2.9)

Education  < 0.001
 High School or less 129 (19.8) 106 (27.8) 23 (8.5)
 Some Postsecondary 200 (30.6) 123 (32.3) 77 (28.3)
 Bachelor’s Degree 168 (25.7) 87 (22.8) 81 (29.8)
 Graduate Degree 149 (22.8) 61 (16.0) 88 (32.4)
 Missing 7 (1.1) 4 (1.1) 3 (1.1)

El Escorial Criteria
 Suspected 12 (3.2)
 Possible 42 (11.0)
 Probable, Lab Supported 105 (27.6)
 Probable 127 (33.3)
 Definite 95 (24.9)

Onset Segment
 Bulbar 110 (28.9)
 Cervical 130 (34.1)
 Lumbar 139 (36.5)
 General 2 (0.5)

Family History of ALS
 No 333 (87.4)
 Yes 33 (8.7)
 Unknown 12 (3.1)
 Missing 3 (0.8)

Time Between Symptom Onset 
and Diagnosis (years)*

1.04 (0.66–1.77)
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The median occupational exposure score and duration-
adjusted occupational exposure score for all exposure types 
were 0, meaning that the questionnaire responses did not 
indicate PM, VOC or other exposures for most jobs and 
participants i.e., only a subset had occupational exposure 
based on survey responses (Tables 2, S3, Fig. 1). Tables S3 
and 2 and Fig. 1 highlight the upper percentile of exposure 
scores between ALS and controls participants and shows 
significant differences in mean occupational exposure and 
duration-adjusted occupational exposure scores for ALS ver-
sus control participants for PM, VOCs, pesticides, metals, 
and combustion/diesel exhaust. For the occupational expo-
sure scores and duration-adjusted occupational exposure 
scores, Spearman’s correlations were highest for PM and 
metals (R = 0.73), PM and combustion (R = 0.55), PM and 
VOCs (R = 0.53), and VOCs and metals (R = 0.60) (data not 
shown).

Differences in mean occupational exposure and dura-
tion-adjusted occupational exposure scores were seen when 
stratifying the population by sex (Tables S4 and S4a) and by 
education (Tables S5 and S5a). Overall, men and those with 
a high school or lower education are more likely to report 
occupational exposures.

ALS status and occupational exposure

Differences in duration-adjusted exposure scores by ALS/
control status were adjusted for age, sex, and military service 
using univariate logistic regression models to show how a 
one standard deviation increase in the occupational expo-
sure score changes the odds of having ALS (Table 3). For 
the duration-adjusted occupational exposure scores, after 
adjusting for age, sex, and military service, PM (OR = 1.45, 
95% CI 1.19–1.78, p < 0.001), VOCs (OR = 1.22, 1.02–1.45, 

p = 0.029), metals (OR = 1.48, 95% CI 1.21–1.82, p < 0.001), 
and combustion/diesel exhaust (OR = 1.20, 95% CI 
1.01–1.43, p = 0.041) were all associated with increased 
ALS risk. In the multivariable logistic regression model, 
only occupational exposure to metals was significantly 
associated with ALS risk (OR = 1.56, 95% CI 1.11–2.20, 
p = 0.011), while unexpectedly, occupational exposure for 
corrosives was associated with a decreased risk (OR = 0.77, 
95% CI 0.62–0.96, p = 0.021) (Table 3). Due to the corre-
lated self-reported exposure scores, we utilized an adaptive 
elastic net model to account for mixtures, which selected PM 
(OR = 1.203), pesticides (OR = 1.015), metals (OR = 1.334), 
and corrosives (OR = 0.864). Overall, PM, VOCs, metals, 
and combustion/diesel exhaust were consistently identified 
as risk factors for ALS. As a sensitivity check, the model 
was rerun with age as a continuous variable and there were 
no significant differences compared to the model with age 
represented as quartiles. Similar models for the occupational 
exposure scores are presented in Table S6.

Metals subcomponent scores

As metal exposures were the strongest risk factor across 
all models, we next examined the factors that determined 
these scores for both ALS and control participants. Fig-
ure 2 shows the overlap of individual metal subcompo-
nent scores. The largest self-reported metal exposure, 
either alone or in a mixture, was to welding (n = 170), 
followed by lead (n = 125). Interestingly, 66 participants 
reported an isolated exposure to welding without other 
concurrent metals. We also evaluated the years worked for 
each job by each individual metal subcomponent score. 
For our cohort, this represented the period from 1950 to 
the present. Jobs with metal exposures spanned the full 

Table 2  Duration-adjusted occupational Exposure Scores

For all scores, minimum value is 0 and maximum is 1. Median for all scores is 0
N number, SD standard deviation, Q quartile

Exposure Duration-adjusted occupational exposure score P-value

ALS (N = 381) Control (N = 272)

N Mean SD Q75 Q90 Q95 N Mean SD Q75 Q90 Q95

Particulate Matter (PM) 381 0.15 0.25 0.19 0.50 0.77 272 0.08 0.17 0.07 0.30 0.47 0.00
Volatile Organic Compounds (VOCs) 381 0.15 0.24 0.25 0.44 0.76 272 0.11 0.20 0.14 0.37 0.53 0.01
Pesticides 373 0.11 0.28 0.00 0.61 0.96 269 0.06 0.21 0.00 0.10 0.57 0.04
Metals 381 0.13 0.23 0.21 0.45 0.66 272 0.06 0.15 0.00 0.25 0.39 0.00
Biological Exposures 376 0.02 0.11 0.00 0.00 0.00 270 0.01 0.10 0.00 0.00 0.00 0.83
Combustion and Diesel Exhaust 379 0.14 0.33 0.00 1.00 1.00 270 0.08 0.26 0.00 0.11 1.00 0.02
Electromagnetic Exposure 381 0.10 0.27 0.00 0.48 0.93 272 0.07 0.22 0.00 0.00 0.80 0.12
Radiation 381 0.07 0.24 0.00 0.11 0.83 272 0.06 0.21 0.00 0.05 0.55 0.42
Corrosives 378 0.07 0.21 0.00 0.33 0.60 271 0.07 0.19 0.00 0.31 0.58 0.86
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time period (1950–present), with the exception of arse-
nic where exposure was mostly reported from about 1970 
to 2010 (Fig. S1). Lastly, we looked at each individual 
metal exposure on ALS risk and found that exposure 
to both iron (OR = 2.25, p = 0.006) and welding fumes 
(OR = 1.97, p = 0.003) were significant (Table S7).

SOC codes

SOC codes are commonly used to assign individuals to 
occupations and exposure categories (Buckner-Petty et al. 
2019). Of the universe of 465 SOC job codes, 374 were 
assigned to the 1867 occupations in our cohort; these were 
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Fig. 1  Occupational Exposure Score Histograms by ALS and Con-
trol. Overlapping histograms showing the distribution of occupational 
exposure scores for ALS (red) and control (blue) participants. Dif-

ferences in occupational exposure scores between ALS and control 
participants were evaluated using permutation tests. VOCs volatile 
organic compounds; P p value
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further reduced to 75 aggregated codes (73 codes were rep-
resented in ALS cases and 72 codes in controls (Table S8). 
These were further aggregated to the first 2 digits (repre-
senting industry) due to small counts in some codes. The 

average job-years reported for the four self-reported jobs 
meeting the inclusion criteria for ALS participants was 
31.1 and for controls was 28.6; the difference in years is 
consistent with the slight difference in age in ALS versus 

Table 3  ALS and control 
logistic regression models

Single exposure score logistic regression and multivariable logistic regression models where the outcome 
is ALS/control status, the variables of interest are the occupational duration-adjusted exposure scores, and 
the covariates are age, sex, and military service. The duration-adjusted occupational exposure scores are 
weighted by occupation duration
AEN adaptive elastic net, OR odds ratio, CI confidence interval

Exposure score Duration-adjusted occupational exposure scores

Univariate model Multivariable model AEN

OR 95% CI P-value OR 95% CI P-value OR

Particulate matter (PM) 1.45 1.19–1.78  < 0.001 1.23 0.88–1.71 0.224 1.203
Volatile organic compounds (VOCs) 1.22 1.02–1.45 0.029 1.03 0.80–1.34 0.819 1.000
Pesticides 1.18 0.99–1.40 0.061 1.06 0.87–1.29 0.581 1.015
Metals 1.48 1.21–1.82  < 0.001 1.56 1.11–2.20 0.011 1.334
Biologicals 1.01 0.86–1.19 0.868 0.95 0.80–1.14 0.605 1.000
Combustion and diesel exhaust 1.20 1.01–1.43 0.041 1.02 0.82–1.27 0.851 1.000
Electromagnetic radiation 1.09 0.92–1.29 0.342 0.90 0.72–1.12 0.324 1.000
Radiation 1.07 0.91–1.26 0.391 0.97 0.81–1.17 0.757 1.000
Corrosives 1.01 0.86–1.19 0.910 0.77 0.62–0.96 0.021 0.864

Fig. 2  Self-reported occupational exposure responses to metal subcomponents. Upset plot showing the intersection of the subcomponent ques-
tions that comprise the metal score, for each job, for ALS and control participants combined
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control participants. The total number of ALS and con-
trols and the respective job-years is shown in Table 4. 
Occupations with the highest percentage of job-years in 
the ALS group were “Production Occupations” (51-0000, 
80.8%), “Installation, Maintenance, and Repair Occupa-
tions” (49-0000, 76.9%), and “Transportation and Material 
Moving Occupations” (53-0000, 75.9%). Compared to the 
study population (58% ALS and 42% control participants), 
there were significant differences in job-years worked 
between ALS and controls for four SOC codes (% job-
year ALS, p value): 51-0000 “Production Occupations” 
(80.8%, p = 0.016); 11-0000 “Management Occupations” 
(49.6%, p = 0.002); 29-0000 “Healthcare Practitioners and 
Technical Occupations” (42.0%, p = 0.006); and 19-0000 
“Life, Physical, and Social Science Occupations” (30.3%, 
p < 0.001).

We next considered job-years worked in each two-
digit SOC category on ALS risk (Table 5). In an unad-
justed analysis, “Production Occupations” were associ-
ated with an increased ALS risk for every 5 years worked 
(OR = 1.25, 95% CI 1.09–1.42, p = 0.001), while three 
of the two-digit SOC categories were associated with a 
decreased ALS risk for every 5 years worked: “Computer 
and Mathematical Occupations” (OR = 0.81, 95% CI 
0.67–0.98, p = 0.029), “Life, Physical, and Social Science 
Occupations” (OR = 0.72, 95% CI 0.56–0.92, p = 0.010), 
and “Healthcare Practitioners and Technical Occupa-
tions” (OR = 0.89, 0.80–0.99, p = 0.032). These effects 
remained statistically significant after adjusting for sex, 
age, and military service: ALS risk remained elevated for 
“Production Occupations” (OR = 1.22, 95% CI 1.07–1.40, 
p = 0.003), while risk was decreased for “Management 

Table 4  Job-Years and counts by ALS and control status

SOC Code Occupational category N (ALS) Job-Years (ALS) N (controls) Job-Years 
(controls)

% Job-
Years 
ALS

% ALS P-value

51-0000 Production Occupations 78 1359.3 34 323.8 80.8 69.6 0.016
49-0000 Installation, Maintenance, and Repair Occu-

pations
31 524.7 17 157.2 76.9 64.6 0.465

53-0000 Transportation and Material Moving Occupa-
tions

31 438.7 15 138.9 75.9 67.4 0.234

47-0000 Construction and Extraction Occupations 33 606.8 15 197.1 75.5 68.8 0.187
45-0000 Farming, Fishing, and Forestry Occupations 5 116.5 7 41.3 73.8 41.7 0.256
17-0000 Architecture and Engineering Occupations 40 709.4 24 339.0 67.7 62.5 0.529
41-0000 Sales and Related Occupations 64 849.9 55 458.2 65.0 53.8 0.353
35-0000 Food Preparation and Serving-Related Occu-

pations
35 332.3 33 180.4 64.8 51.5 0.269

43-0000 Office and Administrative Support Occupa-
tions

108 1997.3 83 1088.6 64.7 56.5 0.608

37-0000 Building and Grounds Cleaning and Mainte-
nance Occupations

27 294.4 20 172.0 63.1 57.4 0.884

25-0000 Education, Training, and Library Occupations 39 844.9 34 505.6 62.6 53.4 0.408
31-0000 Healthcare Support Occupations 18 232.6 15 144.5 61.7 54.5 0.725
39-0000 Personal Care and Service Occupations 16 252.1 14 174.1 59.1 53.3 0.584
21-0000 Community and Social Services Occupations 10 164.0 8 124.2 56.9 55.6 0.815
13-0000 Business and Financial Operations Occupa-

tions
32 535.6 32 439.7 54.9 50.0 0.205

23-0000 Legal Occupations 6 146.8 8 137.9 51.6 42.9 0.283
11-0000 Management Occupations 65 1158.0 78 1176.8 49.6 45.5 0.002
33-0000 Protective Service Occupations 8 120.0 11 151.5 44.2 42.1 0.167
27-0000 Arts, Design, Entertainment, Sports, and

Media Occupations
15 231.8 21 297.7 43.8 41.7 0.061

29-0000 Healthcare Practitioners and Technical Occu-
pations

27 566.7 39 781.2 42.0 40.9 0.006

55-0000 Military Occupations 8 30.1 8 55.6 35.1 50.0 0.614
15-0000 Computer and Mathematical Occupations 15 183.0 19 367.3 33.3 44.1 0.117
19-0000 Life, Physical, and Social Science Occupa-

tions
12 143.2 29 328.9 30.3 29.3 0.000
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Occupations” (OR = 0.90, 0.82–0.98, p = 0.015), “Com-
puter and Mathematical Occupations” (OR = 0.78, 95% 
CI 0.65–0.94, p = 0.010), and “Life, Physical, and Social 
Science Occupations” (OR-0.73, 95% CI 0.57–0.94, 
p = 0.014). After correction for multiple comparisons, 
“Production Occupations” remained significant in unad-
justed models (p = 0.024) and was marginally significant 
in adjusted models (p = 0.073). As a sensitivity check, 
the model was rerun with age as a continuous variable 
and there were no significant differences compared to the 
model with age represented as quartiles.

Exposure scores and SOC codes

We explored the relationships of the occupational exposure 
scores to SOC codes via a dendrogram using the occupa-
tional exposure score and duration-adjusted occupational 
exposure scores (Fig. 3A, B). The occupational exposure 
score dendrogram showed a small cluster (bottom of plot) 
including “Trades, plumbing,” “Trades, electrical and sheet 
metal,” “Mechanic, vehicle,” and “Operator, welding and 
metals.” The duration-adjusted occupational exposure score 
dendrogram showed a small cluster (top of plot) containing 

Table 5  Job-years worked with two-digit SOC codes associated with ALS Risk: single SOC code models

Single exposure score logistic regression models where the outcome is ALS/control status, the variables of interest are the number of job-years 
worked within two-digit SOC codes, and the covariates are age, sex, and military service. Interpretation of odds ratios (OR) correspond to 5 
additional years worked within the respective SOC code
CI confidence interval, BH Bejamini–Hochberg

Two-Digit 
SOC Code

Description Unadjusted Adjusted

OR 95% CI P-value P-value (BH) OR 95% CI P-value P-value (BH)

11-0000 Management Occupations 0.92 0.85–1.01 0.075 0.246 0.90 0.82–0.98 0.015 0.084
13-0000 Business and Financial Operations Occupa-

tions
0.97 0.86–1.10 0.664 0.770 0.95 0.83–1.08 0.408 0.587

15-0000 Computer and Mathematical Occupations 0.81 0.67–0.98 0.029 0.187 0.78 0.65–0.94 0.010 0.084
17-0000 Architecture and Engineering Occupations 1.09 0.95–1.25 0.209 0.474 1.07 0.93–1.23 0.373 0.572
19-0000 Life, Physical, and Social Science Occupa-

tions
0.72 0.56–0.92 0.010 0.111 0.73 0.57–0.94 0.014 0.084

21-0000 Community and Social Services Occupations 0.99 0.77–1.26 0.915 0.945 0.99 0.77–1.27 0.947 0.947
23-0000 Legal Occupations 0.95 0.77–1.18 0.670 0.770 0.94 0.76–1.17 0.590 0.646
25-0000 Education, Training, and Library Occupa-

tions
1.03 0.93–1.15 0.552 0.746 1.04 0.93–1.16 0.478 0.611

27-0000 Arts, Design, Entertainment, Sports, and
Media Occupations

0.91 0.77–1.07 0.248 0.474 0.92 0.79–1.09 0.341 0.561

29-0000 Healthcare Practitioners and Technical
Occupations

0.89 0.80–0.99 0.032 0.187 0.91 0.82–1.01 0.090 0.319

31-0000 Healthcare Support Occupations 1.04 0.81–1.33 0.758 0.830 1.11 0.86–1.42 0.434 0.587
33-0000 Protective Service Occupations 0.88 0.68–1.14 0.331 0.544 0.86 0.67–1.12 0.260 0.543
35-0000 Food Preparation and Serving-Related

Occupations
1.10 0.86–1.41 0.437 0.670 1.14 0.88–1.47 0.318 0.561

37-0000 Building and Grounds Cleaning and Mainte-
nance Occupations

1.06 0.85–1.32 0.623 0.770 1.07 0.85–1.34 0.552 0.635

39-0000 Personal Care and Service Occupations 1.01 0.83–1.23 0.945 0.945 1.03 0.85–1.26 0.747 0.781
41-0000 Sales and Related Occupations 1.08 0.94–1.23 0.267 0.474 1.07 0.94–1.23 0.296 0.561
43-0000 Office and Administrative Support Occupa-

tions
1.07 0.98–1.15 0.124 0.316 1.08 0.99–1.17 0.085 0.319

45-0000 Farming, Fishing, and Forestry Occupations 1.14 0.79–1.64 0.478 0.687 1.13 0.78–1.63 0.531 0.635
47-0000 Construction and Extraction Occupations 1.16 0.99–1.36 0.072 0.246 1.14 0.96–1.34 0.128 0.319
49-0000 Installation, Maintenance, and Repair Occu-

pations
1.21 0.99–1.47 0.059 0.246 1.16 0.95–1.41 0.139 0.319

51-0000 Production Occupations 1.25 1.09–1.42 0.001 0.024 1.22 1.07–1.40 0.003 0.073
53-0000 Transportation and Material Moving Occu-

pations
1.19 0.97–1.46 0.096 0.276 1.18 0.96–1.44 0.120 0.319

55-0000 Military Occupations 0.61 0.26–1.46 0.268 0.474 0.42 0.13–1.29 0.129 0.319
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“Veterinarian, animal handler,” “Mechanic, industrial,” 
“Operator, chemical,” “Trades, electrical and sheet metal,” 
“Mechanic, vehicle,” “Trades, plumbing,” and “Operator, 
welding and metals.” These clusters were overall charac-
terized by higher exposure scores. The lack of other clear 
smaller clusters highlights that SOC codes alone do not 
capture the full range of exposures that occur in the occu-
pational setting, and that self-reported details (e.g., in the 
questionnaire) can be highly informative.

Because occupational exposure to metals was signifi-
cantly associated with ALS risk in all models (Table 6), 
we next compared the metals occupational exposure scores 
by SOC code. The five occupations with the highest mean 
metals occupational exposure scores were: 49-0000 “Instal-
lation, Maintenance, and Repair Occupations;” 51-0000 
“Production Occupations;” 55-0000 “Military Occupa-
tions;” 47-0000 “Construction and Extraction Occupations;” 
and 17-0000 “Architecture and Engineering Occupations.” 
Several occupations with overall lower scores had a large 
range of exposure scores, e.g., 11-0000 “Management Occu-
pations” had scores ranging from 0 to 1.00. This reflects 
the large range of tasks and activities that can fall into the 
two-digit SOC classifications, e.g., some managers work 

exclusively in offices with no exposure to metals, while man-
agers in services, trades or production settings may experi-
ence relatively high exposure.

Linear models adjusted for age, sex, and military service 
were next developed to understand the association between 
duration of each SOC code and metals duration-adjusted 
occupational exposure. For every 5 years of work, the stand-
ard deviation changes in metals duration-adjusted occupa-
tional exposure scores were as follows: 13-0000 “Business 
and Financial Operations Occupations” (beta =  − 0.08, 
95%CI − 0.14- − 0.02 p = 0.006); 15-0000 “Computer and 
Mathematical Occupations” (β = − 0.08, − 0.16 to − 0.01, 
p = 0.037); 37-0000 “Building and Grounds Cleaning and 
Maintenance Occupations” (β = 0.12, 95% CI 0.02–0.22, 
p = 0.020); 41-0000 “Sales and Related Occupations” 
(β =  − 0.09, 95%CI − 0.15- − 0.04, p = 0.002); 47-0000 
“Construction and Extraction Occupations” (β = 0.14, 95% 
CI 0.08–0.20, p < 0.001); 49-0000 “Installation, Main-
tenance, and Repair Occupations” (β = 0.15, 0.07–0.22, 
p < 0.001); and 51-0000 “Production Occupations” (β = 0.18, 
0.14–0.23, p < 0.001) (Table 7). A similar analysis for the 
metal occupational exposure score is presented in Table S9. 
Unsurprisingly, these data indicate that occupational 

0.00 0.25 0.50 0.75 1.00
Mean Exposure Score

Trades, plumbing
Trades, electrical and sheet metal

Mechanic, vehicle
Operator, welding and metals
Dentist, including technicians

Veteriarian, animal handler
Engineer, mechanical

Operator, materials handling
Musician

Manager, food services
Engineer, industrial

Press or media
Theatre, photographer

Clinician
Administrator, education

Judge or attorney
Professor

Drafter
Therapist
Executive

Social worker
Teacher, academic

Sales, nonretail
Engineer, computer

Writer
Clerk, various

Analyst, technical
Clerk, clerical

Telephone operators
Server / Buser

Manager, other professional
Clerk, office
Sales, retail

Psychologist
Teacher, sports
Designer, artist

Inspector, compliance, hygiene
Attendants, bellhops

Driver, light duty
Food Preparation / Cook

Clerical, administrative
Manager, construction

Operator, printing
Parking officer, bike and postal carriers

Manager, business
Agent, mail, cargo, inventory

Childcare aides
Clerks, counter, ticker and hotel

Nurse and patient aides
Technician, laboratory (29)
Technician, laboratory (19)

Medical assistant
Cosmetologist

Agent, buyer
Manager, production
Researcher, scientist

Engineer, electrical
Military

Operator, chemical
Mechanic, industrial

Manager, agriculture
Grounds keepers

Trades, mason
First responder

Cleaners and dishwashers
Production worker

Operator, machine s
Trades, carpenter

Trades, painter
Technican, computer, electrical

Pilot, flight attendant
Farm worker

Operator, computer
Laborer, construction

Driver, heavy duty

Dentist, including technicians
Pilot, flight attendant

Musician
Teacher, sports

Clinician
Server / Buser

Driver, light duty
Clerks, counter, ticker and hotel

Telephone operators
Designer, artist

Drafter
Engineer, computer

Writer
Psychologist

Clerk, various
Analyst, technical

Clerk, clerical
Sales, nonretail

Manager, other professional
Clerk, office
Sales, retail

Teacher, academic
Judge or attorney

Social worker
Professor
Therapist

Administrator, education
Theatre, photographer

Press or media
Engineer, industrial

Manager, food services
Agent, mail, cargo, inventory

Attendants, bellhops
Manager, business

Clerical, administrative
Parking officer, bike and postal carriers

Executive
Food Preparation / Cook

Manager, construction
Operator, printing

Childcare aides
Medical assistant

Nurse and patient aides
Technician, laboratory (29)
Technician, laboratory (19)

Manager, production
Researcher, scientist

Trades, mason
Operator, computer

Engineer, mechanical
Operator, materials handling

Production worker
Operator, machine s

Trades, carpenter
Trades, painter

Agent, buyer
Grounds keepers

Cleaners and dishwashers
Manager, agriculture

First responder
Farm worker

Laborer, construction
Driver, heavy duty

Inspector, compliance, hygiene
Cosmetologist

Technican, computer, electrical
Engineer, electrical

Military
Veteriarian, animal handler

Mechanic, industrial
Operator, chemical

Trades, electrical and sheet metal
Mechanic, vehicle
Trades, plumbing

Operator, welding and metals

0.00 0.25 0.50 0.75 1.00
Mean Exposure Score

Biol
og

ica
l E

xp
os

ure
s

Com
bu

sti
on

 (D
ies

el)

Corr
os

ive
s

Elec
tro

mag
ne

tic
 Exp

os
ure

s

Meta
ls

Part
icu

lat
e M

att
er

Pes
tic

ide
s

Rad
iat

ion
VOCs

Biol
og

ica
l E

xp
os

ure
s

Com
bu

sti
on

 (D
ies

el)

Corr
os

ive
s

Elec
tro

mag
ne

tic
 Exp

os
ure

s

Meta
ls

Part
icu

lat
e M

att
er

Pes
tic

ide
s

Rad
iat

ion
VOCs

A                 B

Fig. 3  Occupational exposure scores by aggregated SOC clusters. Dendrograms of the standard occupational classification (SOC) codes by A 
occupational exposure score and B duration-adjusted occupational exposure scores
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exposure to metals is more likely to be reported in “Con-
struction and Extraction,” “Installation, Maintenance, and 
Repair,” and “Production Occupations.”

Discussion

Understanding non-genetic ALS risk factors is critically 
important to identify factors that increase disease risk, the 
underlying mechanisms, and potential preventative strate-
gies. Our analysis of occupational exposures, based on a 
comprehensive survey and job classification coding, found 
that self-reported exposure to metals and a history of work-
ing in “Production Occupations” (SOC 51-0000)—which 
includes production workers, welders and metal, machine, 
printing, and chemical operators—increased ALS risk. ALS 
risk also increased with self-reported occupational expo-
sures to particulate matter, volatile organic compounds, pes-
ticides, metals, and combustion/diesel exhaust in univariate 
and adaptive elastic net models.

Our findings are consistent with other published reports, 
which demonstrate that survey-based tools (Morahan and 
Pamphlett 2006; Bonvicini et  al. 2010) and structured 
interviews (Malek et al. 2014; McGuire et al. 1997) are 

informative for examining ALS environmental risk fac-
tors. Studies on occupational risk factors differ in terms of 
design, job and exposure ascertainment, and other factors, 
and results are not always consistent. Table 8 presents the 
key findings from several occupational exposure studies and 
their alignment with the current report. A large population-
based study in the Netherlands, Ireland, Apulia, Lombardy, 
and Piedmont and Valle d’Aosta in Italy including 1157 ALS 
participants showed that occupational exposures to silica, 
asbestos, organic dust, contact with animals or fresh animal 
products, endotoxins, polycyclic aromatic hydrocarbons and 
diesel motor exhaust were all associated with an increased 
ALS risk (Visser et al. 2019). Our univariate analyses pro-
vided consistent findings for exposure to particulate matter 
(which includes exposures to silica) as well as combustion 
products and diesel exhaust. A study in Pennsylvania, United 
States showed that occupational exposures to metals and 
pesticides increased ALS risk (Malek et al. 2014). A study 
in Australia showed that men who worked with metals, 
chemicals/solvents, and herbicides/pesticides and women 
who reported a higher exposure to chemicals/solvents had 
a higher risk of ALS (Pamphlett 2012). Another Austral-
ian study showed that male technicians and trade work-
ers, machinery operators and drivers, and laborers had an 

Table 6  Metals occupational exposure scores associated with SOC codes

N number, SD standard deviation, Min minimum, Q quartile, Max maximum

Two-Digit SOC Description N Mean SD Min Q25 Q50 Q75 Max

49-0000 Installation, Maintenance, and Repair Occupations 55 0.31 0.36 0 0 0.33 0.48 1.00
51-0000 Production Occupations 148 0.25 0.32 0 0 0.00 0.46 1.00
55-0000 Military Occupations 17 0.25 0.33 0 0 0.00 0.33 1.00
47-0000 Construction and Extraction Occupations 63 0.19 0.30 0 0 0.00 0.33 1.00
17-0000 Architecture and Engineering Occupations 100 0.15 0.28 0 0 0.00 0.18 1.00
33-0000 Protective Service Occupations 23 0.15 0.18 0 0 0.00 0.28 0.61
45-0000 Farming, Fishing, and Forestry Occupations 12 0.12 0.20 0 0 0.00 0.13 0.61
19-0000 Life, Physical, and Social Science Occupations 52 0.08 0.19 0 0 0.00 0.00 0.67
11-0000 Management Occupations 191 0.08 0.22 0 0 0.00 0.00 1.00
37-0000 Building and Grounds Cleaning and Maintenance Occupations 50 0.08 0.23 0 0 0.00 0.00 1.00
53-0000 Transportation and Material Moving Occupations 54 0.06 0.16 0 0 0.00 0.00 0.72
25-0000 Education, Training, and Library Occupations 107 0.05 0.17 0 0 0.00 0.00 0.78
31-0000 Healthcare Support Occupations 46 0.05 0.15 0 0 0.00 0.00 0.56
13-0000 Business and Financial Operations Occupations 86 0.04 0.15 0 0 0.00 0.00 1.00
21-0000 Community and Social Services Occupations 33 0.04 0.10 0 0 0.00 0.00 0.33
27-0000 Arts, Design, Entertainment, Sports, and Media Occupations 47 0.03 0.11 0 0 0.00 0.00 0.44
43-0000 Office and Administrative Support Occupations 303 0.02 0.11 0 0 0.00 0.00 1.00
29-0000 Healthcare Practitioners and Technical Occupations 116 0.02 0.09 0 0 0.00 0.00 0.61
35-0000 Food Preparation and Serving-Related Occupations 85 0.02 0.13 0 0 0.00 0.00 0.89
41-0000 Sales and Related Occupations 153 0.02 0.08 0 0 0.00 0.00 0.61
15-0000 Computer and Mathematical Occupations 50 0.01 0.06 0 0 0.00 0.00 0.33
23-0000 Legal Occupations 20 0.00 0.00 0 0 0.00 0.00 0.00
39-0000 Personal Care and Service Occupations 29 0.00 0.00 0 0 0.00 0.00 0.00

3842022 Feldman Laboratory Publications



1579International Archives of Occupational and Environmental Health (2022) 95:1567–1586 

1 3

increased risk of ALS and that truck driving as an occupa-
tion was associated with a higher ALS risk (Pamphlett and 
Rikard-Bell 2013).

The multivariable models showed that self-reported occu-
pational metals exposure was most strongly linked to ALS 
risk. This could be related to the type of correlated exposures 
experienced in certain occupations where participants with 
higher metals occupational exposure scores also reported 
higher exposures to particulate matter, volatile organic com-
pounds, and corrosives. This is unsurprising as workers are 
often exposed to mixtures, particularly in certain trades, 
production/manufacturing, and service industries (Mixed 
Exposures Research Agenda 2004). In some respects, this 
is similar to our findings for mixtures of persistent organic 
pollutants in our cohort (Goutman et al. 2019)—participants 
are exposed to polychlorinated biphenyls, brominated flame 
retardants, and organochlorine pesticides, for example, yet 
pesticides alone carry the highest risk. In this present study, 

metals may be the most critical component of a larger occu-
pational exposure mixture. This should lead us to focus on 
the types of mixtures and resulting injuries to the central 
nervous system in future research focused on understanding 
ALS pathogenesis. This mixture effect led to the adaptive 
elastic net analysis that showed overall consistency with the 
univariate models, again with occupational metals exposure 
carrying the strongest association.

Among the individual metals/tasks, iron and welding 
fume exposure were the most significant; these exposures 
were also among the most common. Welding has been 
linked to ALS in prior studies (Gunnarsson et al. 1992; 
Strickland et al. 1996; Armon et al. 1991). Dickerson et al. 
did not find iron to be a risk factor in Denmark (Dickerson 
et al. 2020). Although we did not find a significant associa-
tion between occupational lead exposure and ALS, this has 
been shown in other survey-based studies, e.g., Dickerson 
et al. used a job-exposure matrix in a Danish population 

Table 7  Metal duration-adjusted occupational exposure score association with SOC codes

Single two-digit SOC logistic regression models and generalized additive models where the outcome is the metal duration-adjusted occupational 
exposure score, the variables of interest are the number of job-years worked within each two-digit SOC code, and the covariates are age, sex, 
and military service. Interpretation of coefficient is in in terms of 5 year increments corresponding to standard deviation changes in occupational 
metal score
LCL lower confidence limit, UCL upper confidence limit

Two-Digit SOC 
Code

Description Metal duration-adjusted occupational exposure score

Β 95% LCL 95% UCL P-value

11-0000 Management Occupations – 0.03 – 0.07 0.01 0.173
13-0000 Business and Financial Operations Occupations – 0.08 – 0.14 – 0.02 0.006
15-0000 Computer and Mathematical Occupations – 0.08 – 0.16 – 0.01 0.036
17-0000 Architecture and Engineering Occupations 0.01 – 0.05 0.07 0.687
19-0000 Life, Physical, and Social Science Occupations 0.01 – 0.08 0.11 0.780
21-0000 Community and Social Services Occupations – 0.04 – 0.16 0.07 0.456
23-0000 Legal Occupations – 0.07 – 0.17 0.04 0.207
25-0000 Education, Training, and Library Occupations – 0.01 – 0.06 0.04 0.758
27-0000 Arts, Design, Entertainment, Sports, and Media Occupations – 0.02 – 0.09 0.06 0.652
29-0000 Healthcare Practitioners and Technical Occupations – 0.01 – 0.05 0.04 0.832
31-0000 Healthcare Support Occupations 0.02 – 0.10 0.13 0.761
33-0000 Protective Service Occupations 0.08 – 0.04 0.20 0.173
35-0000 Food Preparation and Serving-Related Occupations – 0.04 – 0.15 0.07 0.443
37-0000 Building and Grounds Cleaning and Maintenance Occupations 0.12 0.02 0.22 0.020
39-0000 Personal Care and Service Occupations – 0.04 – 0.13 0.05 0.391
41-0000 Sales and Related Occupations – 0.09 – 0.15 – 0.04 0.002
43-0000 Office and Administrative Support Occupations – 0.03 – 0.07 0.01 0.135
45-0000 Farming, Fishing, and Forestry Occupations 0.01 – 0.13 0.14 0.937
47-0000 Construction and Extraction Occupations 0.14 0.08 0.20 0.000
49-0000 Installation, Maintenance, and Repair Occupations 0.15 0.07 0.22 0.000
51-0000 Production Occupations 0.18 0.14 0.23 0.000
53-0000 Transportation and Material Moving Occupations – 0.05 – 0.13 0.03 0.213
55-0000 Military Occupations – 0.02 – 0.32 0.28 0.893
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and found that occupational exposure led to increased ALS 
risk (Dickerson et al. 2019), and both Kamel et al. in a New 
England population (Kamel et al. 2002) and Chancellor et al. 
in a Scottish population (Chancellor et al. 1993) found that 
self-reported occupational exposure to lead increased ALS 
risk. Of note, other studies, like ours, report no association 

with occupational lead exposure (Gunnarsson et al. 1992; 
Gresham et al. 1986).

The questionnaire data included 66 jobs for welding 
where no other metal exposure was reported (Fig. 2). Since 
welding requires the use of metals (OSHA 2021), this may 
mean that participants were not aware of their exposure. 

Table 8  Summary of ALS 
occupational case/control 
studies (by publication year)
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Table 8  (continued)

↑ increased risk, ↓ decreased risk, ↔  no difference in risk, NE not evaluated,  risk consistent with current 
study,  risk partially consistent with current study,  risk not consistent with current study, – not evalu-
ated
a Due to the number of exposures analyzed in the referenced study, only outcomes highlighted in the pre-
sent study are listed
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Plotting metal exposure by years the on the job, we saw 
that essentially all metals (except for arsenic) continue to 
be reported to the present, suggesting that metal exposure 
continues to be an actionable risk factor. Our finding that 
welding and iron exposure are ALS risk factors may indi-
cate that workers are exposed to other metals without their 
knowledge, that welding and iron exposure represent sur-
rogates for some other exposure, or that mixtures of metals 
play a greater role on ALS risk compared to an individual 
metal, similar to what we have seen in our analysis of teeth 
(Figueroa-Romero et al. 2020).

Among the job codes, “Production Occupations” was 
most strongly associated with ALS risk. This is a diverse 
category that includes production workers, welders, and 
metals, machine, printing, and chemical operators. ALS risk 
is highly variable in this group, potentially reflecting the 
variability of occupational exposures to metals in this code. 
For example, in this job code, most participants had a zero 
metal exposure score, while a small group of participants 
accounted for the bulk of exposure. High metals occupa-
tional exposure scores also occurred for workers in other 
job codes, e.g., “Building and Grounds Cleaning and Main-
tenance Occupations,” “Construction and Extraction Occu-
pations,” and “Installation, Maintenance, and Repair Occu-
pations,” demonstrating the value of complementing the 
job codes with personal-level exposure data. Our findings 
are consistent with other studies. Andrew et al. found that 
working in mechanics, painting, or construction increased 
ALS risk (Andrew et al. 2020), and, in a separate study, that 
working in construction, manufacturing, mechanical, mili-
tary, or painting occupations increased ALS risk (Andrew 
et al. 2017). In parallel, Fang et al. also found that construc-
tion and precision metal workers were at an increased ALS 
risk (Fang et al. 2009).

We examined the job titles and tasks linked to the 
metals occupational exposure scores, and graded each 
exposure as probable, possible or unlikely based on this 
information. For example, lead exposure was reported by 
individuals who had worked in construction (e.g., build-
ers, painters, pipefitters, electricians, plumbers, remod-
elers, handymen), boat restorers, maintenance workers, 
some automotive shop and factory workers, some work-
ers in steel and metal industries (metallurgist, welders), 
and X-ray technicians. In these industries, lead exposure 
can occur from lead in paint, plumbing, solder, and other 
materials. However, self-reported lead exposure for a 
subset (17%) of workers did not appear concordant with 
reported job titles and tasks (e.g., some truckers and prop-
erty managers), while a smaller subset (9%) did not report 
lead exposure although it may have occurred (some skilled 
trades). Workers reporting mercury exposure included 
dentists and dental staff, and some production, waste and 
engineering workers; this is reasonable given mercury in 

dental amalgam and some (older) electrical switches and 
other equipment. Again, a subset (20%) of self-reported 
mercury exposures seemed unlikely, for example, educa-
tion and most metal workers. For cadmium exposure, a 
wide range of workers reported exposure, e.g., researchers, 
engineers, automotive workers, painters, and some produc-
tion and metal workers. While cadmium has been used in 
metal plating, paints and coatings, the likelihood of this 
exposure is difficult to assess based on the survey data. 
For arsenic, self-reported exposure was reported by only 
six workers. Again, exposure is difficult to confirm; arse-
nic is present in some agricultural chemicals and pressure 
treated wood, but no farmers, construction, building or 
grounds workers reported this exposure. While any survey 
will have issues of accuracy, omissions, recall bias, etc., 
our results suggest a reasonable degree of consistency for 
the more common and recognized metal exposures (e.g., 
lead), but also the challenge for other metals. Arsenic 
exposure, for example, might be better handled by ques-
tions to construction and agricultural workers such as “did 
you “handle treated wood?,” although this would increase 
the complexity and length of the survey.

Our findings add to a growing literature of potential 
occupational ALS risk factors. Importantly, it should be 
noted that all studies are not uniform. For example, a nested 
case–control study in Sweden did not show that occupa-
tional exposure to metal was an ALS risk factor (Peters et al. 
2017). Further, a study of 1 million participants from a can-
cer prevention cohort study did not show an increased ALS 
risk among farmers, electricians, and welders (Weisskopf 
et al. 2005). Like the large ALS occupational risk assess-
ment in the prospective Netherlands Cohort Study and the 
Western Washington study, we find that ALS participants 
have a lower educational attainment compared to controls 
(McGuire et al. 1997; Koeman et al. 2017). However, while 
we find occupational exposures to metals increase ALS risk, 
the Netherlands study did not. An important difference is 
that we used individual reporting as opposed to only assign-
ing risk based on a job-exposure matrix. This is a strength 
for our study as reported exposures are not uniform across 
each job code.

Also of note, independent of case status, men and those 
with high school or lower secondary education report higher 
occupational exposures. These groups may require public 
health attention to lessen exposure risks. McGuire et al. 
(McGuire et al. 1997) found in their ALS case and con-
trol cohort that men had higher exposures to agricultural 
chemicals. Our results were partially consistent with pes-
ticide exposure showing a small risk in the adaptive elas-
tic net model, although those working in farming, fishing, 
and forestry did not have a significant association, which 
could be due to incomplete case capture, or changes in in 
occupational exposures since the publication of that study 
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in 1997. These findings should be interpreted cautiously as 
we have previously shown higher levels of organochlorine 
pesticides in ALS participants. We also did not find that 
occupational exposure to electromagnetic radiation increases 
ALS risk, which could be due to the low number of indi-
viduals reporting this exposure in our cohort, most of whom 
were health care workers. A recent meta-analysis suggests 
that electromagnetic radiation exposure slightly increases 
ALS risk (Jalilian et al. 2021), although reports included in 
the meta-analysis were mixed, indicating that the risk is not 
uniform across all studies.

In prior studies, including our own, pesticide exposure 
was identified as an ALS risk factor (Al-Chalabi and Hardi-
man 2013; Su et al. 2016; Kamel et al. 2012). Specifically, 
an exposure history to agricultural chemicals increased ALS 
risk for individuals in western Washington State (McGuire 
et al. 1997). Bonvicini and colleagues used a questionnaire 
to show that pesticide exposure increased ALS risk in a 
northern Italian population (Bonvicini et al. 2010). Morahan 
and colleagues used a questionnaire to show that ALS risk 
in Australia was associated with solvent/chemical exposure, 
herbicide/pesticide exposure, and industrial herbicide/pes-
ticide exposure (Morahan and Pamphlett 2006). Although 
pesticide exposure is a small risk factor in the adaptive elas-
tic net logistic regression model using the duration-adjusted 
occupational exposure scores, this finding is not present in 
other models. This is possibly because this exposure may 
largely be occurring outside the workplace, and because we 
captured relatively few participants with occupational pes-
ticide exposure, such as individuals in the farming industry. 
Thus, further work exploring exposure across multiple set-
tings (occupational and residential) is needed. Additionally, 
prospective cohorts of individuals that have higher expo-
sures to pesticides would be beneficial.

We used a combined approach of self-reported occupa-
tional exposures and occupational histories, augmented by 
expert assessment, to identify ALS occupational risk fac-
tors. Occupational histories, self-reported exposure assess-
ments, and expert assessment are the main strategies used 
in retrospective case–control studies examining occupational 
exposures (Ge et al. 2018; Teschke et al. 2002). All tech-
niques are especially challenging when retrospectively iden-
tifying disease risk factors with a long latency period (Ge 
et al. 2018). Occupational histories—a listing of job titles 
and responsibilities—have several limitations impacting reli-
ability, especially when the job title does not reflect the work 
performed (Teschke et al. 2002). Nonetheless, occupational 
histories can help identify certain at-risk occupations, which 
in turn can highlight mixtures of chemicals typically used 
in that occupation without zeroing in on a specific chemi-
cal or exposure (Teschke et al. 2002). Generic job-exposure 
matrices (JEMs) share limitations of occupational histories 
by not capturing a full range of exposures or homing in on a 

specific risk (Teschke et al. 2002). Self-reported exposures, 
subject to recall bias, can outperform JEMs as they provide 
individualized data on job activities. With self-reported 
exposures there is no gold standard for comparison, e.g., 
participants may not know the names of chemicals to which 
they were exposed (Teschke et al. 2002). The performance of 
these techniques can improve by both focusing on a specific 
set of exposures and complementing expert assessment with 
self-reported exposures, the study design with the highest 
accuracy (Ge et al. 2018; Teschke et al. 2002). Thus, this 
was our approach.

Outside of ALS, this study has other important findings. 
Automated systems that assign SOC codes to occupations 
are a useful tool, especially when a large number of occu-
pations require classification. However, despite using two 
separate systems from NIH and CDC, additional input from 
exposure scientists was needed, consistent with other find-
ings related to these auto-coding systems (Buckner-Petty 
et al. 2019). We also found that the SOC coding is insuffi-
cient to account for exposures, especially in certain occupa-
tions where the same job code can encompass very diverse 
occupational settings.

This study has several strengths. First, we captured a large 
number of participants in Michigan, a diverse state with an 
historical agricultural and industrial legacy. Second, the 
questionnaire obtained detailed self-reported information 
on exposures. We identified at-risk occupations via SOC 
coding and showed that complementing SOC codes with 
self-reported exposures is meaningful, thus addressing the 
variability of exposures across a job code. Hand curation 
by exposure scientists provided further refinement of the 
automated SOC coding. Overall, our approach combining 
expert assessment with self-reported exposures and targeted 
automated SOC codes was consistent with best practices 
identified in the literature (Ge et al. 2018).

This study also has limitations. Selection bias is possible 
as not all persons with ALS seen in our clinic enrolled in 
this study. The participation rate of 55% is consistent with 
other large ALS cohorts, including the National ALS Reg-
istry (completion rate of 43.6–49.2%) (Bryan et al. 2016). 
Further, the control population was based on altruism. While 
our control population was more highly educated compared 
to controls, this could represent a true difference, especially 
as polygenic factors associated with higher educational attain-
ment are associated with a lower ALS risk (Bandres-Ciga 
et al. 2019). There is no gold standard for self-reported expo-
sure assessment, and recall bias may influence results. As 
military service is a recognized ALS risk factor (Al-Chalabi 
and Hardiman 2013), we elected to adjust models for mili-
tary service history, but did not include self-reported military 
exposures in the exposure scores. Also, while only a subset 
of individuals experienced work-related exposures to par-
ticulate matter (PM), volatile organic compounds (VOCs), 
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metals and other contaminants, this is expected and reflects 
the contemporary distribution of job types. These are still 
important findings as the identification of environmental ALS 
risk factors, even in small groups, helps identify modifiable 
factors that could be used to better understand how to prevent 
disease in certain population groups. We do not differentiate 
between full- and part-time employment and only considered 
job-years in the analysis. This should not result in exposure 
misclassification as exposure scores were based on partici-
pants’ responses to questions relevant to exposures, e.g., 
do they work with specific chemicals? First, most of these 
questions were “yes/no”, and quantification of exposure (like 
a dose or concentration) from such survey questions is not 
possible. Second, the survey questions were repeated for up 
to four different jobs, from which we calculated an overall 
(duration-adjusted) occupational exposure score. The survey 
responses suggest that most participants had had several jobs 
that tended to be similar, e.g., staying in the service or edu-
cational sector, thus likely diminishing the potential effect of 
a part-time versus full-time position. Third, in most cases, 
the job title, descriptors, and survey questions suggested that 
most individuals described full-time jobs, although we do not 
have direct evidence. Finally, we believe that differences in 
exposure contrast across jobs in the different sectors (e.g., as 
a mechanic, food preparation, or office worker) likely exceed 
the difference that might result due to whether an individual 
works 20, 30 or 40 h. It is important to note too that analy-
ses that did not consider duration of each occupation showed 
similar results. Finally, we focused on occupational exposures, 
whereas non-occupational exposures do occur and may also 
contribute to ALS risk.

Conclusion

Self-reported occupational exposures to particulate matter, 
volatile organic compounds, metals, and combustion and 
diesel exhaust are identified as ALS risk factors. The great-
est risks were self-reported occupational metals exposure 
among exposure types, and production occupations among 
job codes. Overall, these data provide important insights into 
the occupational exposures and settings that increase ALS 
risk. Further investigations are encouraged to understand the 
mechanisms that lead to this increase in risk. Additionally, 
these data may be informative for ALS prevention strategies 
designed to limit exposures, especially for people most at 
risk of developing ALS.
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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Its complex pathogenesis and phenotypic heterogeneity
hinder therapeutic development and early diagnosis. Altered RNA metabolism is a recurrent pathophysiologic theme, including distinct
microRNA (miRNA) profiles in ALS tissues. We profiled miRNAs in accessible biosamples, including skin fibroblasts and whole blood and
compared them in age- and sex-matched healthy controls versus ALS participants with and without repeat expansions to chromosome
9 open reading frame 72 (C9orf72; C9-ALS and nonC9-ALS), the most frequent ALS mutation. We identified unique and shared profiles
of differential miRNA (DmiRNA) levels in each C9-ALS and nonC9-ALS tissues versus controls. Fibroblast DmiRNAs were validated
by quantitative real-time PCR and their target mRNAs by 5-bromouridine and 5-bromouridine-chase sequencing. We also performed
pathway analysis to infer biological meaning, revealing anticipated, tissue-specific pathways and pathways previously linked to ALS,
as well as novel pathways that could inform future research directions. Overall, we report a comprehensive study of a miRNA profile
dataset from C9-ALS and nonC9-ALS participants across two accessible biosamples, providing evidence of dysregulated miRNAs in ALS
and possible targets of interest. Distinct miRNA patterns in accessible tissues may also be leveraged to distinguish ALS participants from
healthy controls for earlier diagnosis. Future directions may look at potential correlations of miRNA profiles with clinical parameters.

Introduction
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegen-
erative disease affecting motor neurons in the spinal cord, brain-
stem and brain (1). Motor neuron loss results in skeletal muscle
atrophy and weakness, ultimately leading to respiratory failure
and death within 2–4 years of diagnosis (1). ALS is familial in ∼15%
of patients and sporadic in the remaining 85%. Mutation to chro-
mosome 9 open reading frame 72 (C9orf72) is the most common
among the approximate 40 genes associated with ALS (2). Only
two drugs, riluzole (3) and edaravone (4), are approved by the US
Food and Drug Administration for treating ALS, but they only slow
disease progression modestly. Clinical trial evidence suggests that
treatment may be more effective if initiated earlier, including with
edaravone, methylcobalamin and combined taurursodiol-sodium
phenylbutyrate (4–6). However, this idea remains unproven, fur-
ther emphasizing the critical need for novel ALS therapeutic
targets as well as biomarkers to facilitate earlier diagnosis.

Unfortunately, the complex molecular mechanisms underlying
ALS hinder these goals (2). Epigenetics and RNA processing are
strong undercurrents in ALS pathogenesis since inclusion bodies
of the protein TAR DNA-binding protein 43 (TDP-43) are an almost

universal pathologic finding in ALS (2). TDP-43 binds DNA and
RNA in cells, regulating transcriptional repression, pre-mRNA
splicing, mRNA translation and microRNAs (miRNAs) biogenesis
and processing (7,8). miRNAs are approximately 22 nucleotide-
long non-coding RNAs that negatively regulate gene expression
by destabilizing mRNA, which modulates numerous physiolog-
ical processes (9–12). miRNAs are highly expressed in the ner-
vous system (13,14) and may play a role in ALS pathogenesis
through altered RNA and protein metabolism, neuromuscular
junction structure and function, neurogenesis and inflammation
(15). Additionally, miRNAs are dysregulated in ALS mouse models
(16) and human tissues (17,18) and may reflect disease state and
progression (19).

miRNA analysis in ALS can thus be leveraged for a dual pur-
pose, providing both biological insight into disease mechanisms
and serving as a diagnostic biomarker. The goal of the current
investigation was to understand differences in miRNA levels
across two tissues, skin fibroblasts and whole blood (WB), from
C9orf72 positive (C9-ALS) and negative (nonC9-ALS) participants
against age- and sex-matched controls (Fig. 1). Pathway analysis
yielded biological insights that were conserved or unique across
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Figure 1. Study design. miRNA levels in fibroblasts (FB) and WB were evaluated from two cohorts of C9-ALS and nonC9-ALS participants versus control
samples using NanoString. Differential miRNAs (DmiRNAs) were identified by NanoStringDiff and compared across tissue type and in C9-ALS and
nonC9-ALS versus controls. DmiRNAs were validated by qPCR and their predicted target mRNAs by BruChase-Seq. Biological meaning from DmiRNAs
was inferred by pathway analysis, and random forest was applied to leverage DmiRNAs as biomarkers. KEGG, Kyoto Encyclopedia of Genes and Genomes.
Generated in part using BioRender.com.

tissue types and genetic backgrounds associated with ALS and
provided information for future investigations.

Results
Cohort
Fibroblasts were obtained and cultured from C9-ALS (n = 8),
nonC9-ALS (n = 8) and controls without any neurological disorders
(n = 7). WB samples were collected from a larger cohort, includ-
ing15 C9-ALS, 50 nonC9-ALS and 27 control participants. Twelve
out of 23 fibroblast samples were from the same subjects included
in the WB samples. Demographics and clinical characteristics of
the cohort, stratified by biosample, are outlined in Table 1.

miRNA expression varies by tissue type
The two tissues were selected based on accessibility since we
sought to leverage miRNA profiles as a potential diagnostic
tool. Profiling indicated that fibroblasts and WB (all fractions
including both plasma and blood cellular components) miR-
NAs had distinct non-overlapping miRNA expression profiles
(Supplementary Material, Fig. S1A). Within each tissue type,
group-specific samples (i.e. C9-ALS, nonC9-ALS, controls) only
clustered with fibroblasts (Supplementary Material, Fig. S1B, left
panel). There was a high degree of heterogeneity among the WB
C9-ALS, nonC9-ALS and control groups (Supplementary Material,
Fig. S1B, right panel).

C9-ALS and nonC9-ALS have differential miRNA
levels in fibroblasts and WB
We identified differential miRNA (DmiRNA) levels in C9-ALS
and nonC9-ALS versus controls using NanoStringDiff (20)
(Supplementary Material, Tables S1 and S2). Raw count data
were normalized with the positive and negative control probes
as well as the reference probes, embedded in the NanoString
nCount system, which showed consistent patterns across samples

(Supplementary Material, Fig. S2). NanoStringDiff models count
data using a generalized linear model of the negative binomial
family and the likelihood ratio test, which has superior perfor-
mance for identifying differentially expressed genes (20). We
found a total of 62 fibroblast DmiRNAs (31 upregulated and
31 downregulated) in C9-ALS versus control samples (Fig. 2A).
In nonC9-ALS fibroblasts, there were 55 DmiRNAs, including
38 increased and 17 decreased miRNAs versus control samples
(Fig. 2B). WB also had slightly more DmiRNAs in C9-ALS than in
nonC9-ALS versus control samples. C9-ALS WB had 62 DmiRNAs,
of which 42 were increased and 20 were decreased in C9-ALS
(Fig. 2C). Analysis of nonC9-ALS WB samples produced a total
of 44 DmiRNAs, the majority of which (n = 40) were increased in
nonC9-ALS, with only 4 decreased relative to controls (Fig. 2D).

C9-ALS and nonC9-ALS have shared and unique
DmiRNAs in fibroblasts and WB
C9-ALS and nonC9-ALS shared four DmiRNAs (miR-30b-5p,
miR-30c-5p, miR-484, miR-92a-3p) across both fibroblasts
(decreased miRNA levels) and WB (increased miRNA levels)
(Fig. 2E, Supplementary Material, Tables S1 and S2). In fibroblasts,
30 DmiRNAs overlapped between C9-ALS and nonC9-ALS out of
87 total DmiRNAs (34%), which differed in ALS versus control
samples. All shared fibroblast DmiRNAs had the same direction
of change in C9-ALS and nonC9-ALS versus controls. In WB, 24
DmiRNAs overlapped between C9-ALS and nonC9-ALS out of 82
DmiRNAs (29%), which differed in ALS versus control samples. All
shared WB DmiRNAs differed in ALS versus control in the same
direction.

C9-ALS and nonC9-ALS share DmiRNA-regulated
biological pathways in fibroblasts and WB
Functional enrichment analysis identified 102 overrepresented
biological pathways from statistically significant DmiRNAs in
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Table 1. Demographics and clinical characteristics of ALS participants and controls

Fibroblasts WB

NonC9-ALS C9-ALS Control P-value NonC9-ALS C9-ALS Control P-value
N 8 8 7 50 15 27
Age Years (mean ± SD) 59.4 ± 6.8 58.2 ± 5.9 58.4 ± 7.2 0.71 62.9 ± 12.0 57.6 ± 5.7 61.6 ± 10.4 0.21
Sex Male 5 4 4 0.88 25 6 15 0.63

Female 3 4 3 25 9 12
Race White 8 8 7 49 14 23

African American . . . . . 4
Other/Not reported . . . 1 1 .

Onset segment Bulbar 1 1 . 1.00 21 3 . 0.27
Cervical 2 2 . 13 5 .
Lumbar 5 5 . 16 7 .

Initial El Escorial
criteria

Definite 11 2 . 0.42 . . . 0.59

Probable 15 8 . 6 5 .
Probable, lab supported 20 4 . 2 3 .
Possible/suspected 4 1 . . . .
Missing . . . . . .

Symptom duration Days (mean ± SD) 1268 ± 830 589 ± 53 . 0.04∗ 1062 ± 930 579 ± 316 . 0.08
ALS-FRS Points (median + IQR) 36.0

(34.8–40.0)
36.0
(34.5–40.5)

. 0.65 36.0
(33.0–41.0)

35.0
(33.0–44.5)

. 0.50

The significant differences among the groups (NonC9-ALS, C9-ALS and Control) were tested using one-way ANOVA for continuous variables and Chi-Square
test for categorical variables with the significance cutoff of 0.05. ∗ indicates P-value < 0.05. SD, Standard Deviation. ALS-FRS: Amyotrophic Lateral Sclerosis
Functional Rating Scale. IQR, Inter-Quartile Range.

fibroblasts and WB (Fig. 3). Of these, 44 enriched Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways were shared
across all four groups (Fig. 3; Supplementary Material, Table S3).
There were 54 KEGG pathways shared by C9-ALS and nonC9-
ALS fibroblasts, including ‘proteoglycans in cancer’ and ‘ErbB
signaling pathway’ as the top two most significant ones (Table 2).
In WB, 56 KEGG pathways were shared by C9-ALS and nonC9-
ALS, including ‘proteoglycans in cancer’, ‘morphine addiction’ and
‘GABAergic synapse’ (Table 3).

To identify the main themes of these enriched pathways, we
built an association network using our in-house tool richR from
the significant pathways in fibroblasts and WB. The generated
network clusters enriched pathways with similar gene content.
Highly interconnected subnetworks are highlighted by distinct
colors (Fig. 4). In both C9-ALS (Fig. 4A) and nonC9-ALS (Fig. 4B)
networks, subnetworks were centered around pathways related
to neuronal functions (e.g. ‘glutamatergic synapse’, ‘dopaminer-
gic synapse’, ‘long-term potentiation’), cancer or cell prolifera-
tion (e.g. ‘glioma’, ‘ErbB signaling pathway’) and metabolism and
inflammation (e.g. ‘mTOR signaling pathway’).

Fibroblast DmiRNAs inversely correspond to
target mRNA stability
miR-186-5p and miR-16-5p were underrepresented in C9-ALS
fibroblasts, while miR-543 was overrepresented in nonC9-ALS
fibroblasts by NanoString analysis (Fig. 2A and B). To validate
these findings, we used quantitative real-time PCR (qPCR) to
quantify miR-186-5p and miR-16-5p in C9-ALS and miR-543
in nonC9-ALS fibroblast RNA (Supplementary Material, Fig. S3).
As anticipated, miR-186-5p levels were lower in C9-ALS versus
control fibroblasts (P = 0.0236). Similarly, miR-16-5p transcripts
were lower in C9-ALS versus control fibroblasts, although this
only approached statistical significance (P = 0.0599). In nonC9-
ALS fibroblasts, miR-543 was higher than in controls (P = 0.0423),
whereas it did not statistically differ in C9-ALS versus control
fibroblasts (P = 0.2773) as expected.

miRNAs negatively regulate their mRNA targets. We previously
analyzed the stability of fibroblast RNA from C9-ALS and nonC9-
ALS samples by Bru-seq and BruChase-seq, techniques that quan-
titatively measure mRNAs stability (21,22). We performed a cor-
relation analysis between DmiRNA levels with their predicted
mRNA target stability in fibroblasts corresponding to a subset
of the published cohort (Fig. 5). Inverse Spearman correlations
were observed for 22 DmiRNAs, including miR-1246 and miR-515-
5p, and 35 mRNAs, including growth arrest and DNA-damage-
inducible, beta (GADD45B) and inositol hexakisphosphate kinase
2 (IP6K2) (Fig. 5). We validated the stability of GADD45B mRNA, a
predicted miR-515-5p target with the largest fold-change, and of
IP6K2 mRNA, a predicted miR-1246 target with the third largest
fold-change, in C9-ALS fibroblasts by qPCR (Fig. 6). miR-1246 was
highly upregulated in C9-ALS fibroblasts, and, as anticipated, the
stability of its mRNA IP6K2 target was significantly diminished
versus controls (P = 0.0181). Similarly, miR-515-5p transcripts were
increased in C9-ALS fibroblasts, which is reflected in a lower
GADD45B mRNA stability relative to controls, although this only
approached statistical significance (P = 0.0555).

Random forest analysis of DmiRNAs
We next performed a random forest analysis on DmiRNAs
from nonC9-ALS WB samples (n = 80) to determine whether
miRNAs can classify nonC9-ALS participants from controls.
There were too few C9-ALS samples (n = 16) for a random
forest analysis. We ran the analysis in three formats, DmiRNAs
identified by NanoStringDiff (n = 46), an additional DmiRNA
set identified by a different analysis tool (n = 60), nSolver from
NanoString, and the DmiRNAs (n = 11) overlapping between the
two tools. Overlapping DmiRNAs produced a receiver operating
characteristic (ROC) curve with the greatest area under the
curve (AUC) of 0.831 [95% Confidence Interval (CI) 0.734–0.929;
Fig. 7A], possibly because employing overlapping DmiRNAs
minimized noise. The next best ROC had AUC 0.778 (95%CI
0.664–0.892), using nSolver (Fig. 7B). Last was the ROC generated
using DmiRNAs identified by NanoStrongDiff (AUC 0.761, 95%CI
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Table 2. Top functions of differential miRNAs from fibroblasts

Type KEGG ID Pathway description #miRNAs #genes Adjusted P-value

C9-ALS hsa05205 Proteoglycans in cancer 45 147 2.81E−10
hsa04012 ErbB signaling pathway 44 71 1.18E−06
hsa04152 AMPK signaling pathway 45 99 1.30E−06
hsa04512 ECM-receptor interaction 38 57 5.98E−06
hsa04390 Hippo signaling pathway 46 109 6.24E−06
hsa00512 Mucin type O-Glycan biosynthesis 25 21 7.77E−06
hsa05200 Pathways in cancer 48 273 7.77E−06
hsa00061 Fatty acid biosynthesis 20 9 1.12E−05
hsa04550 Signaling pathways regulating

pluripotency of stem cells
46 103 1.23E−05

hsa04261 Adrenergic signaling in
cardiomyocytes

45 105 2.94E−05

hsa04915 Estrogen signaling pathway 43 71 5.11E−05
hsa04360 Axon guidance 45 95 5.11E−05
hsa04510 Focal adhesion 44 149 5.87E−05
hsa04015 Rap1 signaling pathway 46 151 5.87E−05
hsa04150 mTOR signaling pathway 44 51 6.26E−05
hsa05214 Glioma 44 49 6.26E−05
hsa04350 TGF-beta signaling pathway 41 59 7.58E−05
hsa04520 Adherens junction 44 59 7.58E−05
hsa05215 Prostate cancer 44 69 1.22E−04
hsa04151 PI3K-Akt signaling pathway 47 231 1.34E−04

nonC9-ALS hsa00512 Mucin type O-Glycan biosynthesis 23 20 3.43E−07
hsa05205 Proteoglycans in cancer 38 135 3.43E−07
hsa04012 ErbB signaling pathway 37 68 9.17E−07
hsa04360 Axon guidance 36 91 4.44E−06
hsa05032 Morphine addiction 36 65 5.11E−06
hsa04520 Adherens junction 39 58 6.67E−06
hsa05031 Amphetamine addiction 33 49 2.33E−05
hsa04152 AMPK signaling pathway 38 90 2.33E−05
hsa04014 Ras signaling pathway 41 153 2.79E−05
hsa04915 Estrogen signaling pathway 35 65 3.85E−05
hsa04727 GABAergic synapse 36 60 3.85E−05
hsa04724 Glutamatergic synapse 37 82 3.85E−05
hsa05231 Choline metabolism in cancer 38 76 7.47E−05
hsa04261 Adrenergic signaling in

cardiomyocytes
37 99 9.34E−05

hsa00310 Lysine degradation 33 34 1.29E−04
hsa05211 Renal cell carcinoma 35 52 1.43E−04
hsa05212 Pancreatic cancer 35 49 2.08E−04
hsa04015 Rap1 signaling pathway 38 140 2.84E−04
hsa05200 Pathways in cancer 40 261 3.13E−04
hsa04350 TGF-beta signaling pathway 31 56 3.71E−04

0.645–0.877; Fig. 7C). In all instances, miR-26a-5p emerged as
the top candidate, which differentiated nonC9-ALS from control
samples, followed by miR-30c-5p (Fig. 7D). This result suggests
that the small subset of common DmiRNAs identified by the two
tools have the most classifying power between ALS and control.
Pathway analysis of genes regulated by miR-26a-5p identified
enriched pathways, including ‘protein processing in endoplasmic
reticulum’ (hsa04141, P = 6.09e−06), ‘hippo signaling pathway’
(hsa04390, P = 4.04e−05) and ‘biosynthesis of unsaturated fatty
acids’ (hsa01040, P = 0.00046).

Discussion
Familial ALS comprises ∼15% of all cases and the most common
genetic mutation is a hexanucleotide repeat expansion in
C9orf72 (2). The underlying disease etiology remains unknown
in the remaining 85% of sporadic ALS patients. Cytoplasmic

TDP-43 aggregates in motor neurons are an almost universal
feature in ALS (2), although mutations to TAR DNA binding protein
1 (TARDBP) itself (gene encoding TDP-43) are uncommon. TDP-
43 regulates miRNA processing by affecting the stability of or
binding to Drosha or Dicer (7,8). Thus, altered RNA metabolism,
including of miRNAs, may be generally disrupted in ALS. In the
current study, we found that fibroblasts and WB from C9-ALS
and nonC9-ALS patients exhibited a distinct DmiRNA profile
versus controls. There were more DmiRNAs in C9-ALS (n = 114,
total fibroblasts and WB) than in nonC9-ALS (n = 91) samples,
possibly because of the comparative heterogeneity of nonC9-
ALS samples. We also identified DmiRNAs by tissue type in
fibroblasts (31 increased, 31 decreased) and WB (42 increased,
22 decreased) from C9-ALS and nonC9-ALS patients. Of these,
four DmiRNAs were common to both tissues and groups (C9-
ALS, nonC9-ALS) and may represent an ALS-specific panel of
miR-30b-5p, miR-30c-5p, miR-484 and miR-92a-3p. Functional
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Table 3. Top functions of differential miRNAs from WB

Type KEGG ID Pathway description #miRNAs #genes Adjusted P-value

C9-ALS hsa05205 Proteoglycans in cancer 57 157 1.74E−08
hsa04012 ErbB signaling pathway 54 72 3.40E−06
hsa05032 Morphine addiction 54 72 3.40E−06
hsa04390 Hippo signaling pathway 53 113 7.86E−06
hsa04727 GABAergic synapse 51 67 9.30E−06
hsa05200 Pathways in cancer 61 286 2.39E−05
hsa04360 Axon guidance 56 97 6.49E−05
hsa00512 Mucin type O-Glycan biosynthesis 31 22 6.57E−05
hsa00533 Glycosaminoglycan

biosynthesis—keratan sulfate
17 12 8.38E−05

hsa05100 Bacterial invasion of epithelial cells 51 63 8.95E−05
hsa05211 Renal cell carcinoma 48 54 9.14E−05
hsa04520 Adherens junction 51 60 9.14E−05
hsa04120 Ubiquitin mediated proteolysis 52 106 9.14E−05
hsa04015 Rap1 signaling pathway 57 157 9.85E−05
hsa04350 TGF-beta signaling pathway 48 62 1.28E−04
hsa04068 FoxO signaling pathway 53 104 1.40E−04
hsa05033 Nicotine addiction 46 31 2.13E−04
hsa00310 Lysine degradation 48 38 2.28E−04
hsa04919 Thyroid hormone signaling pathway 55 90 2.28E−04
hsa04724 Glutamatergic synapse 56 86 2.75E−04

nonC9-ALS hsa05032 Morphine addiction 30 68 1.57E−11
hsa05205 Proteoglycans in cancer 34 140 4.15E−11
hsa04727 GABAergic synapse 28 63 3.95E−08
hsa04360 Axon guidance 33 92 4.79E−08
hsa04390 Hippo signaling pathway 33 102 4.79E−08
hsa04012 ErbB signaling pathway 34 68 4.79E−08
hsa04015 Rap1 signaling pathway 36 147 1.87E−07
hsa05200 Pathways in cancer 37 255 6.01E−07
hsa04014 Ras signaling pathway 37 150 1.33E−06
hsa00512 Mucin type O-Glycan biosynthesis 20 20 1.39E−05
hsa04724 Glutamatergic synapse 33 77 3.45E−05
hsa04510 Focal adhesion 35 139 3.52E−05
hsa04919 Thyroid hormone signaling pathway 35 81 4.76E−05
hsa04512 ECM-receptor interaction 27 51 5.02E−05
hsa05211 Renal cell carcinoma 27 50 7.22E−05
hsa05214 Glioma 28 46 9.21E−05
hsa05030 Cocaine addiction 26 34 1.47E−04
hsa04350 TGF-beta signaling pathway 29 53 1.47E−04
hsa04068 FoxO signaling pathway 32 91 1.47E−04
hsa05100 Bacterial invasion of epithelial cells 30 55 1.49E−04

enrichment identified 102 biological pathways overall, of which
44 were shared across C9-ALS and nonC9-ALS in both tissues
versus controls. Network analysis centered on pathways related
to neuronal function, metabolism and cellular proliferation and
structure. Finally, random forest of DmiRNAs produced an ROC
curve with an AUC of 0.831 for differentiating ALS patients from
control participants.

Previously, we profiled miRNA (18,23) and mRNA (23) in post
mortem spinal cord tissue from sporadic ALS patients. We found
that only miR-142-5p and miR-155-5p were upregulated in spo-
radic ALS spinal cord, but 88 miRNAs were downregulated, with
miR-577 and miR-935 as the most suppressed in ALS (18). None of
the spinal cord miRNAs overlapped with both fibroblast and WB
miRNAs in this study. It is unclear whether differences in miRNAs
between accessible biospecimens versus spinal cord tissue in ALS
stems from disease pathology or from tissue-specific biomarkers
independent of the disease process. Functional pathway anal-
ysis of spinal cord miRNAs highlighted cellular regulation and

proliferation and immune response (18,23), which partially over-
laps with fibroblast and WB miRNA pathways.

The role of miRNAs in ALS was first highlighted in mutant
Superoxide Dismutase 1 (SOD1G93A) mice, which had upregulated
skeletal muscle-specific miR-206 later in disease (24). Progression
was slowed following miR-206 knockout. Several studies have
corroborated overrepresentation of miR-206 in ALS muscle and
plasma (17), but it is non-specific to ALS since it is also altered in
muscular dystrophies (25) and other neurodegenerative diseases
(26,27). This underscores the importance of including biosam-
ples from similar yet distinct diseases to rule out miRNAs with
significant overlap, which only a few studies have considered
(28–30). Aside from miR-206, several other miRNAs are up- or
downregulated in ALS, but with very little overlap across studies,
which may be attributed to several factors. First, most studies
recruited sporadic ALS patients at distinct stages of the disease,
resulting in heterogeneous populations. Second, study sample
sizes were small and likely unrepresentative of larger populations
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Figure 2. Fibroblast and WB DmiRNAs from C9-ALS and nonC9-ALS versus control participants. Fold-change (x-axis) of differential miRNAs (DmiRNAs;
P < 0.05; y-axis) identified by NanoStringDiff. DmiRNAs that increased in ALS versus controls in yellow; DmiRNAs that decreased in ALS versus controls
in blue. Plots for fibroblasts (FB) in (A) C9-ALS and (B) nonC9-ALS versus controls; plots for WB in (C) C9-ALS and (D) nonC9-ALS versus controls; yellow,
upregulated in ALS versus controls; blue downregulated in ALS versus controls. (E) Venn diagram of the number of shared and unique DmiRNAs between
fibroblasts and WB for C9-ALS and nonC9-ALS groups.

(17). Finally, studies profile different tissues. To overcome these
limitations, we included both C9-ALS and nonC9-ALS from two
tissues, fibroblasts and WB, from a relatively large total number
of ALS samples (n = 81).

We report more DmiRNAs in C9-ALS than in nonC9-ALS versus
controls with tissue-specific differences, although there was some
overlap. This is aligned with other studies (31,32), which identified
a 30-panel DmiRNA signature in familial ALS versus controls,
but only 2 DmiRNAs in sporadic ALS versus controls, which the
authors concluded could have arisen from greater heterogeneity
of sporadic ALS. Another study of ALS muscle versus plasma
found some but incomplete overlap in miRNA profiles (33), as we
observed, indicating variation by tissue. Moving forward, it will
be important to define the best tissue for analysis and stratify a
sufficient sample size by genetic mutation to validate a strong ALS
miRNA panel.

Currently, there is no sensitive molecular diagnostic test for
ALS. With the goal of bridging this knowledge gap, we examined
ALS-associated miRNA profiles in accessible WB, an immune
cell-containing biofluid. Immune system dysfunction is a recur-
rent ALS theme (34). ALS participants exhibit distinct circulating

immune cell populations versus healthy controls (35–38), advo-
cating WB as a diagnostic medium for an ALS test. miRNAs are
also attractive because they circulate widely in WB (39) and may
represent a snapshot of disease status, including ALS (17). We
performed random forest of all DmiRNAs from nonC9-ALS WB,
which generated an ROC curve with an AUC of 0.832. The top
candidate was miR-26a-5p, followed by miR-30c-5p, which most
robustly differentiated ALS patients from control participants.
Pathway analysis of miR-26a-5p-regulated genes yielded ‘protein
processing in endoplasmic reticulum’, ‘hippo signaling pathway’
(see below) and ‘biosynthesis of unsaturated fatty acids’.

No study has identified an miRNA panel unique to nonC9-
ALS. Our top two candidates, miR-26a-5p and miR-30c-5p, were
identified in a study of 56 sporadic ALS WB samples (40) but
were downregulated rather than upregulated. Other studies have
noted miR-26a-5p downregulated in muscle (41) or upregulated
in serum (42) in ALS. Therefore, there is a lack of consensus
in the literature arising from the heterogeneity of sporadic ALS
and small sample sizes. We did not evaluate miRNA changes
longitudinally over the disease course, which may be an additional
factor affecting consensus among results. Indeed, a pilot study
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Figure 3. KEGG pathway analysis of DmiRNAs. Heat-map of significantly enriched KEGG pathways identified for each of the DmiRNA datasets
represented by a log10-based color and number index. FB, fibroblasts.

suggests that miRNAs correlate with and change over time in
relationship to clinical parameters (30). Furthermore, miRNAs
have multiple targets, so there may be overlap in downstream
biological pathways even if the overlap between DmiRNAs by
studies is lacking.

Thus, after analyzing DmiRNAs, we next examined their target
mRNAs to infer downstream biological pathways. miRNAs nega-
tively regulate their targets by recruiting Argonaute proteins and
assembling into an RNA-induced silencing complex, cleaving the
target mRNA (43). We leveraged our Bru-seq and BruChase-seq
dataset to correlate DmiRNAs to target mRNA stability (21,22).
Bru-seq and BruChase-seq label nascent mRNA followed by a
pulse with an orthogonal label after a time delay to assess stability
(21). Less stable mRNAs decrease in level to a greater extent
than more stable mRNAs over time. As anticipated, we found
that C9-ALS fibroblast miRNA levels from this study correlated
inversely with mRNA target stability from C9-ALS fibroblasts
from our previously published study (21). Presumably, high-level
miRNAs degraded their target mRNAs relatively rapidly, rendering
them of lower stability, whereas low-level miRNAs degraded their
tagets relatively more slowly, rendering them of higher stability.
DmiRNA-to-mRNA correlations did not attain 100%, likely due
to the presence of alternative mRNA-destabilizing or degrading
pathways, such as decapping and base modifcations (44,45). We
validated the DmiRNA-to-mRNA correlations by qPCR for two
target mRNAs, GADD45B and IP6K2.

However, miRNAs have multiple targets, so we performed func-
tional enrichment of all mRNA targets of significant DmiRNAs.
We then clustered biologically enriched pathways by network

analysis to identify the main themes. The subnetworks, along with
the highly inter-connected nodes, provided interesting insight into
ALS pathology. The largest inter-connected subnetwork in C9-ALS
(shaded purple) contained several cancer KEGG pathways mostly
shared by fibroblasts and WB, including ‘pathways in cancer’,
‘ErbB signaling pathway’ and ‘MAPK signaling pathway’. There
were also cancer KEGGs unique to fibroblasts, such as ‘small
cell lung cancer’. JAK–STAT signaling is central to ‘pathways in
cancer’, which is overrepresented in C9-ALS samples. We pre-
viously found that JAK–STAT signaling is also prominent upon
analysis of mRNA from sporadic ALS spinal cords (23). In an in
vitro ALS model, we found that tofacitinib-mediated blocking of
JAK–STAT signaling in natural killer cells inhibits their ability to
attack motor neurons (46). Collectively, these results suggest that
this pathway may serve as a therapeutic target in ALS, although
further studies are warranted.

ErbBs are also of particular interest; they influence cell survival
and proliferation and activate MAPK and PI3K-Akt signaling (47).
ErbB is activated by its ligand neuregulin 1, which has lower
expression in spinal cords from ALS patients and SOD1G93A mice,
a model of familial ALS (48). Promoting neuregulin 1 expression
in SOD1G93A animals slows disease progression in females. In
humans, a Japanese family with familial ALS harbors mutant
ERBB4, with a diminished capacity for neuregulin 1-mediated acti-
vation (49). MAPK signaling was also featured in this subnetwork
(50); inhibiting p38 MAPK rescues retrograde axonal transport
in SOD1G93A ALS mice (51), whereas blocking AMPKα prevents
hydrogen peroxide-induced apoptosis of SOD1G93A embryonic
neural stem cells (52). These examples illustrate how our pathway
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Figure 4. KEGG pathway association networks. Significantly enriched KEGG pathways were combined and visualized in a network for (A) C9-ALS and (B)
nonC9-ALS samples. KEGG pathways are represented by nodes; shared gene content between pathways are represented by edges. Within the network,
node shape indicates the tissue source of the enriched pathways: diamond, fibroblasts only; circle, WB only; square, both fibroblasts and WB. Node
color is based on –log10 (P-value). Node size corresponds to the number of connections each node has. All networks were organized by the inverted
self-organizing map layout with minimal manual node rearrangement for visibility. Highly inter-connected subnetworks were identified by Cytoscape
MCODE and are highlighted by various colors. Single nodes, which are not connected to other nodes, were excluded from this network visualization.
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Figure 5. Identifying potential DmiRNA as regulators of mRNA stability in fibroblasts. miRNA fold-change (FC) for differential miRNAs (DmiRNAs; top
row) in C9-ALS fibroblast. Predicted target mRNA (first column) stability values (mature/nascent; second column) are from our previously published
study (21). Values in other table cells are the significant Pearson correlation coefficients between each pair of DmiRNA and its predicted mRNA targets;
color represents the degree of differential expression in fold-changes (red up-regulation in ALS, blue down-regulation in ALS). Stability-FC and miRNA-FC
were scaled independently.

Figure 6. Validation of target mRNA in fibroblasts. Target mRNA in
fibroblasts were validated by qPCR. Results were normalized to yWHAZ
and presented as fold-change calculated by the 2-�C

T method for GADD45
[C9-ALS, n = 5; Control (Ctrl), n = 6], IP6K2 (C9-ALS, n = 5; Ctrl, n = 6). Tran-
script stability was determined as the ratio between transcript abundance
at 6 h (pulse/chase) to 0.5 h (pulse) and compared with Ctrl. Experiment
performed in duplicate; analysis by Student’s t-test; data represented as
mean ± standard error of the mean.

analysis can identify possible therapeutic ALS targets, e.g. ErbB,
MAPK, which the literature shows can be pursued as potential
therapies in pre-clinical studies with ALS mouse models.

There were two other highly inter-connected C9-ALS subnet-
works with signaling pathways known to be dysfunctional in ALS.
One subnetwork (shaded orange) was heavily centered on path-
ways in both fibroblasts and WB related to neuronal function and
signaling, such as ‘glutamatergic synapse’, ‘GABAergic synapse’
and ‘long-term potentiation’. ‘Sphingolipid signaling pathway’
was also featured, which we have identified as a recurrent dys-
regulated pathway in sporadic ALS by metabolomics analysis of
plasma (53,54). This pathway is also linked to familial ALS through
mutations to SPTLC1, involved in sphingolipid synthesis (55,56).

Additionally, the orange subnetwork contained some pathways
that were WB predominant, e.g. ‘dopaminergic synapse’, ‘cholin-
ergic synapse’. The second subnetwork (shaded green) contained
pathways previously identified in ALS and linked to development,
e.g. ‘Wnt signaling pathway’ (57) and ‘hippo signaling pathway’
(58), and is aligned with recent evidence of widespread neural
network disruption in ALS (59).

Finally, when we examined the network constructed from
nonC9-ALS KEGG pathways, similar clusters emerged as for
C9-ALS. These spanned a cancer-predominant subnetwork
(shaded blue) and a development subnetwork (shaded green).
The orange C9-ALS subnetwork splits into two subnetworks in
sporadic nonC9-ALS, one involving pathways related to neuronal
function (shaded pink), which is highly interconnected with a
second subnetwork encompassing various signaling pathways
(shaded purple). Of pathways related to ALS, ‘PI3K-Akt signaling
pathway’ (60) appeared in the nonC9-ALS network and clustered
with MAPK. ‘FOXO signaling pathway’ (61) was linked with the
neurodevelopment subnetwork in nonC9-ALS, rather than the
cancer subnetwork in C9-ALS. Another notable difference in the
nonC9-ALS network is greater integration of ‘regulation of actin
cytoskeleton’ into the green development subnetwork, which
bridges the development and cancer subnetworks in familial
C9-ALS. Several ALS mutations have been identified in genes
that regulate actin cytoskeleton (62), such as profilin 1 (PFN1),
a regulator of actin polymerization (63), and ALS2, encoding the
protein alsin, which has a RhoGEF domain for regulating Rho
and actin dynamics (64). Although preliminary, these studies
corroborate the overrepresented terms in our pathway analysis
of miRNAs in ALS and may suggest therapeutic targets.

This study benefited from several strengths. First, the ability to
access to two tissues. Second, ALS patients were stratified by the
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most prevalent C9orf72 alteration and examined DmiRNAs in the
context of both familial and sporadic ALS. Third, DmiRNAs were
identified by a multiplexed, untargeted approach, NanoString and
rigorously analyzed by NanoStringDiff. This study also suffered
limitations. Even with the large number of samples, the study still
was not powered to detect sex differences, an important consider-
ation in ALS, which is more prevalent in men (1). Moreover, familial
ALS samples were limited to C9orf72 carriers, which comprise only
half of familial cases. The qPCR validation of select DmiRNAs was
done using a single reference rather than multiple references.

One major goal of this study was to seek ALS biomarkers in
accessible tissue. Our top candidates, miR-26a-5p and miR-30c-
5p, did not find overlap with all other ALS miRNA reports in
the literature. The challenges faced for identifying a unifying
miRNA biomarker panel in ALS are substantial. ALS is highly
heterogeneous, with variation in clinical presentation (e.g. onset
segment, speed of disease progression, disease stage), underlying
genetic cause (with over 40 identified ALS mutations) and a
possible environmental contribution (1,2). It is possible that this
considerable extent of heterogeneity may defy determination
of an ALS-specific miRNA panel. Nevertheless, our study
underscores the importance of miRNAs for understanding ALS
pathophysiology by providing miRNA pathway analysis of one
of the largest ALS sample sizes to date, which uncovered both
well-known, corroborating, pathways and less-known pathways
of potential future interest.

Materials and Methods
Study participants and samples
All patients 18 years and older and able to communicate in
English attending the University of Michigan Pranger Multidisci-
plinary ALS clinic were invited to submit samples to the University
of Michigan ALS Patient Repository (UMAPR), an Institutional
Review Board (IRB)-approved repository. Control participants were
recruited separately. All participants provided written informed
consent. For this study, participant-provided biospecimens
were retrieved from UMAPR, which met the following criteria:
diagnosis of ALS based on the Gold Coast criteria (65) and further
classified by the initial and/or revised EI Escorial criteria (66). ALS
participants were distributed between the sporadic ALS cohort
(nonC9-ALS), by selecting patients without a family history of ALS
and negative for C9orf72 expansion, and the familial ALS cohort
(C9-ALS), by selecting patients with C9orf72 expansion determined
by published methods (67). Age- and sex-matched healthy
controls were then selected. Skin punch biopsy from the forearm
was collected using standard protocols and participant-derived
fibroblasts were isolated as previously reported (21). Fibroblasts
were cultured in fibroblast media: Dulbecco’s Modified Eagle
Medium (DMEM) with 4.5 g/l D-glucose, with glutamine/without
pyruvate (Gibco, Thermo Fisher Scientific, Grand Island, NY, USA),
supplemented with 10% heat-inactivated fetal bovine serum (FBS)
(Gibco, Thermo Fisher Scientific), 1X Glutamax-1 (Gibco, Thermo
Fisher Scientific) and 1X MEM NEAA (Gibco, Thermo Fisher
Scientific). Approximately 5 mL of WB was collected by standard
venipuncture into PAXgene Blood RNA Tubes (cat # 762125,
Qiagen, Germantown, MD, USA; for RNA isolation) and another
5 mL into EDTA tubes (plasma isolation by centrifugation); all
tubes were stored at −80◦C. The overall experimental outline is
presented in Fig. 1.

RNA extraction and quality determination
Total RNA for miRNA profiling was isolated from fibroblasts using
the miRNeasy Mini Kit (cat # 217004, Qiagen) and from WB with

the PAXgene Blood miRNA Kit (cat # 63134, Qiagen), according
to the manufacturer’s instructions. RNA was concentrated and
purified using the Zymo RNA Clean & Concentrator-5 (cat # R1016,
Zymo Research, Irvine ,CA, USA). RNA concentration was deter-
mined with a NanoDrop ND-1000 Spectrophotometer (NanoDrop
Technologies, Thermo Fisher Scientific, Wilmington, DE, USA)
and quality was assessed by the 260/280 and 260/230 nm ratios.
RNA integrity was measured using the Agilent Bioanalyzer 2100
(Agilent Technologies, Santa Clara, CA, USA).

miRNA expression profiling
Profiling was performed by the NanoString nCounter Human v2
(on fibroblasts) and v3 (on WB) miRNA Expression Panels (NanoS-
tring Technologies, Seattle, WA, USA), as previously described (68).
Briefly, this assay detects 800 endogenous miRNAs, 5 reference
transcripts, plus 6 positive and 6 negative controls. About 150 ng
of total RNA per sample was used as input for the nCounter
Human miRNA sample preparation and hybridized for 16 h at
65◦C. Subsequently, the strip tubes were placed into the nCounter
Prep Station for automated sample purification and subsequent
reporter capture. Each sample was scanned for 555 fields of view
on the nCounter Digital Analyzer and data were extracted using
the nCounter RCC Collector (both NanoString). A quality con-
trol step identified and eliminated unrelated samples (outliers)
using nSolver Analysis Software v3.1 (NanoString), according to
manufacturer’s instruction. Principal component analysis visu-
alized and examined the overall variation across samples. Next,
data were analyzed with NanoStringDiff, an R package specifically
designed for NanoString nCounter data (20). Data were normal-
ized using positive controls, negative controls and reference genes
(ACTB, B2M, GAPDH, RPL19, RPLP0) embedded in the nCounter
system, and differential log fold-changes and multiple testing
adjusted statistical significance q-values were obtained.

Pathway analysis
DIANA-miRPath v3.0 (69) was used to predict DmiRNA gene tar-
gets and characterize their biological functions and pathways
using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
terms. KEGG pathways with false discovery rate (FDR) < 0.05 were
considered significantly enriched among the DmiRNAs from each
tissue and genotype (C9-ALS or nonC9-ALS). To identify the overall
theme of these enriched pathways, an association network for
each tissue was generated from the gene-content overlap among
the KEGG pathways using richR, our in-house analysis R package
(https://github.com/hurlab/richR). The inter-relationship among
the significant pathways within each tissue was visualized in
Cytoscape (70) and highly-inter-connected pathway clusters were
detected by MCODE (71), a Cytoscape application for network
cluster analysis.

Fibroblast labeling and sequencing and mRNA
stability
Fibroblast mRNA stability from controls (n = 3), nonC9-ALS
(n = 4) and C9-ALS (n = 4) participants was determined by 5-
bromouridine sequencing (Bru-seq) and 5-bromouridine-chase
sequencing (BruChase-seq), as previously described (21). Briefly,
fibroblasts were grown to confluency in duplicate in 150 mm
petri dishes (Falcon/Corning, Corning, NY, USA) in fibroblast
media: DMEM with 4.5 g/l D-glucose, with glutamine/without
pyruvate (Gibco, Thermo Fisher) supplemented with 10% heat
inactivated FBS (Gibco, Thermo Fisher), 1X Glutamax-1 (Gibco,
Thermo Fisher) and 1X MEM NEAA (Gibco, Thermo Fisher), and
5-Bromouridine (2 mM; cat # 850187, Sigma-Aldrich, Burlington,
MA, USA) was added to both petri dishes and incubated for 0.5 h
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Figure 7. Random forest analysis using overlapping DmiRNAs. ROC curves for random forest analysis of (A) overlap DmiRNAs (shared by NanoStringDiff
and nSolver) with an AUC of 0.831 (95% CI 0.734–0.929), (B) nSolver AUC 0.778 (95%CI 0.664–0.892) and (C) NanoStringDiff AUC 0.761 (95%CI 0.645–0.877).
(D) Variable importance in projection plot ranking importance of DmiRNAs to all three classifiers, overlap (blue), NanoStringDiff (orange) and nSolver
(grey). miR-26a-5p was the top candidate, followed by miR-30c-5p, across all methods.

at 37◦C in 5% CO2 to label cells, which were either harvested
(pulsed, first petri dish) or chased for 6 h with uridine (20 mM,
second petri dish; cat # U3750, Sigma-Aldrich) at 37◦C in 5% CO2.
Cells were harvested in 3 mL of QIAzol (cat # 79306, Qiagen)
and total RNA was isolated by phenol/chloroform extraction
and resuspended in 100 μL of diethyl pyrocarbonate water. Bru-
labeled RNA was immunoprecipitated with mouse anti-BrdU
antibody (clone 3D4; cat # 555627, BD Pharmingen, Franklin
Lakes, NJ, USA) conjugated to goat anti-mouse Dynabeads (cat #
11033, Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA).
Strand-specific DNA libraries were prepared with the Illumina
TruSeq Kit (Illumina, San Diego, CA, USA) and sequenced on an
Illumina platform, as previously described (21). RNA stability was
calculated as the ratio of transcript abundance at 6 h versus
0.5 h. We used a cutoff of ≥1.5-fold-change in stability of mRNA
transcripts.

Quantitative real-time PCR
For miRNA, 30 ng of total RNA was reverse transcribed using
the High-Capacity cDNA Reverse Transcription Kit (cat # 4368814)
with Megaplex Primer Pools, Human Pools A v2.1 (cat # 4401009).
cDNA was preamplified using TaqMan PreAmp Master Mix (cat #
4391128) and Megaplex PreAmp Primers, Human Pool A v2.1 (cat #
4399233). qPCR was performed with TaqMan Universal PCR Master
Mix (cat # 4318157) and TaqMan microRNA Assays (cat # 4427975,
all Thermo Fisher Scientific, Waltham, MA, USA). Each sample was
run in triplicate. Transcripts levels were calculated by the ��CT

method and normalized to RNU48. The control group in each
comparison was used as a calibrator (��CT = 0, 2∧(−��CT) = 1).

Amplification efficiency for each miRNA was assessed by techni-
cal duplicates method on a Bio-Rad Real-Time PCR System (Bio-
Rad, Ann Arbor, MI, USA).

For mRNA stability, cDNA was generated using iScript Reverse
Transcription Supermix (cat # 1708841, Bio-Rad) on the entire
anti-Bru-immunoprecipitated pulse and pulse/chased RNA
(Fibroblast labeling and sequencing and mRNA stability section).
qPCR was performed on 2 μL of template with TaqMan Gene
Expression Master Mix (cat # 4369016, Thermo Fisher Scientific)
and TaqMan probes (Thermo Fisher Scientific) for GADD45B,
IP6K2a and YWHAZ (normalization reference). The PCR program
was 120 s at 50◦C, 10 s at 95◦C, 40x cycles (15 s at 95◦C, 60 s at
60◦C) on an Applied Biosystems StepOne Real-Time PCR system
(Thermo Fisher Scientific). Transcript stability was determined as
the ratio between transcript abundance at 6 h (pulse-chase/pulse)
to 0.5 h (pulse).

Random forest
The Classification And REgression Training (CARET) package from
R was used to build a random forest classification model (72). Ten-
fold cross-validation was performed to construct and evaluate
the model. The ROC curves were plotted for all folds’ prediction
using the pROC package from R (73). Pathway analysis for miR-
26a-5p was derived using mirPath (69). For DmiRNAs identified by
nSolver, nCounter data by sample were normalized to the top 100
most highly expressed miRNAs across all samples and differential
levels were examined by nSolver differential expression testing
menu between groups. miRNA ratios between groups and statis-
tical significance P-values were obtained, which were adjusted
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for multiple testing by the p.adjust function in R to calculate
FDRs.

Statistical analysis
Raw data were analyzed using NanoStringDiff software to
identify statistically significant DmiRNAs (P < 0.05) using nor-
malized counts between sample groups. Data were expressed as
mean ± standard error of the mean. Prism 5.01 (GraphPad, San
Diego, CA, USA) was also used to analyze statistical significance
(P < 0.05, two-tailed Student’s t-test).

Supplementary Material
Supplementary Material is available at HMG online.
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Abstract
Objective: To identify associations between occupational settings and self-reported occupational exposures on amyotrophic lat-
eral sclerosis (ALS) survival and phenotypes. Methods: All patients seen in the University of Michigan Pranger ALS Clinic
were invited to complete an exposure assessment querying past occupations and exposures. Standard occupational classifica-
tion (SOC) codes for each job and the severity of various exposure types were derived. Cox proportional hazards models
associated all-cause mortality with occupational settings and the self-reported exposures after adjusting for sex, diagnosis age,
revised El Escorial criteria, onset segment, revised ALS Functional Rating Scale (ALSFRS-R), and time from symptom onset
to diagnosis. Multinomial logistic regression models with three categories, adjusted for age, assessed the association between
occupational settings and exposures to onset segment. Results: Among the 378 ALS participants (median age, 64.7 years;
54.4% male), poorer survival was associated with work in SOC code “Production Occupations” and marginally with work in
“Military Occupation”; poor survival associated with self-reported occupational pesticide exposure in adjusted models.
Among onset segments: cervical onset was associated with ALS participants having ever worked in “Buildings and Grounds
Cleaning and Maintenance Occupations,” “Construction and Extraction Occupations,” and “Production Occupations”; bul-
bar onset with self-reported occupational exposure to radiation; and cervical onset with exposure to particulate matter, volatile
organic compounds, metals, combustion and diesel exhaust, electromagnetic radiation, and radiation. Conclusion:
Occupational settings and self-reported exposures influence ALS survival and onset segment. Further studies are needed to
explore and understand these relationships, most advantageously using prospective cohorts and detailed ALS registries.

Keywords: Amyotrophic lateral sclerosis, occupation, survival, phenotype

Introduction

Amyotrophic lateral sclerosis (ALS) is a complex and
fatal neurodegenerative disease caused by genetic and
non-genetic factors. Of the non-genetic factors, expo-
sures in occupational, residential, and avocational set-
tings linked to ALS risk include pesticides and metals
exposure (1). Identifying and confirming risk factors
are critical to pinpoint modifiable ALS risks. Recently
we reported that occupational exposure to particulate
matter, volatile organic compounds, combustion and
diesel exhaust, and especially metals, along with a his-
tory of working in production occupations, correlated
with increased ALS risk (2). We have found that per-
sistent organic pollutant exposure associates with

ALS risk (3) and survival (4). Therefore, identifying
links between occupational factors and ALS survival
and onset segment could have important implications
on understanding how exposures influence the pro-
gression and presentation of disease. This study uses
a prospective ALS cohort to explore the association
of ALS survival and phenotype with occupational his-
tories and self-reported exposures.

Methods

Participants

Full cohort details were previously published
(3–6). Briefly, all patients attending the University
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of Michigan Pranger ALS Clinic were invited to
join this study provided they were older than 18
years. Participants were required to carry a diagno-
sis of ALS and to provide written informed con-
sent in English. Participants were enrolled between
June 2010 and March 2020. The study received
Institutional Review Board (IRB) approval.

Data collection and processing

Participants completed a paper survey requesting
information on four previous occupations: the cur-
rent or most recent job, the job prior to the cur-
rent/most recent, and the other two longest held
jobs. For each job, participants provided the job
title and description, and answered detailed
prompts about occupational exposures using
instruments modified from the Agency for Toxic
Substances and Disease Registry (2). All responses
were assessed for completeness and accuracy, and
follow-up phone calls for clarifications were made
as needed. Responses were entered into an elec-
tronic database and checked at random to ensure
correct data entry. Jobs and job years following
ALS symptom onset were removed. Standardized
Occupation Classification (SOC) Coding was
completed and exposure scores were derived for
each job (2). Briefly, SOCs were initially generated
using both National Institutes of Health (NIH)
(SOCcer model version 2.0 (7), available via
National Cancer Institute, https://soccer.nci.nih.
gov/soccer/) and Centers for Disease Control
(CDC) (NIOCCS; 2010 coding scheme available
from https://www.cdc.gov/niosh/topics/coding/code.
html) systems. SOCs that were discordant, had
low confidence scores, could not be assigned using
the two coding systems, occurred in a military set-
ting, or had high exposure risk were reviewed by
two exposure scientists (C.G., S.A.B.) for accur-
acy. Coding was blinded to clinical outcome data.
Next, survey questions were assigned to nine
exposure categories (particulate matter, volatile
organic compounds, pesticides, metals, biologicals,
combustion and diesel exhaust, electromagnetic
radiation, and corrosives) and combined to gener-
ate composite exposure scores, as detailed previ-
ously (2).

Participant demographics (age, sex, race), date
of symptom onset, date of diagnosis, and onset
segment were abstracted from the survey and med-
ical records. Participants were followed prospect-
ively and last contact (death or censoring) was
recorded. Surveys were returned by March 2020
and prospective survival data were collected
through July 2021.

Statistical analysis

Demographic, clinical, and occupational character-
istics for the study population were calculated. For

each of the nine occupational exposure scores (2),
Kaplan–Meier curves were generated and log-rank
tests ascertained differences in survival for individ-
uals with or without the respective exposures. To
understand associations between occupational his-
tory and ALS survival, Cox models regressed job-
years worked in each individual SOC code against
survival post-diagnosis adjusted for sex, diagnosis
age (quartiles), log-transformed time between
symptom onset and diagnosis, revised El Escorial
criteria (definite or not), onset segment (bulbar or
not), and revised ALS functional rating scale
(ALSFRS-R) at first visit (quartiles). The
Benjamini–Hochberg procedure with a false dis-
covery rate threshold of 0.2 determined signifi-
cance after correcting for multiple testing (8). An
adaptive lasso penalized Cox regression model
with the same adjustment variables above fit job-
years worked in all SOC codes simultaneously
against survival. Because the distribution of job-
years worked was right-skewed, Cox models were
re-run using binary indicators of ever having
worked in each SOC code as a sensitivity analysis.
To estimate the mixture effect corresponding to all
two-digit SOC codes simultaneously conditional
on adjustment covariates, we use a Cox propor-
tional hazards model with the framework of quan-
tile g-computation (9). Non-parametric bootstrap
is used to obtain standard error estimates, and are
subsequently used to construct confidence intervals
and p values. Quantile g-computation is imple-
mented for Cox Proportional Hazards models in
the qgcomp package in R. For occupational expos-
ure scores, Cox models were fit for each exposure
score with survival as the clinical endpoint
adjusted for the same covariates as the SOC sur-
vival models. After the single exposure models, an
unpenalized multivariable Cox model and an adap-
tive lasso penalized Cox model simultaneously
modeled all exposures with survival, again adjusted
for covariates. Because the occupational exposure
scores were right-skewed, we also considered an
unpenalized multivariable Cox regression model
where exposure scores were treated as a binary
variable (zero exposure vs. non-zero exposure), as
a sensitivity check.

Also, as a small subset of participants survived
much longer than average, survival analyses were
repeated after restricting to those less than five
years post-diagnosis to ensure that long survivors
were not overly influential.

Next, occupational association with onset seg-
ment (bulbar, cervical, lumbar) was explored. Job-
years and number of unique jobs worked grouped
by onset segment were tabulated. Age-adjusted
univariate multinomial logistic regression models
associated job-years worked in each SOC code,
and binary indicators of ever working in a job
code, against onset segment. Age-adjusted
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multinomial logistic regression associated continu-
ous and binarized occupational exposure scores
with onset segment. The Benjamini–Hochberg
procedure with a false discovery rate threshold of
0.2 determined significance after correcting for
multiple testing.

Analyses were performed in R version 4.1.1.
Key packages used were glmnet version 4.1–2,
nnet version 7.3–16, survival version 3.2–13, and
survminer version 0.4–9.

Results

Participants

Of the 378 ALS participants with demographic,
ALS phenotyping, and occupational exposure

data, 96.3% completed all occupational exposure
data from the questionnaire (Table 1).

Occupational settings and exposures

Of the 23 reported two-digit SOC codes,
“Education, Training, and Library Occupations,”
“Sales and Related Occupations,” “Management
Occupations,” “Production Occupations,” and
“Office and Administrative Support Occupations”
accounted for the most job-years. “Construction
and Extraction Occupations,” “Healthcare
Practitioners and Technical Occupations,”
“Education, Training, and Library Occupations,”
“Farming, Fishing, and Forestry Occupations,”
and “Legal Occupations” had the highest average
job-years per participant (Supplemental Table 1).

Table 1. Participant demographics and results of univariable unadjusted Cox proportional hazards models.

Covariate ALS Cases (N5 378) HR 95% CI p value

Age at diagnosis (years)a 64.7 (57.5–71.2) 1.03 (1.01, 1.04) <0.001
Status NA
Censored 92 (24.3)
Observed Death 286 (75.7)

Race NA
American Indian and Alaska Native 1 (0.3)
Black or African American 3 (0.8)
White or Caucasian 374 (98.9)

Sex
Female 172 (45.5) 0.65 (0.51, 0.82) <0.001
Male 206 (54.5) Ref

Military Service
Enlisted 60 (15.9) 0.96 (0.70, 1.32) 0.807
Neither 318 (84.1) Ref

Education
High-school or Less 106 (28.0) Ref
Some College, Associate’s Degree 122 (32.3) 0.68 (0.51, 0.91) 0.010
Bachelor’s Degree 85 (22.5) 0.55 (0.39, 0.76) <0.001
Graduate Degree 61 (16.1) 0.52 (0.36, 0.75) 0.001
Missing 4 (1.1)

Smoking Status
Non-smoker 172 (45.8) Ref
Current Smoker 29 (7.7) 0.57 (0.35, 0.92) 0.022
Former Smoker 173 (45.8) 1.01 (0.79, 1.28) 0.965
Missing 4 (1.1)

Revised El Escorial Criteria
Possible 41 (10.8) 0.43 <0.001
Probable, LS 104 (27.5) 0.52 <0.001
Probable 127 (33.6) 0.67 0.008
Definite 94 (24.9) Ref
Suspected 12 (3.2) 0.28 <0.001

Onset Segment
Bulbar 110 (29.1) Ref
Cervical 130 (34.4) 0.44 (0.33, 0.59) <0.001
Lumbar 138 (36.5) 0.54 (0.40, 0.72) <0.001

Time between symptom onset and diagnosis (years)b 1.04 (0.67-1.76) 0.75 (0.65, 0.87) <0.001
Initial ALSFRS-Rc 37 (33-41) 0.97 (0.95, 0.98) <0.001

Table of descriptive statistics for the overall ALS participant study population. For continuous variables, median (25th–75th
percentile), and for categorical variables, N (%). Hazard ratios, 95% confidence intervals, and p values correspond to univariable
unadjusted Cox proportional hazards models.

ALS: amyotrophic lateral sclerosis; ALSFRS-R: Revised ALS Functional Rating Scale; CI: confidence interval; HR: hazard ratio; LS:
lab supported; Ref: reference category.

aInterpretation of hazard ratio is for one year change in age at diagnosis.
bInterpretation of hazard ratio is for one log-year change in time between symptom onset and diagnosis.
cAbout 369 out of 378 have observed ALSFRS-R. Interpretation of ratio is for one point change in ALSFRS-R.
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Exposure to particulate matter, volatile organic
compounds, and metals were most frequent
(Supplemental Table 2).

Survival associations

We first evaluated associations between occupation
and ALS survival. In adjusted models, an add-
itional five years worked corresponded to a hazard
ratio (HR) of 1.06 (95% CI 1.00–1.12, p value ¼
0.040, q-value ¼ 0.416) in “Production
Occupations” (Table 2). No SOC codes were sig-
nificant after multiple comparisons correction.

Furthermore, no occupations were selected by
adaptive lasso regression. The estimated hazard
ratio corresponding to a per quartile increase in
the joint exposure to all two-digit SOC codes con-
ditional on adjustment covariates is 0.99 (95% CI:
0.76, 1.29; p¼0.948), suggesting that there is no
evidence of an occupational mixture effect on ALS
survival. Although not statistically significant, per-
haps owing to only eight participants, “Military
Occupation” correlated with a marginally signifi-
cant shorter survival in unadjusted models (HR ¼
2.04, 95% CI 0.87–4.81, p value ¼ 0.103, q-value
¼ 0.572; adjusted HR ¼ 2.22, 95% CI 0.97–5.07,

Table 2. Job-years worked with two-digit SOC codes associated with survival: single SOC code models.

Unadjusted Model Adjusted Model

Two-digit
SOC Code Description HR 95% CI p value

Q-Value
(BH) HR 95% CI p value

Q-Value
(BH)

11-0000 Management Occupations 1.00 (0.93, 1.08) 0.977 0.981 0.99 (0.92, 1.08) 0.894 0.987
13-0000 Business and Financial

Operations Occupations
1.05 (0.96, 1.13) 0.277 0.647 1.02 (0.94, 1.11) 0.690 0.987

15-0000 Computer and Mathematical
Occupations

0.92 (0.76, 1.13) 0.446 0.855 0.87 (0.69, 1.09) 0.214 0.614

17-0000 Architecture and Engineering
Occupations

0.92 (0.84, 1.01) 0.087 0.572 0.96 (0.87, 1.06) 0.442 0.923

19-0000 Life, Physical, and Social
Science Occupations

0.82 (0.61, 1.09) 0.169 0.602 0.77 (0.57, 1.04) 0.086 0.416

21-0000 Community and Social
Services Occupations

1.06 (0.9, 1.25) 0.501 0.871 1.09 (0.92, 1.3) 0.332 0.764

23-0000 Legal Occupations 0.85 (0.67, 1.08) 0.183 0.602 0.83 (0.65, 1.06) 0.141 0.539
25-0000 Education, Training, and

Library Occupations
1.02 (0.94, 1.1) 0.651 0.871 1.02 (0.94, 1.1) 0.608 0.987

27-0000 Arts, Design, Entertainment,
Sports, and Media
Occupations

0.92 (0.78, 1.08) 0.309 0.647 0.89 (0.76, 1.05) 0.180 0.590

29-0000 Healthcare Practitioners and
Technical Occupations

0.98 (0.9, 1.07) 0.706 0.871 1.00 (0.92, 1.09) 0.987 0.987

31-0000 Healthcare Support
Occupations

1.02 (0.83, 1.26) 0.844 0.925 0.89 (0.71, 1.12) 0.321 0.764

33-0000 Protective Service Occupations 1.05 (0.88, 1.25) 0.574 0.871 1.04 (0.87, 1.25) 0.638 0.987
35-0000 Food Preparation and Serving

Related Occupations
1.21 (1.06, 1.39) 0.006 0.146 1.15 (0.98, 1.34) 0.081 0.416

37-0000 Building and Grounds
Cleaning and Maintenance
Occupations

0.97 (0.83, 1.13) 0.730 0.871 1.00 (0.86, 1.17) 0.967 0.987

39-0000 Personal Care and Service
Occupations

0.96 (0.83, 1.12) 0.611 0.871 0.89 (0.77, 1.02) 0.091 0.416

41-0000 Sales and Related Occupations 0.98 (0.9, 1.06) 0.627 0.871 1.00 (0.92, 1.08) 0.959 0.987
43-0000 Office and Administrative

Support Occupations
1.04 (0.99, 1.09) 0.124 0.572 1.00 (0.95, 1.06) 0.934 0.987

45-0000 Farming, Fishing, and Forestry
Occupations

1.10 (0.95, 1.28) 0.211 0.608 1.01 (0.87, 1.17) 0.896 0.987

47-0000 Construction and Extraction
Occupations

0.95 (0.86, 1.04) 0.294 0.647 0.98 (0.89, 1.08) 0.651 0.987

49-0000 Installation, Maintenance, and
Repair Occupations

1.02 (0.92, 1.13) 0.757 0.871 1.03 (0.93, 1.15) 0.567 0.987

51-0000 Production Occupations 1.06 (1, 1.12) 0.042 0.484 1.06 (1.00, 1.12) 0.040 0.416
53-0000 Transportation and Material

Moving Occupations
1.00 (0.9, 1.12) 0.981 0.981 1.01 (0.9, 1.13) 0.918 0.987

55-0000 Military Occupations 2.04 (0.87, 4.81) 0.103 0.572 2.22 (0.97, 5.07) 0.058 0.416

Single standard occupational classification (SOC) Cox models where outcome is survival post-diagnosis in years for the number of
job-years worked within two-digit SOC codes. Covariates in adjusted models are sex, age at diagnosis (quartiles), log-transformed
time between symptom onset and diagnosis, El Escorial criteria (definite or not), onset segment (bulbar or not), and ALSFRS-R at
first visit (quartiles). Interpretation of hazard ratios (HR) correspond to five additional years worked within the SOC code. BH is the
Benjamini–Hochberg p value. Statistically significant or marginally significant values in bold.
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value ¼ 0.058, q-value ¼ 0.416). Excluding long
surviving participants did not significantly alter the
results (Supplemental Table 3). In models further
adjusted for education and smoking status, the HR
for “Production Occupations” was no longer sig-
nificant (HR ¼ 1.04, 95% CI 0.98–1.11, p value
¼ 0.207); however, occupation and education
were correlated (Supplemental Table 4).

We next investigated associations between self-
reported occupational exposure and survival
(Table 3). Kaplan–Meier plots for each occupa-
tional exposure category differed significantly only
for pesticides, which had a median survival of 1.49
years (IQR 1.14–2.43) versus 2.32 years (IQR
1.39–3.92; p value ¼ 0.046) for those without this
exposure (Figure 1, Supplemental Figure 1). In
multivariable models and adaptive lasso, mortality
rate increased for exposures to pesticides (HR ¼
1.25, 95% CI 1.09–1.44, p value ¼ 0.002 and HR
¼ 1.246, respectively). Results were similar after
adjusting for education and smoking status (HR ¼
1.26, 95% CI 1.09–1.46, p value ¼ 0.002)
(Supplemental Table 5). The ever-exposed (binary
model, occupational exposure score > 0) sensitiv-
ity analysis showed similar results (Supplemental
Table 6). Across all models, occupational exposure
to pesticides consistently correlated with poorer
ALS survival. Multivariable models excluding long
surviving participants also yielded similar results
(Supplemental Table 7).

Onset segment associations

The association of onset segment with occupa-
tional settings and exposures was investigated
using multinomial logistic regression models.
Initial models examined duration of each occupa-
tion by SOC code (Table 4, Supplemental Figure
2). For every five years of work in “Construction
and Extraction Occupations,” the odds of cervical
compared with lumbar onset increased 31% (OR

1.31, 95% CI ¼ 1.02–1.68, p value ¼ 0.031, q-
value ¼ 0.846) after adjusting for age at diagnosis.
This same association was seen when considering
whether a participant “ever-worked” in an occupa-
tion (Supplemental Table 8).

Similar analyses correlated several occupational
exposure scores with onset segment (Table 5,
Figure 2). Using the continuous self-reported
occupational exposure scores adjusted for age at
diagnosis, for every five years of work: the odds of
bulbar onset disease relative to lumbar onset was
1.38 (95% CI 1.01–1.88, p value ¼ 0.040, q-value
¼ 0.103) for radiation exposure; the odds of cer-
vical onset relative to lumbar onset was higher for
exposures to particulate matter (OR ¼ 1.49, 95%

Table 3. Occupational exposure scores associated with survival.

Exposure Score

Univariate Model with Exposure
Scores as Continuous Variable

Multivariable Model with Exposure
Scores as Continuous Variable Adaptive

lasso
N HR 95% CI p value HR 95% CI p value HR

Particulate Matter 378 1.02 (0.9, 1.16) 0.771 0.97 (0.74, 1.27) 0.835 1.000
Volatile Organic Compounds 378 1.14 (1.01, 1.29) 0.038 1.07 (0.89, 1.29) 0.451 1.000
Pesticides 370 1.29 (1.15, 1.46) 0.000 1.25 (1.09, 1.44) 0.002 1.246
Metals 378 1.11 (0.97, 1.26) 0.134 1.08 (0.85, 1.38) 0.541 1.000
Biologicals 373 1.01 (0.88, 1.14) 0.934 0.98 (0.86, 1.11) 0.750 1.000
Combustion/Diesel Exhaust 376 0.95 (0.84, 1.08) 0.426 0.97 (0.84, 1.12) 0.674 1.000
Electromagnetic radiation 378 1.06 (0.94, 1.2) 0.340 1.08 (0.93, 1.25) 0.315 1.000
Radiation 378 0.98 (0.87, 1.1) 0.725 0.93 (0.81, 1.06) 0.271 1.000
Corrosives 375 0.93 (0.81, 1.07) 0.298 0.88 (0.74, 1.04) 0.140 1.000

Results of three types of Cox models for survival post-diagnosis in years: univariate models with occupational exposure scores as a
continuous variable; multivariable models with occupational exposure scores as a continuous variable, and adaptive lasso penalized
models with occupational exposure scores as a continuous variable. Covariates in all models include sex, age at diagnosis (quartiles),
log-transformed time between symptom onset and diagnosis, El Escorial criteria (definite or not), onset segment (bulbar or not),
and initial ALSFRS-R (quartiles). CI: confidence interval; HR: hazard ratio.

Figure 1. Kaplan–Meier survival plot by occupational pesticide
exposure. Kaplan–Meier survival plot comparing ALS
participants who report occupational exposure to pesticides
(blue line; median survival ¼ 1.49 years) versus those who do
not report occupational pesticide exposure (red line; median
survival ¼ 2.32 years; p value ¼ 0.046).
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CI 1.15–1.92, p value ¼ 0.002, q-value ¼ 0.043),
volatile organic compounds (OR ¼ 1.32, 95% CI
1.03–1.69, p value ¼ 0.027, q-value ¼ 0.103),
metals (OR ¼ 1.31, 95% CI 1.02–1.68, p value ¼
0.033, q-value ¼ 0.103), combustion and diesel
exhaust (OR ¼ 1.30, 95% CI 1.01–1.67, p value
¼ 0.040, q-value ¼ 0.103), electromagnetic radi-
ation (OR ¼ 1.39, 95% CI 1.06–1.83, p value ¼
0.016, q-value ¼ 0.103), and radiation (OR ¼
1.43, 95% CI 1.06–1.92, p value ¼ 0.018, q-value
¼ 0.103). Pesticides (OR ¼ 1.25, 95% CI
1.02–1.68, p value ¼ 0.077, q-value ¼ 0.173) and
biological exposures (OR ¼ 1.31, 95% CI
0.96–1.80, p value ¼ 0.089, q-value ¼ 0.177) also
favored cervical onset after FDR correction.

Overall, findings were similar for logistic regression
models that considered exposure scores as binary,
ever-exposed variables (Supplemental Table 9).

Discussion

Previously, we have shown that plasma-persistent
organic pollutant levels correlate with ALS survival
(4) and self-reported occupational exposures asso-
ciate with ALS risk (2). Here, we investigated
whether occupational settings, via SOC codes, and
self-reported exposures are linked to survival and
onset segment and found several associations in
this Michigan ALS cohort. First, regarding sur-
vival, we identified that work in “Production

Table 5. Occupational exposure scores associated with onset segment.

Exposure score as a continuous variable

Bulbar vs lumbar Cervical vs lumbar

Exposure Score OR 95% CI p value Q-Value (BH) OR 95% CI p value Q-Value (BH)

Particulate Matter 1.11 (0.83, 1.49) 0.476 0.659 1.49 (1.15, 1.92) 0.002 0.043
VOCs 1.04 (0.79, 1.38) 0.770 0.866 1.32 (1.03, 1.69) 0.027 0.103
Pesticides 0.97 (0.72, 1.3) 0.828 0.877 1.25 (0.98, 1.59) 0.077 0.173
Metals 1.06 (0.8, 1.4) 0.687 0.825 1.31 (1.02, 1.68) 0.033 0.103
Biological Exposures 1.01 (0.68, 1.51) 0.959 0.959 1.31 (0.96, 1.8) 0.089 0.177
Combustion (Diesel) 1.15 (0.87, 1.52) 0.335 0.502 1.30 (1.01, 1.67) 0.040 0.103
Electromagnetic 1.24 (0.93, 1.67) 0.145 0.260 1.39 (1.06, 1.83) 0.016 0.103
Radiation 1.38 (1.01, 1.88) 0.040 0.103 1.43 (1.06, 1.92) 0.018 0.103
Corrosives 1.09 (0.82, 1.45) 0.538 0.692 1.19 (0.92, 1.53) 0.178 0.292

Interpretation of odds ratios correspond to a standard deviation increase in the respective occupational exposure score. Adjusted
multinomial logistic regression models are adjusted for age at diagnosis (quartiles). BH: Benjamini–Hochberg; CI: confidence
interval; OR: odds ratio. Statistically significant or near significant results are bolded.

Figure 2. Onset segment multinomial logistic regression model and distribution. On the left, forest plot of the adjusted multinomial
logistic regression models from Table 5 showing the odds ratio for bulbar and cervical onset with lumbar onset as the reference. On the
right, the distribution of each onset segment by exposed and unexposed.
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Occupations” correlated with a decrease in ALS
survival. Lack of significance following multiple
comparison testing could be related to small sam-
ple size rather than from a lack of an effect. In
addition, work in “Military Occupation” associated
with a large reduction in survival, although the
effect was only marginally significant. Military ser-
vice is a known ALS risk (10) and raises the possi-
bility of additional or cumulative exposures that
may impact disease progression. Future research
with larger sample sizes is encouraged to deter-
mine if these marginal associations, including the
joint effect of military and other exposure types,
are confirmed. Larger samples might also reveal
interaction effects, such as between education and
occupation, which would better identify culpable
exposures and potentially lead to interventions to
reduce ALS risk.

Few studies have explored the role of occupa-
tion on ALS survival. In the Cancer Prevention
Study cohort, occupations associated with
increased ALS mortality included programmers
and laboratory technicians in males and machine
assemblers in females (11). A mortality study
showed an excess number of ALS deaths among
persons working in the computer and mathemat-
ical, architecture and engineering, legal, and edu-
cation, training, and library fields (12). However,
few studies have explored the survival duration by
occupational exposures.

The “Production Occupations” SOC code
encompasses a wide range of occupational settings
and tasks, e.g. assemblers, fabricators, and opera-
tors in food, metal, plastic, printing, textile, wood,
and other industries. These workers may experi-
ence exposures to metals, fumes, and industrial
chemicals and may perform repetitive and strenu-
ous tasks. Regarding “Military Occupations,” vet-
erans are exposed to a range of hazards, including
herbicides, pesticides, heavy metals, combustion
products, jet fuels, and chemicals released from
burn pits (10), many already linked to ALS risk
(13,14). Thus, workers in such specific SOCs have
increased likelihood of exposure to certain hazards,
e.g. metals, fumes, and other toxics. Although
two-digit SOC job codes are very broad and only a
subset of workers in a particular code is likely to
receive a specific exposure, we still found that sev-
eral SOCs were correlated with ALS survival.

We next examined self-reported exposure and
survival. Our analysis showed that self-reported
pesticide exposure is associated with poorer sur-
vival, a finding consistent across several different
analytical models. This aligned with our previous
reports, which identified persistent organic pollu-
tants including pesticides in blood as both ALS
risk factors (3) and determinants of disease pro-
gression and survival (4). Moreover, our methods
showed consistency with studies utilizing self-

reported questionnaires to identify occupational
exposures (15, 16). Pesticides in current use, e.g.
organophosphates, can cause widespread occupa-
tional exposure to farm workers, building and
grounds maintenance staff, and production and
distribution workers in the agrichemical industry,
which can be assessed by self-reported question-
naires. Recently, a study of 94 ALS participants
recruited from the United States National ALS
Registry reported no survival association with
occupational exposure to agricultural chemicals
based on exposure classification by a single indus-
trial hygienist (17). Our study classified exposures
based on assessments from two trained assessors
using self-reported data, methods established in
the literature (15, 16). However, since we did not
classify exposures with an industrial hygienist, we
could not confirm or account for the intensity of
particular exposures, e.g. frequency, duration and
level of exposure events, and recall bias are always
a concern with retrospective studies.

Regarding our second study goal, the linkage of
SOC or self-reported exposure with onset segment,
we identified several important associations in this
cohort. Specifically, cervical onset disease correlated
with “Construction and Extraction Occupations”
when job duration was considered, and with “ever-
working” in “Buildings and Grounds Cleaning and
Maintenance Occupations,” “Construction and
Extraction Occupations,” and “Production
Occupations.” Workers in these occupations typic-
ally perform strenuous and repetitive physical move-
ments, especially in the upper body. Whether this
leads to injury in the cervical motor neurons or
reflects the physical activity risk with ALS is
unknown. Strenuous physical activity associates
with ALS risk, most recently shown via genetic risk
(18) and a survey of vigorous leisure-time physical
activity in the National ALS Registry (19).
Professions characterized by strenuous physical
activity linked to ALS include manual laborers
(20–24), professional athletes (25–28), and military
veterans (29, 30). With respect to correlations with
onset segment, in contrast to our findings, a recent
Maltese study found that workers in construction
occupations (31) and agricultural workers in
Brittany, France (24) tended to have bulbar onset.
In professional Italian soccer players, bulbar onset
was predominant, although the numbers were small
(25). In Israeli triathletes, bulbar onset was more
frequent (32). This paucity of studies warrants fur-
ther research, especially given the possible cumula-
tive impact of physical activity with other
exposure types.

When we examined the relationship of self-
reported exposures instead of SOC codes to seg-
ment onset, radiation exposure was linked to bulbar
and cervical onset disease as opposed to lumbar
onset disease. Radiation can cause injury to the
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brainstem and spinal cord; the cervical spine may be
more susceptible to damage compared with the
thoracic spine due to lower dispersion of radiation
across the tissue (33), which might explain the pat-
tern we observed. This exposure only occurred in a
subset of workers in the “Healthcare Practitioners
and Technical Occupations” and “Healthcare
Support Occupations.” In contrast, most other
occupational scores correlated with cervical onset
disease, which may reflect a cumulative effect in
individuals exposed to pollutants in occupational
settings with strenuous upper body physical activity.
An Australian study did find that workers exposed
to metals tended to have limb-onset disease (16).

Causes of phenotypic heterogeneity in ALS
remain largely unknown. Some genetic mutations
are associated with predisposition to certain onset
segments, but these are largely in rare genes (13,
14). Therefore, the finding that some occupations
lead to a higher odds of cervical onset disease is of
interest in terms of our appreciation for why dis-
ease starts in certain areas of the nervous system.

This study has strengths. The use of expert
assessment of occupation with SOC codes and self-
reported occupational exposures improves the
accuracy of assigning exposures (34, 35). Moreover,
the dual approach of leveraging self-reported expo-
sures and exposure scores in addition to SOC codes
overcomes the weaknesses of using SOC codes
alone. Occupational exposure scores yield insight
beyond the occupational SOC codes, which tend to
be broad and encompass diverse workplace activ-
ities and exposure types. Thus, sole reliance on
SOC codes can lead to exposure misclassification,
including both false positives and false negatives.
For example, workers in managerial roles in job
codes usually associated with specific exposures,
e.g. volatile organic compounds in the petrochem-
ical industry, may not actually be exposed if not
working at the production site. Conversely, some
workers in “Management Occupations” or
“Architectural and Engineering Operations” work-
ing in production facilities or at construction sites
may potentially be exposed to hazards. Thus, we
accounted for such situations by considering both
SOC codes and self-reported exposures. Moreover,
this allowed us to investigate environmental effects
in ALS, which is a rare disease, making large pro-
spective cohorts difficult. Furthermore, our analysis
included many ALS participants recruited from a
single center, which captured a large fraction of
ALS cases in Michigan. Next, the consistency of
results across multiple analyses improved the confi-
dence of our results.

This study also has limitations. Although all
patients seen in our Pranger ALS Clinic are invited
to participate, ALS is not a reportable disease in
the State of Michigan and therefore we were
unable to recruit from all incident cases in the

State. Furthermore, we could not account for bias
that exists if people in certain occupations prefer-
entially seek care at another center or choose not
to receive care at all. Furthermore, we are unable
to account for bias if certain occupations or occu-
pational exposures are differentially associated with
a rapid disease progression, if individuals do not
survive to diagnosis, or if individuals are so over-
whelmed at the time of diagnosis that they choose
not to enroll in observational research, i.e. recruit-
ment bias. In addition, we could neither isolate
nor confirm the exposures associated with a spe-
cific job from the SOC code. For example, phys-
ical activity is linked to ALS through polygenic
risk (18); however, the association we identified of
survival with “Production Occupations” may be
linked to the level of regular physical activity
required to perform the job as opposed to the job
setting. This might be addressed by adjusting our
analyses for activity level, but we did not collect
data on occupational physical activity levels.
Models that adjusted for education and smoking
did not show the same association with
“Production Occupations.” Workers in this occu-
pational category typically report lower educational
attainment, which could suggest confounding in
prior studies that associated educational attain-
ment with increased ALS risk. In this case, the
true driver may be workplace exposures to chemi-
cals, particles, and other physical stressors.
Although we show associations with pesticides, we
did not capture specific pesticide formulations,
which have changed considerably over time. In our
study, many workers had long job tenures and
often transitioned to similar jobs, which could
involve the same exposure types. Thus, older
workers may have had occupational exposure to
both “legacy” pesticides, like organochlorines, as
well as currently used pesticides. Also, it is
extremely challenging to quantify occupational
exposure over the life course, although a combin-
ation of job history, self-reported exposures, and
biological monitoring can help address this import-
ant gap. Further unknown is whether exposures
are only relevant in certain critical exposure win-
dows. Leveraging prospective cohorts of workers in
specific occupations provides a possible alternative,
but very large sample sizes would be needed given
the low incidence of ALS. In addition, creative
approaches are also needed to collect the necessary
data given the fragmented reporting of this disease.

Conclusion

Few prior studies have linked occupational job or
exposures to ALS survival. Working in
“Production Occupations” and self-reported occu-
pational exposure to pesticides worsened ALS sur-
vival, as did “Military Occupations” although this
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occupation was only marginally significant. In add-
ition, several occupations associated with typically
strenuous physical activity were associated with
cervical onset disease. Occupational settings and
self-reported occupational exposures have import-
ant associations with ALS phenotypes. These intri-
guing findings regarding the impact of occupations
and occupational exposures on ALS survival and
phenotypes help build the case for prospective
cohorts and registries to better assess disease risk.
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Abstract

Introduction/Aims: Body mass index (BMI) is linked to amyotrophic lateral sclerosis

(ALS) risk and prognosis, but additional research is needed. The aim of this study was

to identify whether and when historical changes in BMI occurred in ALS participants,

how these longer term trajectories associated with survival, and whether metabolo-

mic profiles provided insight into potential mechanisms.

Methods: ALS and control participants self-reported body height and weight 10 (ref-

erence) and 5 years earlier, and at study entry (diagnosis for ALS participants). Gener-

alized estimating equations evaluated differences in BMI trajectories between cases

and controls. ALS survival was evaluated by BMI trajectory group using accelerated

failure time models. BMI trajectories and survival associations were explored using

published metabolomic profiling and correlation networks.

Results: Ten-year BMI trends differed between ALS and controls, with BMI loss in

the 5 years before diagnosis despite BMI gains 10 to 5 years beforehand in both

groups. An overall 10-year drop in BMI associated with a 27.1% decrease in ALS sur-

vival (P = .010). Metabolomic networks in ALS participants showed dysregulation in

sphingomyelin, bile acid, and plasmalogen subpathways.

Discussion: ALS participants lost weight in the 5-year period before enrollment. BMI

trajectories had three distinct groups and the group with significant weight loss in

the past 10 years had the worst survival. Participants with a high BMI and increase in

weight in the 10 years before symptom onset also had shorter survival. Certain meta-

bolomics profiles were associated with the BMI trajectories. Replicating these find-

ings in prospective cohorts is warranted.
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amyotrophic lateral sclerosis, body mass index, metabolism, prognosis, survival
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1 | INTRODUCTION

Amyotrophic lateral sclerosis (ALS) diagnosis is preceded by a pre-

symptomatic phase, characterized by initiation of the disease process

but lacking pronounced clinical symptoms.1–3 ALS patients frequently

experience a rapid decrease in body mass index (BMI) and the rate of

loss early in the disease course is a strong prognostic factor.4 There-

fore, BMI loss may reflect an early and presymptomatic manifestation

of disease. Indeed, individuals with ALS develop BMI loss many years

before symptom onset.5 Additionally, lower BMI earlier in life may

both increase ALS risk5–9 and decrease ALS survival.5,10

BMI decreases in ALS patients are linked to lower energy intake

from dysphagia and higher energy expenditure,11,12 including hyper-

metabolism, altered glucose and lipid metabolism, and mitochondrial

dysfunction.13 Perturbations in metabolism in ALS are supported by

correlations in basic lipid profiles with risk and outcomes. Increased

low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B

levels years before ALS diagnosis are associated with a higher future

risk of ALS onset14; higher levels of both at diagnosis also associated

with a lower risk of death.15 However, basic lipid profiles do not cap-

ture the full spectrum of metabolic changes that occur in disease.

Rather, the metabolome and lipidome, the cumulative profile of all

metabolites and lipids, may more comprehensively reflect the meta-

bolic state. Indeed, metabolomics profiles correlate with BMI16–18 and

disease phenotypes, such as cardiometabolic risk.16,17 In the future,

metabolomics signatures may be useful in combination with BMI as

predictors of disease outcomes.16

However, the correlation of BMI with metabolomics profile and

disease outcomes has not been investigated in ALS. Thus, our goal in

this study was to leverage our case/control study to examine trends

in BMI trajectory in ALS vs control participants correlated with sur-

vival and metabolomics profile.

2 | METHODS

2.1 | Participants and samples

Recruitment and data collection procedures are published.19–22

Briefly, all patients seen at the Pranger ALS Clinic at University of

Michigan with an ALS diagnosis, age at least 18 years, and ability to

consent in English were asked to participate. Neurologically healthy

controls, recruited through population outreach, completed the same

procedures. All participants provided oral and written informed con-

sent and the study was approved by the institutional review board of

the University of Michigan. Demographic characteristics and available

previous heights and weights from the medical records of the partici-

pants were obtained, as were ALS disease characteristics according to

the Revised El Escorial criteria (rEEC).23 Participants were asked to

self-report height in feet and inches and weight in pounds 10 years

ago, 5 years ago, and at the present time. For ALS participants, pre-

sent weight was typically equivalent to weight at diagnosis since

enrollment occurred shortly after diagnosis. BMI was calculated from

height and weight as follows: weight (kg) / [height (m)]2.24 ALS partici-

pants with an interval of more than 5 years from symptom onset to

diagnosis were not included in the analysis as the goal was to investi-

gate presymptomatic differences in BMI. A subset of participants pro-

vided plasma for metabolomics analysis, as described elsewhere.25,26

2.2 | Descriptive analysis

Descriptive statistics were calculated for demographic characteristics

including age, sex, ALS disease-onset segment frequencies, and disease

duration (time from symptom onset to diagnosis). Study population dif-

ferences were compared between BMI groups by analysis-of-variance

and chi-square tests. Lin's concordance correlation coefficient quanti-

fied agreement between available self-reported and measured BMIs.

2.3 | BMI progression analysis and group
assignment

Generalized estimating equations (GEEs) with unstructured correlation

structure assessed differences in BMI changes for ALS and control

participants, while accounting for within-participant correlation

between self-reported BMI measurements.27 The GEE outcome was

self-reported BMI and the covariates were interaction terms between

ALS/control status and the three time-points adjusted for age and sex

at study entry. Differences in average BMI rate of change between

ALS and controls were assessed using the Wald test and performed

with the R geepack package (R Foundation for Statistical Computing,

Vienna, Austria).28

After subtracting self-reported BMI 10 years before consent from

all time-points, k-means clustering for longitudinal data (kml R pack-

age29) grouped ALS cases based on their self-reported changes in

BMI, for use in ALS survival models. This subtraction step ensured

that the k-means procedure clustered exclusively on BMI changes

over time, rather than differences in baseline BMI. After considering

two to six clusters, the selected number of clusters maximized the

Calinski and Harabasz criterion,30 a measure of between-cluster varia-

tion relative to within-cluster variation for longitudinal data.31 The dis-

tance metric used for clustering was Euclidean distance with Gower

adjustment.31

2.4 | Survival analysis

Kaplan-Meier plots of survival from diagnosis by cluster were pro-

duced. Cox proportional hazards models determined associations

between cluster groups and ALS survival, defined as the time from

diagnosis to death. Associations were adjusted for sex, age, baseline

BMI (ie, 10 years earlier), onset segment, diagnosis rEEC, and time

from symptom onset to diagnosis. Proportional hazards assumptions

were checked using global and individual Schoenfeld tests with graph-

ical assessment of the rescaled Schoenfeld residuals over time. Due to
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4192022 Feldman Laboratory Publications



proportional hazards violations in some models, accelerated failure

time (AFT) models were constructed.

2.5 | Sensitivity analyses

Sensitivity analyses for incomplete BMI data (inverse probability

weighted models) and nonlinear effects of BMI were performed (Sup-

plemental Methods). P < .05 was considered statistically significant for

the analyses.

2.6 | Metabolomics data analysis

Plasma samples from ALS participants were analyzed by Metabolon

(Morrisville, North Carolina), with data published previously in case-

control analyses.25,26 Plasma samples were nonfasting as this was

considered unethical for many ALS participants. Metabolomics analy-

sis included data set normalization, computing correlations between

BMI and metabolites, and selecting metabolites associated with BMI

trajectory via least absolute shrinkage and selection operator (lasso)

regression (Supplemental Methods). To identify highly interconnected

metabolic modules, further analysis included construction of a

partial correlation network using a previously published sparse partial

correlation algorithm,32–34 followed by consensus clustering.35 Finally,

group-penalized lasso regression (group lasso) models were created to

identify metabolic modules associated with BMI clusters (Supplemen-

tal Methods). Group lasso36 is a generalization of lasso regression,

which has the advantage of incorporating before information on the

grouping structure of the covariates, that is, the metabolic modules in

this instance. Analyses were performed with R version 4.0.2.

3 | RESULTS

3.1 | Participants

For those with BMIs observed at all three time-points, ALS participants

represented a typical patient population, according to onset age, distribu-

tion of segment onset, among other variables. Controls (n = 266) were

slightly younger than cases (n = 381) (Table 1). Two ALS participants with

an uncertain onset segment and one control with a BMI greater than

100 kg/m2 labeled as an outlier were removed from subsequent analysis.

3.2 | BMI trends in cases vs controls

Lin's concordance correlation coefficient showed consistency

between self-reported and measured BMI values (Supplemental

Results). ALS and control participants reported BMI increases in the

TABLE 1 Participants’ demographics

Covariate
Overall
(n = 647)

ALS
cases (n = 381)

Controls
(n = 266) P value

Mean age at survey consent,

years

63.3 (56.5-69.9) 64.9 (57.6-71.4) 61.3 (55.2-68.2) <0.001

Sex 0.143

Female 317 (49.0) 177 (46.5) 140 (52.6)

Male 330 (51.0) 204 (53.5) 126 (47.4)

Last contact event NA

Death 251 (64.9) NA

Censored 130 (34.1) NA

Original and/or revised El

Escorial criteria

NA

Possible/suspected 53 (13.9) NA

Probable, LS 104 (27.3) NA

Probable 123 (32.3) NA

Definite 101 (26.5) NA

Onset segment NA

Bulbar 113 (29.7) NA

Cervical 126 (33.1) NA

Lumbar 142 (37.3) NA

Time between symptom onset

and diagnosis (years)

1.01 (0.64-1.66) NA NA

Note: For continuous variables, data expressed as median (25th to 75th percentile); for categorical

variables, data expressed as number (%). P values for continuous and categorical variables correspond to

analysis of variance and chi-square tests, respectively.

Abbreviations: ALS, amyotrophic lateral sclerosis; LS, laboratory supported; NA, not applicable.
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10- to 5-year period before study entry (Figure S1). Unlike controls,

however, ALS cases had an overall BMI decrease in the 5-year prior-

to-study entry time window. The age- and sex-adjusted GEE model

showed average ALS BMI change from �5 years to 0 year was

1.75 kg/m2 (95% confidence interval [CI], 1.35 to 2.16 kg/m2;

P < 1 � 10�17), but was only 0.02 kg/m2 for controls (95% CI, �0.35
to 0.40 kg/m2; P = .9). Thus, ALS participants report BMI loss occur-

ring 5 years before diagnosis/study entry, whereas control partici-

pants had no significant BMI change during the same time-frame. The

kml algorithm applied to the ALS participant BMI trajectories identi-

fied three clusters, defined as decrease, mild decrease, and increase

BMI groups (Supplemental Results, Figure S2, and Table S1).

3.3 | Survival analysis

Unadjusted Kaplan-Meier survival analysis showed decreased absolute

median survival times for the decrease BMI cluster (Figure S3). Some

Cox models violated proportional hazards by Schoenfeld residuals, so

AFT models were constructed. After adjusting for age, sex, baseline BMI

(ie, 10 years earlier), onset segment, rEEC, and time from symptom onset

to diagnosis, participants in the decrease BMI cluster had a 27.1% shorter

survival (95% CI, �42.6% to �7.3%; P = .010) vs the mild decrease

group (Table 2 and Figure 1). Results were similar in missing BMI data

sensitivity analyses and when using base BMI as a categorical variable

(see Supplemental Results, Figures S4 and S5, and Tables S2, S3, S4, and

S5). Interestingly, in sensitivity analyses for interaction effects between

baseline BMI and change in BMI over time, ALS participants with an

obese baseline BMI and increase BMI trajectory had shorter survival,

similar to participants in the decrease BMI trajectory group (Table S5).

3.4 | Metabolites associated with BMI trajectory

Metabolomic differences by BMI cluster (decrease, mild decrease,

increase) were investigated for the 207 participants with available

previously published untargeted metabolomics.25,26 The final curated

data set included 607 metabolites from plasma collected near the time

of diagnosis. Associations of individual metabolites with BMI trajec-

tory groups are presented in the Supplemental Results and Tables S6

and S7.

The partial correlation network was constructed using recently

published data from 349 ALS participants,26 of whom 207 were

also in this analysis. Including additional samples generated a more

informative network because partial correlation methods are

sensitive to sample size. The resulting partial correlation network

contained 600 metabolites connected by 887 edges (false discov-

ery rate–adjusted P < .1), of which 31 had a negative partial correla-

tion coefficient. Seven metabolites did not have any significant

correlations and were not included in the network. Consensus

clustering identified 26 metabolic modules spanning 555 highly

connected metabolites. The remaining 45 metabolites did not

TABLE 2 Accelerated failure time
model

Percent change in survival LCL UCL P value

Age at entry (years) �1.0 �1.9 �0.2 0.016

Symptom onset to diagnosis (log years) 17.3 3.3 33.2 0.014

Baseline BMI �1.0 �2.7 0.8 0.278

Decrease BMI trajectory �27.1 �42.6 �7.3 0.010

Increase BMI trajectory �7.1 �25.2 15.5 0.509

Male 0.1 �16.1 19.4 0.994

Cervical onset 41.0 13.0 76.0 0.002

Lumbar onset 21.3 �1.4 49.3 0.068

rEEC possible/suspected 88.3 41.9 149.7 0.000

rEEC probable 23.4 �0.7 53.3 0.058

rEEC probable, laboratory supported 61.6 28.5 103.1 0.000

Abbreviations: BMI, body mass index; LCL, lower confidence limit; rEEC, revised El Escorial criteria; UCL,

upper confidence limit.
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F IGURE 1 Accelerated failure time model plots. Covariate

adjusted survival curves corresponding to the unweighted accelerated
failure time model with body mass index (BMI) cluster groups. The
estimated median survival time is 1.7 years for the decrease BMI
group, 2.33 years for the mild decrease BMI group, and 2.16 years for
the increase BMI group. Dec, decrease; Mild dec, mild decrease; Inc,
increase.
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cluster due to poor connectivity. Metabolic module size ranged

from 5 to 66 metabolites (Figure 2).

Group lasso selected eight modules containing 152 metabolites,

which associated with the decrease and increase BMI clusters

(Figure 2, Table 3, and Table S8), with odds ratios (ORs) ranging from

0.92 to 1.1 (Table S9). The largest module 1 (47 metabolites) included

ceramides and sphingomyelins, of which 36 had OR > 1, indicating

associations with the increase BMI cluster. The second largest module

2 (30 metabolites) included primary and secondary bile acid metabo-

lites, taurine and its derivatives, AMP, ADP, and sterols. Primary bile

Module 1
Module 2

Module 3

Module 4

Module 5

Module 6

Module 7Module 8Lipid

Cofactors and Vitamins

Sugar

Nucleotide

Partially Characterized Molecules

Amino Acid Metabolism

Xenobiotics

Partial correlation (edge)
Positive
Negative

Node color

Node shape

0.994 1.014

F IGURE 2 Metabolic modules associated with body mass index (BMI) trajectory. Eight metabolic modules containing 152 total metabolites
associated with BMI trajectory in group lasso regression models. Node color indicates odds ratio (OR) from group lasso: OR > 1 indicates

association with the increase BMI cluster (red node), OR < 1 indicates association with the decrease BMI cluster (blue node). Nodes with a bold
border correlate significantly with current BMI (false discovery rate < 0.05). Node shape indicates the subpathway to which the metabolite
belongs. Solid edge between metabolites indicates positive partial correlation coefficient. Dashed edge indicates negative partial correlation
coefficient.

TABLE 3 Metabolomics modules
from group lasso associate with BMI

trajectory groups

Metabolic
module

Number of nodes
(metabolites)

Number of
edges

Average
degreea Metabolic pathways

1 47 88 3.76 Ceramides, sphingomyelins

2 30 41 1.367 Bile acid metabolism, amino acid

and purine metabolism

3 22 23 2.09 Amino acid, nucleotide metabolism

4 15 21 2.8 Plasmalogens, lyso-plasmalogens,

phosphatidylcholines

5 13 18 2.77 Fatty acid metabolism (acyl

carnitines, acyl amino acids)

6 13 12 1.85 Carbohydrate, amino acid,

nucleotide metabolism

7 6 6 2 Vitamin A metabolism, amino acid

metabolism

8 6 6 2 Benzoate metabolism, amino acid

metabolism

aAverage degree represents the average number of connections each node (metabolite) makes within the

module and indicates the network/module density.
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acids associated with the increase BMI cluster (OR > 1), whereas most

secondary bile acids and taurine metabolites associated with the

decrease BMI cluster (OR < 1). Module 3 (22 metabolites) primarily

contained amino acid and nucleotide metabolites, half of which asso-

ciated with the decrease BMI cluster. Module 4 (15 metabolites) was

composed of plasmalogens, lyso-plasmalogens, and phosphatidylcho-

lines, 11 of which associated with the decrease BMI cluster. Module

5 (13 metabolites) had mostly acyl carnitines, acyl amino acids, and

some other amino acid metabolites, which mostly associated with the

decrease BMI cluster. The remaining smaller module 6 (13 metabolites;

sugar and nucleotide metabolites, xenobiotics, amino-sugar), module

7 and module 8 (6 metabolites each; xenobiotics, cofactors, vitamins,

modified amino acids) contained various metabolites.

Overall, these results suggest that unique metabolomic profiles

correlate with BMI trends in participants with ALS, especially metabo-

lism centered on ceramides, sphingomyelins, and primary and second-

ary bile acids.

4 | DISCUSSION

This study adds to the growing body of evidence that presymptomatic

BMI loss is linked to ALS risk and survival. We have shown that ALS

participants are characterized by significant BMI loss at 5 years, but

not 10 years, before study entry as compared with control partici-

pants. A decrease in BMI trajectory was associated with shorter sur-

vival in ALS, which also correlated with a distinct metabolomic profile.

Our study also suggests that BMI loss may occur during the presymp-

tomatic phase of ALS leading up to diagnosis. Several other studies

have similarly shown BMI decrease preceding ALS diagnosis, out to

10 years before onset,5 and even within the decades preceding

ALS.6,9 Although we found BMI trajectories differed over the 10-year

window, absolute BMI did not vary between ALS and control partici-

pants 10 years before study entry when participants would have had

a mean age of 54.9 (ALS) and 51.3 (controls) years. In contrast, other

studies reported that lower mid- to late-life BMI increases ALS

risk,8,9,37 although one study reported ALS survival depends on BMI

change, not on BMI before or at diagnosis.4 Another recent study has

suggested that BMI in ALS patients diverges from controls 10 years

before disease onset.38

Next, we found that that ALS participants with a 10-year

decrease BMI trend had shorter survival. Our results are consistent

with several studies demonstrating that a drop in BMI before ALS

diagnosis correlates with poorer survival.4,5,9,39 In particular, an analy-

sis of the Piemonte and Valle d'Aosta Register for ALS showed that

BMI loss at diagnosis was more prognostic of survival than BMI either

before or at diagnosis.4 However, because there is literature showing

that BMI is an ALS risk factor,8,9,37 we conducted sensitivity analyses

to assess the interaction of baseline BMI with BMI trajectory. We

found that normal baseline BMI lengthened survival in the decrease

BMI trajectory group, whereas obese baseline BMI shortened survival

in the increase BMI trajectory group. Baseline BMI only marginally

influenced survival in the mild decrease BMI trajectory group.

Interestingly, the European Prospective Investigation into Cancer and

Nutrition study also showed that obese females had shorter survival,

which did not reach significance,22 but the Piemonte and Valle

d'Aosta Register showed no impact of BMI on survival.4

The reasons for survival differences by BMI or BMI change in ALS

are not known. However, the prevailing theories are related to

impaired energy homeostasis,11 with lowered energy intake fighting

against higher energy expenditure. Dysphagia is a frequent cause of

reduced energy intake; however, in ALS, BMI loss also occurs inde-

pendent of dysphagia,4,39 indicating the presence of significantly ele-

vated energy expenditure. Indeed, one study showed that

hypermetabolism was more frequent in ALS than in control partici-

pants and correlated inversely with survival.12 Resting energy expen-

diture may additionally interact with BMI and fat mass to influence

survival in ALS.40,41

In our study, we employed data-driven network analysis to iden-

tify highly interconnected metabolic modules and we assessed their

correlation with BMI trajectory groups. The largest of these, module

1, contained ceramides (13 species) and sphingomyelins (33 species).

The latter were primarily associated with the increase BMI group. In

earlier work, we and others found that sphingomyelins also differ in

analyses of ALS vs control participant plasma.25,26,42–45 Further, one

recent study reported that higher sphingomyelin levels may correlate

with faster disease progression.45 Sphingomyelins are a large class of

lipids that have structural roles in cell membranes and lipid rafts, and,

through hydrolysis to ceramides, with signaling activity, for example,

pro-apoptotic, excitotoxic, neurotoxic.46,47 Impaired sphingomyelin

metabolism may be an integral factor in ALS as supported by investi-

gations of genetic models.48 Of the 47 metabolites in module 1, only

13 correlated significantly with BMI at diagnosis, suggesting associa-

tions of the remaining 34 metabolites with BMI trajectory may be

related to the ALS disease process.

The second largest module, module 2, mostly contained primary and

secondary bile acids, which generally associated with the increase BMI

trajectory, in addition to metabolites of methionine, cysteine, S-adenosyl

methionine, and taurine metabolism and oxidative phosphorylation.

Nearly half of the metabolites in this module also correlated significantly

with diagnosis BMI (13 species). Bile acids play important roles in nutri-

ent absorption, regulation of cholesterol metabolism, and systemic

energy expenditure,49 so the correlation with BMI trajectory herein is

unsurprising. Interestingly, although not present in the module, two bile

acids, ursodeoxycholic and its taurine derivative tauroursodeoxycholic

acid (taurursodiol), showed some efficacy in ALS clinical trials.50–53

Module 3 contained modified amino acids and nucleotide deriva-

tives spanning 22 species evenly split between the decrease and

increase BMI groups, of which 9 correlated significantly with diagnosis

BMI. Module 4 contained several bioactive lipids, plasmalogens

(10 species), lyso-plasmalogens (3 species), and phosphatidylcholines

(2 species), which associated mostly with the decrease BMI group,

that is, poorer survival. Only two species were significantly linked with

diagnosis BMI. We26 and others42,45,54,55 have shown that phosphati-

dylcholines differentiate ALS from control participants, in particular

phosphatidylcholine 36:4.45,54
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Modules 5 and 6 comprised candidates related to energy metabo-

lism. Module 5 contained four short-chain acyl-carnitines intermedi-

ates, which all save one correlated with the decrease BMI group. We

previously reported acyl-carnitines, along with free fatty acids,

contributed to the discrimination between ALS vs control

participants,25,26 which we attributed to either dysfunctional or

at-capacity β-oxidation.56 Modules 6, 7, and 8 contained few metabo-

lites equally divided in their correlation with either the decrease or

increase BMI trajectory group, suggesting ALS status may be a stron-

ger determinant of these metabolites than BMI trajectory.

Overall, across some modules, such as module 5, there were more

metabolites from various biochemical pathways relating to energy uti-

lization (eg, fatty acid β-oxidation) that are more discerning of ALS vs

control participants than of BMI trajectories. These findings suggest

that ALS status is a major determinant of energy metabolism. One

possibility is that metabolites correlate with fat mass loss in ALS

patients,57 an idea supported by studies where ALS polygenic risk

associates with body fat percentage in addition to BMI.58,59 Interest-

ingly, neither creatine nor creatinine were among the metabolites cor-

relating with BMI change or diagnosis BMI, indicating weight changes

may be more pronounced for fat mass than muscle mass. However,

lacking body composition measures, we could not evaluate this possi-

bility in this study.

This study has limitations. Participants self-reported weight,

potentially incurring recall bias; however, Lin's concordance correla-

tion coefficient was high for participants with available weight, indi-

cating good recall. Our study did not query weight at frequent

intervals, so we cannot determine whether BMI loss in ALS partici-

pants was linear in the 5 years before study entry or more pro-

nounced closer to diagnosis. It is also possible we failed to detect an

onset in BMI changes between the 10- to 5-year window before diag-

nosis due to the lack of granular BMI information. Next, we only asked

participants to report current height, and use this for BMI calculations

at all time-points. However, such changes in height over the life

course are not anticipated to cause bias in statistical models.60 We

also did not collect a dietary or physical activity survey for this

analysis. Additionally, our metabolomics analysis was untargeted, and

thus did not measure all metabolites in every relevant biochemical

pathway. Although BMI analysis was longitudinal, metabolomics

analysis was cross-sectional. Plasma samples for untargeted meta-

bolomics were nonfasted for ethical reasons, as noted in our earlier

publications.25,26

In conclusion, we found that ALS participants have distinct BMI

trajectories vs controls, with the most significant BMI drop occurring

within 5 years before diagnosis. ALS participants with normal baseline

BMI and decrease BMI trajectory, or baseline obese BMI and increase

BMI trajectory, have shorter survival. BMI trajectories correlate with

metabolic changes, especially with sphingomyelins and bile acids.
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cGAS/STING and innate brain
inflammation following acute
high-fat feeding
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Obesity, prediabetes, and diabetes are growing in prevalence worldwide. These

metabolic disorders are associated with neurodegenerative diseases,

particularly Alzheimer’s disease and Alzheimer’s disease related dementias.

Innate inflammatory signaling plays a critical role in this association,

potentially via the early activation of the cGAS/STING pathway. To determine

acute systemic metabolic and inflammatory responses and corresponding

changes in the brain, we used a high fat diet fed obese mouse model of

prediabetes and cognitive impairment. We observed acute systemic changes in

metabolic and inflammatory responses, with impaired glucose tolerance,

insulin resistance, and alterations in peripheral immune cell populations.

Central inflammatory changes included microglial activation in a

pro-inflammatory environment with cGAS/STING activation. Blocking gap

junctions in neuron-microglial co-cultures significantly decreased cGAS/

STING activation. Collectively these studies suggest a role for early activation

of the innate immune system both peripherally and centrally with potential

inflammatory crosstalk between neurons and glia.

KEYWORDS

cGAS/STING, acute, innate inflammation, microglia, high fat diet

Introduction

Global incidences of obesity, prediabetes, and diabetes are increasing worldwide (1,

2). Obesity rates have burgeoned in recent years, growing to pandemic proportions (3).

Global diabetes rates topped 463 million in 2019, with an estimated additional 374

million people having impaired glucose tolerance and prediabetes (1). This alarming rise

in the rates of obesity and metabolic disease predispose individuals to complications of
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the central nervous system (CNS), including mild cognitive

impairment, Alzheimer’s disease or Alzheimer’s disease related

dementias (AD/ADRD) (4–6).

Chronic inflammation and immune system dysregulation are

common in individuals with obesity and in individuals who fall

along the continuum of metabolic dysfunction from prediabetes

to frank type 2 diabetes (7). Previous studies investigating the

effects of metabolic dysfunction on the CNS report dysregulation

of immune and inflammatory mechanisms, typically increased

glial activation and elevated production of CNS pro-inflammatory

proteins and mediators (8–10). Specifically, a high-fat diet (HFD)

in mice induces an inflammatory phenotype in microglia, the

resident immune cells of the CNS (11, 12). Additionally, HFD or

other CNS pro-inflammatory events increase trafficking of

peripheral immune cells into the brain (13–15), further

promoting neuroinflammation.

Although evidence supports a role for CNS inflammation in

obesity, prediabetes, and diabetes, previous studies primarily

focus on later disease time points, and few have investigated how

HFD-induced obesity and prediabetes impact short-term

inflammatory changes. Innate inflammatory pathways with an

acute response to damage or danger signals may potentially

respond to metabolic stress to mediate early CNS responses to

HFD. In a dysmetabolic environment, elevated fatty acids can

activate innate inflammatory mechanisms and upregulate pro-

inflammatory cytokine production (16, 17). This in turn up-

regulates downstream feed-forward mechanisms, such as

signaling through the interferon-a receptor (18), which further

contributes to a pro-inflammatory environment.

One innate inflammatory pathway implicated in the cellular

response to metabolic dysfunction is the cGAS/STING (cyclic

GMP-AMP/stimulator of interferon genes) pathway (19–21).

cGAS/STING is a cytosolic double-stranded DNA (dsDNA)

sensing pathway, which responds to viral or bacterial dsDNA

as well as self dsDNA, e.g., from damaged nuclei or

mitochondria via cGAS and working through its adaptor

molecule STING and transcription factors interferon

regulatory factor 3 (IRF3) and nuclear factor kappa beta

(NFkB) to upregulate pro-inflammatory gene expression. In

the periphery or peripheral cells, HFD or treatment with the

saturated fatty acid palmitate upregulates cGAS/STING

signaling (22). cGAS/STING also contributes to pro-

inflammatory feed forward mechanisms via inflammatory

crosstalk between neighboring cells via gap junctions (23).

Further, cGAS/STING is implicated in the pathology of CNS

neurodegenerative diseases, such as AD/ADRD (24–26),

Parkinson’s disease (27), and amyotrophic lateral sclerosis

(28), and may thus constitute a “bridge” between metabolic

dysfunction and cognitive impairment.

In the current study, we examined CNS activation of the

cGAS/STING pathway in mice fed a high fat diet (HFD) for 3 d.

We focused our studies on the primary immune cells of the

brain, microglia, capable of inflammatory crosstalk with neurons

via gap junctions (23). We leveraged our HFD mouse model,

which develops obesity and prediabetes along with cognitive

impairment upon acute and chronic feeding (29). We observed

systemic changes in metabolic and inflammatory responses, with

impaired glucose tolerance, insulin resistance, and alterations in

peripheral immune cell populations after just 3 d of HFD. We

also identified central inflammatory changes, with microglial

and cGAS/STING pathway activation. Additionally, in our

neuron-microglial co-culture system, reducing cell to cell

inflammatory crosstalk by blocking gap junctions significantly

reduced cGAS/STING activation. These findings support an

early role for cGAS/STING in response to HFD via neuron-

glial inflammatory crosstalk and suggest a pivotal role for acute

activation of innate immune mechanisms in the CNS in

response to global metabolic dysfunction.

Materials and methods

Experimental animals and study design

Four-wk-old C57BL/6J male mice obtained from The Jackson

Laboratory (catalog # 000664; Bar Harbor, ME). Animals were

housed with no more than five littermates per cage in a pathogen

free room at 20 ± 2 °C with a 12 h light/dark cycle at the

University of Michigan Unit for Laboratory Animal Medicine

and monitored daily by veterinary staff. Animals were provided

food and water ad libitum and a minimum of one enrichment

item (nestlet and/or enviropak). Following a 1 or 2 wk acclimation

period, animals were assigned randomly to their respective diets

(Research Diets, New Brunswick, NJ) as follows: standard diet

(SD; 10% calories from fat; catalog # D12450J) or high-fat diet

(HFD; 60% calories from fat; catalog # D12492). A subset of

animals were used for cognitive phenotyping (see puzzle box),

which was performed on day 2 of diet and for a duration of 3d.

Animals were sacrificed (detailed below) on the final day of puzzle

box (4 d on diet). For all other animals, after 3 d on diet mice

underwent glucose tolerance testing (see metabolic phenotyping)

and were sacrificed (detailed below) the next day (4 d on diet).

Four hours prior to euthanasia, animals were fasted and a subset

of animals within both the SD and HFD groups were given

intraperitoneal injection of either saline (5 mL/kg body weight

[BW]) or lipopolysaccharide (LPS; catalog # tlrl-3pelps, Invivogen,

San Diego, CA) at a dose of 500 µg LPS/kg BW in total volume of

5 mL/kg BW saline. At terminal, animals were euthanized via

intraperitoneal injection of 150 mg/kg pentobarbital (Fatal-Plus,

Vortech Pharmaceuticals, Dearborn, MI). Blood was removed

from the vena cava and animals were perfused with phosphate

buffered saline prior to removal of tissues. Cortex tissue was used

to determine ex vivo CNS insulin sensitivity using western

blotting, plasma and hemi-brains for immunophenotyping using

flow cytometry, plasma for inflammatory cytokines using

ELISA, hemi-brains for microglial morphology using
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immunohistochemistry, and hippocampal tissue for cGAS/

STING pathway protein expression using Western blotting (all

methods detailed below). The University of Michigan’s

Institutional Animal Care and Use Committee approved all

animal protocols (PRO0010039).

Metabolic phenotyping
and immunophenotyping

Glucose tolerance testing (GTT) was performed after 3 d of

diet as previously (30, 31). Briefly, 10% D-glucose at 1g glucose/

1kg body weight was injected intraperitoneally after a 4 h fast

and glucose measurements taken at baseline and 15-, 30-, 60-,

and 120-min post injection. Blood glucose levels were

determined from a tail blood sample using a glucometer

(AlphaTRAK, Abbot Laboratories, Chicago, IL) and

appropriate glucose strips (Zoetis, Parsippany, NJ).

After 4 d HFD feeding, immunophenotyping was performed

on peripheral blood samples and on CNS tissue using flow

cytometry (32) to determine circulating immune cell

populations, as previously published (32, 33). Fluorescently

labeled leukocytes were classified by staining with antibodies

(Biolegend, San Diego, CA) for well-characterized surface

markers (Table 1). Briefly, doublets were excluded using

forward scatter width (FSC-W) and forward scatter height

(FSC-H) where events farther than 10% from the diagonal

were excluded. In both tissue types, lymphocytes were

characterized as CD45+, SSC-low cells expressing CD3 and

either CD4+ or CD8+, while NK cells were characterized as

CD45+, SSC-low, CD3–, NK1.1+, and CD49b+. B cells in the

periphery were characterized as CD45+, SSC-low, CD3-, and

CD19+ and were not detectible in the CNS. Myeloid populations

in the blood were characterized as CD45+ and CD11b+:

neutrophils were Ly6G+ while monocytes were Ly6G– and

either Ly6C– or Ly6C+. In the CNS, myeloid cells were

CD45+, CD3–, CD19. Ly6G+ cells were identified as

neutrophils, Ly6G-, CD11b+, CD45-high, and Ly6C+ were

identified as Ly6C+ monocytes, and Ly6G-, CD11b+, CD45-

mid cells were identified as microglia. In both tissue types,

monocytes, microglia, and neutrophils were further assessed for

F4/80 or CD11c surface expression by their median fluorescent

intensity as a proxy for activation state. A FACSAria II (BD

Biosciences, San Jose, CA) was used to run samples and FlowJo

software (FlowJo, Ashland, OR) to analyze results.

Microglial morphology

As previously (34), we performed analysis of microglial

morphology for three regions of the hippocampus, the hilus,

molecular layer, and CA1 regions. In brief, hemi-brains were

dissected and fixed for 48 h in 4% paraformaldehyde. Following

a sucrose gradient (10%, 20%, and 30% for 24 h each), hemi-

brains were embedded in OCT and frozen at -80°C. Brains were

sectioned (50 µm) and stained (rabbit anti-Iba1, 1:1000; catalog

# 019-19741, Wako, Richmond, VA) in 6-well plates in floating

tissue sections. Secondary antibody (anti-rabbit Alexa-fluor Plus

594, 1:2000; catalog # A32740, Invitrogen) and Hoechst nuclear

stain were applied, and sections were mounted using ProLong

Gold (Invitrogen). A Leica Stellaris 8 Falcon Confocal

Microscope and a 40X oil immersion objective was used to

take Z-stack images (30 µm). Images were processed with Imaris

Software (Oxford Instruments) and open microscopy

environment TIF files used to analyze microglial territorial

volume, cell volume, percent occupied volume, average branch

length, maximum branch length, minimum branch length,

number of end points, and number of end points using a

modified 3DMorph script in MATLAB (MathWorks, Natick,

MA), as previously published (34).

TABLE 1 Flow cytometry antibodies for blood and CNS immune cell characterization.

BV421 FITC PE PerCP-5.5 APC PE-Cy7 APC-Cy7

Lymphoid (Blood and CNS) CD8 CD3 Nk1.1 CD19 CD45 CD49b CD4

CD4 T-cells + + – – + – +

CD8 T-cells + + – – + – –

NK cells – – + – + + –

B cells (CNS; not detectible) – – – + + – –

Myeloid (Blood) Cd11c Ly6c F4/80 CD3/CD19 CD45 Ly6G CD11b

Neutrophils MFI – MFI – + + +

Ly6C- Monocytes MFI – MFI – + – +

Ly6C+ Monocytes MFI + MFI – + – +

Myeloid (CNS)

Neutrophils MFI – MFI – + + +

Ly6C+ Monocytes MFI + MFI – + – +

Microglia MFI – MFI – +/- – +

+/- (with/without).
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Ex vivo insulin stimulation

On day 4 of diet after sacrifice and perfusion, right cortex

was dissected and placed in a 12-well plate containing media

(Neruobasal, 5% pen-strep, MN additives (Sigma, St Louis, MO);

10 mg/mL bovine serum albumin, 10 mg/mL apo-transferrin,

0.1 mg/mL biotin, 15 mg/mL D-galactose, 0.63 mg/mL

progesterone, 16 mg/mL putrescine, 50 mg/mL selenium, 50

mg/mL b-estradiol, 50 mg/mL hydrocortisone, 16 mg/mL

catalase, 2.5 mg/mL SOD). Tissue was finely minced with

scissors and split into two microcentrifuge tubes (one for

unstimulated control and one for insulin) containing 300 mL
media. Tubes were placed into an incubator (37°C, 5% CO2) for

30 min. Following the 30 min incubation, insulin (20 nM) or an

equivalent volume of media was added to the appropriate tubes.

Tubes were returned to the incubator for 45 min and inverted

several times every 10-15 min. Following the 45 min incubation,

tubes were spun down (1 min, 4°C, 17,000 g), media removed,

and tissue snap frozen in liquid N2. Tissue was maintained at

-80°C for later Western blot (WB) analysis.

ELISA and WB

On day 4 of diet, blood was collected, and plasma isolated for

inflammatory cytokine analysis via ELISA. ELISA was

performed for TNF-a and MCP-1 by the University of

Michigan Rogel Cancer Center Immunology Core. Cortex and

hippocampal tissue as well as neuronal and microglia cells were

homogenized in RIPA buffer (Pierce, Rockford, IL) with protease

inhibitors (Roche Diagnostics, Indianapolis, IN), sonicated, and

centrifuged (30 min, 4°C, 13,300 rpm) in preparation for WB,

which was performed as previously published (35, 36). All

samples were normalized for equal protein concentration prior

to loading. Nitrocellulose membranes were blocked (Tris

buffered saline [TBS], 0.01% Tween-20, 5% bovine serum

albumin [BSA]) for 2 h, primary antibodies (varying

concentrations in TBS, 0.01% Tween-20, 5% BSA) were

incubated overnight at 4°C, and secondary antibodies (varying

concentrations in TBS, 0.01% Tween-20, 5% milk) were

incubated for 1.5 h at room temperature. SuperSignal West

Femto Maximum Sensitivity Substrate (Pierce, Rockford, IL) or

Clarity Max (Biorad, Hercules, CA) was used to visualize signal

and images were captured by a ChemiDoc (Biorad) or with x-ray

film. Images were analyzed using ImageJ (37) or Image Lab

software (Biorad). Insulin signaling primary antibodies were:

pAkt (catalog # 4060), Akt (catalog # 4691), pIRS-1 (pSer307,

catalog # 2381; pSer636/639, catalog # 2388), IRS-1 (catalog #

3407), all from Cell Signaling Technologies (Danvers, MA) and

diluted at 1:1000. cGAS/STING pathway primary antibodies

(Cell Signaling Technologies) were: cGAS (catalog # 31659S;

1:1000), STING (catalog # 50494S; 1:1000), pIRF3 (S396; catalog

# 4947S; 1:500), total IRF3 (catalog # 4302S; 1:500), and NFkb

(catalog # 8242P; 1:500). Tubulin (catalog # ab6160; 1:20000;

AbCam, Cambridge, MA) or histone (catalog # NB 100-56347;

Novus Biologicals, Littleton, CO) were used as loading controls.

IgG conjugated with horse radish peroxidase secondary

antibodies used were anti-rabbit (catalog # 7074), anti-mouse,

(catalog # 7076), and anti-rat (catalog # 7077S) all Cell

Signaling Technologies.

Cell culture

Partially immortalized human hippocampal neurons (38)

and an immortalized human microglia cell line (catalog # T0252;

Applied Biological Materials, Richmond, BC, Canada) were used

for in vitro studies. Cells were maintained in growth media in 6-

well plates until 80-85% confluent. Neuron growth media was:

N2b medium (customized media from Cytivia, Marlborough,

MA) with 0.2 mM beta-estradiol (catalog # E4389; Sigma) and 10

mg/mL fibroblast growth factor basic (catalog # GF003AF;

Millipore, Burlington, MA) and 1% heat-inactivated fetal

bovine serum (FBS; catalog # MT35016CV; Corning, Corning,

NY). Microglia growth media was: PriGroIII (catalog # TM003;

Applied Biological Materials, Richmond, BC, Canada) and 10%

non-heat inactivated FBS or DMEM (catalog # BW12741F;

Lonza, Quakertown, PA) and 10% heat inactivated FBS for

cytosolic dsDNA qPCR experiments. At 60-80% confluence,

neurons were changed to differentiation media (NSDM,

custom media, Cytiva, Global Life Sciences Solutions,

Marlborough, MA for 8 d (39)). On differentiation day 9 for

neurons and at 80-85% confluence for microglia, media was

changed to treatment media (differentiation media without

insulin for neurons and growth media without FBS for

microglia) 5 h prior to experimental treatments. Following

this, cells were treated with either palmitate alone (62.5 mM in

microglia or 250 mM in neurons) or palmitate plus insulin (50

nM, both cell types) for 24 h (35, 40). At 24 h, cultures were

washed, and cells were fixed for cytosolic dsDNA determination

via immunocytochemistry or qPCR (below) or isolated for

cGAS/STING pathway protein determination by WB (above).

Cytosolic dsDNA via qPCR

Cytosolic DNA isolation was performed as previously

published (41). In brief, cells were lysed with RIPA buffer

(Invitrogen, Waltham, MA), centrifuged (10 min, 4°C, 700g),

and supernatant used to quantify and normalize protein

concentrations. The pelleted nuclei/whole cell fraction was

saved for downstream analysis. Normalized protein

concentrations of the supernatant were spun further (30 min,

4°C, 10,000g) and the pellet (cytosolic fraction) saved. The

pelleted nuclei/whole cell fractions and the pelleted cytosolic

fractions were used to isolate DNA using a commercially
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available kit (catalog # 80004, All prep DNA, RNA, and Protein

mini kit; Qiagen, Germantown, MD). Nuclear (18S; 5’-TAG

AGG GAC AAG TGG CGT TC-3’ [forward] and 5’-CGC TGA

GCC AGT CAG TGT-3’ [reverse]) and mitochondrial DNA

(cytochrome oxidase I; 5’- GCC CCC GAT ATG GCG TTT-3’

[forward] and 5’- GTT CAA CCT GTT CCT GCT CC -3’

[reverse]) were run on the nuclei/whole cell fractions and

pelleted cytosolic fractions using qPCR SYBR green primers

(above). Levels of cytosolic DNA were quantified using the ddCT

method (42), with the nuclei fraction used to normalize the

cytosolic fraction and the mean DCT of the BSA controls as the

calibrator for all samples.

Puzzle box

To assess possible changes in cognition, we performed a

modified version of the puzzle box task (43). In this task, mice

are intrinsically motivated to move from the light area of the

puzzle box into the dark area. On day 2 of diet, puzzle box

testing was carried out over a period of 3 d, with a series of

three single tasks repeated for a total of three replicates over the

first 2 d. The single tasks were then combined into a ‘complex’

task, which was performed once on day 2 and 24 h later on day

3. Latency to ‘escape’ or to enter the dark area of the box was

recorded for each of the tasks. Animals were allowed 5 min to

perform each task. If the mouse was unable to escape the light

area of the box after 5 min, it was removed from the box and its

time recorded as 5 min.

Statistical analysis

We previously established that a sample size of n=8 per group

(30, 44) provides adequate power to detect significant metabolic

differences between groups. Statistical analyses were performed

using Prism 9 (GraphPad Software, La Jolla, CA) using either t-

test or one-way analysis of variance (ANOVA) followed by

Tukey’s multiple comparisons. Alternatively, analysis of

microglial morphology and CNS immunophenotyping data was

performed using SAS 9.4 (SAS Institute, Cary, NC) using the Proc

Mixed function. Anderson-Darling, D’Agostino-Pearson

omnibus, Shapiro-Wilk, and Kolmogorov-Smirnov tests were

used to determine normality, and non-normal data was log

transformed to achieve normality. Statistical tests and

software used for each analysis (glucose tolerance test,

immunophenotyping, etc.) and the corresponding results

section/figure are detailed in Supplemental Table 1. Statistical

significance was defined as p<0.05 and trends as p<0.10. Unless

otherwise indicated, results are presented as mean ± standard

error of the mean (SEM).

Results

Acute HFD impairs metabolic but not
cognitive responses

We previously showed that chronic HFD induces obesity

and prediabetes (29), however little is known about the acute

metabolic, inflammatory, and cognitive effects of HFD.

Therefore, we examined the impact of acute HFD on both

metabolic and cognitive function. To do so, BL6 mice were

placed on either a HFD or a sucrose matched 10% fat standard

diet (SD) for 4 d. GTT was performed on 3 d and mice were

harvested for blood and tissue analysis on 4 d (Figure 1A).

Within just 3 d, we observed HFD impaired glucose tolerance,

with higher blood glucose levels at all time points of the glucose

tolerance test, as well as a higher area under the curve versus SD

mice (Figures 1B, C). We and others also previously observed

CNS insulin resistance in mice following chronic HFD feeding

(29, 45). However, changes in response to acute HFD were

unknown. To investigate this, we measured the responsiveness

of ex vivo brain tissue to insulin by assessing phosphorylation of

critical insulin signaling proteins (46, 47). After 3 d of HFD

feeding, we observed changes in cortex insulin sensitivity, with

decreased phosphorylated protein kinase B (pAkt)/total Akt

(Figure 1D; Supplemental Figure S1A) and decreased insulin

receptor substrate 1 (IRS1) phosphorylation [pIRS-1(S307)]/

total IRS-1 in response to insulin stimulation (Figure 1E;

Supplemental Figure S1B).

In addition to metabolic shifts, we and others have shown

that chronic HFD also induces cognitive impairment (29, 48,

49), although cognitive changes in response to acute HFD were

less clear. Here we performed puzzle box testing, a behavioral

task which primarily tests executive function, to assess possible

changes in cognition after 3 d on diet. However, we did not

detect any differences in behavior between HFD and SD mice

(Supplemental Figure S2). Overall, 3 d of HFD induces systemic

and central metabolic changes related to glucose tolerance and

insulin sensitivity, without a detectable impact on cognition

within this timeframe.

Acute HFD alters peripheral and central
immune cell populations

We and others have previously reported that chronic HFD

also induces changes in circulating inflammatory profiles (33,

48). Using ELISA to examine inflammatory cytokine

concentrations and flow cytometry to examine circulating and

CNS immune cell populations, we observed changes to plasma

inflammatory profiles after 4 d of HFD similar to those seen in

long-term HFD feeding (Supplemental Figure S3). Specifically,
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HFD mice had a trending increase in the number of CD4 T-cells

(Supplemental Figure S3C), and a significant increase in B-cells

(number and % of leukocytes; Supplemental Figures S3F, G)

versus SD animals. HFD mice also had a trend for lower Ly6C+

monocytes compared to SD mice (Supplemental Figure S3J).

There was no difference due to diet in any of the other measured

immune cell populations including CD8 T cells, natural killer

cells, Ly6C+ monocytes, Ly6C- monocytes, or neutrophils

(Supplemental Figures S3A, B, D, E, G-I, K-S). We also

measured plasma inflammatory cytokine levels in HFD and

SD mice after injection with either saline or lipopolysaccharide

(LPS). LPS robustly increased circulating TNF-a and MCP-1

concentrations (Supplemental Figure S4); there was no effect

of diet.

To understand CNS specific changes in immune cell

populations, we repeated our experiment in a separate cohort

of HFD versus SD mice, both in control treated (saline

injection) and in response to immune challenge (LPS

injection). When lymphoid populations in the CNS were

examined, HFD increased leukocytes (Supplemental Figures

S5A, B) and decreased CD8 T-cells (% of leukocytes;

Supplemental Figure S5D) versus SD animals and LPS

injection had no effect (Supplemental Figure S5). CD4 T-cell

levels were low/not detectable and HFD did not impact the

numbers or percentages of CNS natural killer cells

(Supplemental Figures S5C, E-H). In CNS myeloid cell

populations (Figure 2 and Supplemental Figure 6), total

immune cell levels and surface marker expression were

impacted by 4 d HFD. Neutrophil, microglia, and Ly6C+

monocyte levels were examined as well as expression of

CD11c and F4/80, markers of activation and differentiation.

HFD mice had more neutrophils (numbers and %; Figures 2A,

B) and a greater number of microglia, which also had a

trending increase in size as measured by a larger forward side

scatter (Figures 2C, I) suggesting activation. There were no

differences due to LPS treatment or due to diet for neutrophil

or microglial F4/80 or CD11c expression, or for the percentage

of microglia (Figures 2C, D, F-H). LPS administration did

B

C D E

A

FIGURE 1

Experimental timeline and metabolic phenotyping. Experimental timeline (A), glucose tolerance test, (GTT; B), area under the curve (C), and
cortex response to insulin stimulation (D, E) in male BL/6 mice fed standard diet (SD) or high fat diet (HFD). Protein expression normalized to
tubulin and relative to unstimulated control; *p<0.05, **p<0.01, ***p<0.001.
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impact LyC6+ monocyte numbers and surface expression of

CD11c, which was further altered by diet (Figures 2K, L).

Monocyte CD11c expression can indicate a change in

monocyte activation, and activation can promote monocyte

differentiation into a microglial-like phenotype (32, 50, 51).

We observed that LPS increased CNS monocytes in both HFD

and SD animals; however, monocyte CD11c expression was

lower in response to saline injection in HFD versus SD mice.

B C D

E F G H

I J

A

K L

FIGURE 2

CNS immunophenotyping of myeloid cells by flow cytometry. Data represented as neutrophils (number of cells, % of cells, F4/80 expression,
and CD11c expression; A-D), microglia (number of cells, % of cells, F4/80 expression, CD11c expression, and forward side scatter; E-I), and Ly6C
+ monocytes (number of cells, % of cells, and CD11c expression; J-L) in male BL/6 mice fed standard diet (SD) or high fat diet (HFD) who were
administered saline or LPS (lipopolysaccharide). In the absence of differences between saline and LPS, data for each dietary group were
combined and are presented as SD vs. HFD alone; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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In contrast, LPS decreased monocyte CD11c expression in SD

but not HFD mice. Increased numbers of microglia and

decreased expression of CD11c on monocytes in the absence

of increased monocyte numbers likely indicates that HFD

promotes monocyte conversion into a more microglial-like

phenotype, which LPS fails to further promote. Cumulatively,

our findings indicate that acute HFD of only 3 d produces

changes in peripheral and central immune cell populations. In

this setting, LPS stimulation differentially impacts CNS immune

cell dynamics, i.e., monocyte to microglial shifts, in HFD

versus SD.

Acute HFD activates
hippocampal microglia

Since we observed changes in microglia numbers and size

upon 4 d of HFD in our CNS immunophenotyping data, we

were interested in further interrogating acute inflammatory

microglial changes. We therefore assessed microglial

morphology (34) as a proxy of activation in an area of the

brain critically important for learning and memory, the

hippocampus. Mice were administered HFD or SD with or

without LPS stimulation for 4 d, and microglia morphology

was examined using confocal microscopy. Three days of HFD

shifted the morphology of hippocampal microglia to a state

indicative of activation (Figures 3A–D) where microglia of HFD

mice given saline (Figure 3C) appeared to have a larger soma size

and more ameboid-like shape with fewer and shorter processes

compared to microglia of SD mice given saline (Figure 3A).

Additionally, microglia in SD (Figure 3B) and HFD (Figure 3D)

mice given LPS appeared to take on an activated morphology

similar to HFD mice given saline. Indeed, when quantifying

these morphological changes, we observed that HFD lowered the

ratio of three-dimensional space occupied by the microglia to its

perimeter (ramification index; Figure 3E) versus SD mice.

Interestingly, administering LPS to SD mice caused the

microglia to have a decreased ramification, indicating

activation. However, administering LPS to HFD mice did not

change their ramification index; this inability of HFD microglia

to respond to LPS stimulation may suggest they are activated

under basal conditions to such a degree that further stimulation

cannot provoke an appropriate immunological response to

cellular insult or injury. Like the ramification index, HFD

microglia had shorter average branch length (Figure 3F),

shorter maximum branch length (Supplemental Figure S7D),

and shorter minimum branch length versus SD microglia

(Supplemental Figure S7F). LPS stimulation did not affect

territorial volume (Supplemental Figure S5A), average branch

length (Figure 3F), and maximum branch length (Supplemental

Figure S7D). While HFD mice had a greater overall cell volume

compared to SD mice, there no effect of LPS (Supplemental

Figure S7B). Between groups differences in the number of

microglial branch points and end points were varied and

dependent upon hippocampal region (Supplemental Figures

S7C, E). Thus, acute 3 d HFD activates hippocampal microglia

and renders them less able to mount a response to additional

stimulation, e.g., to LPS.

Acute HFD activates
cGAS/STING signaling

The deleterious role of cGAS/STING inflammatory signaling

in obesity and metabolic dysfunction is well established in the

periphery, particularly in adipose tissue) (19, 21). However, little

is known about its role in this context in the CNS. Therefore,

next we wanted to establish the effects of HFD feeding on

hippocampal cGAS/STING pathway protein expression

(Figure 4; Supplemental Figure S8). To do so, we took

hippocampal tissue from SD and HFD animals fed diet for 4

d, homogenized it, and performed Western Blotting. We

observed that HFD of only 4 d already acutely upregulated

expression in the hippocampus of the dsDNA sensing cGAS and

its adaptor molecule STING (Figures 4A, B; Supplemental

Figures S8A, B) . However , HFD did not promote

phosphorylation or change expression of the cGAS/STING

pathway transcription factors IRF3 (Figures 4C–E ;

Supplemental Figures S8C–E) and NFkb (Figures 4F;

Supplemental Figures S8C–E). When activated, IRF3 and

NFkb act as canonical transcription factors and move from the

cytosol to the nucleus to induce gene transcription. Therefore, a

lack of changes these transcription factors in bulk tissue is

perhaps not surprising. Differences in cytosolic vs. nuclear

localization are likely present, as have been observed by others

in culture and in microglia (21, 26). Together, these data further

suggest an early upregulated and pro-inflammatory phenotype

involving the cGAS/STING pathway after only 3 d on HFD diet.

We previously showed that in vitro treatment of neurons

with insulin or palmitate for 24 h produces insulin resistance,

providing a cell culture model of prediabetes, with the expected

changes in cellular signaling pathways (40, 52). We adopted this

same approach to establish the contribution of various CNS cell

types, namely neurons and microglia, to cGAS/STING pathway

activation. Using a partly immortalized human hippocampal cell

line and an immortalized human microglial cell line, we first

established the presence of cytosolic DNA in response to

palmitate and insulin treatment. Our data show a trending

increase in cytosolic nuclear DNA (18s) in both neurons and

microglia in response to palmitate or combined insulin and

palmitate treatment (Figures 5A, C). However, there were no

differences in either cell type in response to stimulation for

cytochrome oxidase I DNA, a marker of mitochondrial DNA

(Figures 5B, D). Of note, only trending differences in cytosolic

nuclear DNA and a lack of differences in mitochondrial DNA

were likely due to low sample sizes and a high degree of
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variability between replicates. Future studies could address how

obesogenic conditions might cause genomic damage and the role

of mitochondrial vs. genomic or nuclear damage on cGAS/

STING signaling in the CNS. We next assessed cGAS/STING

pathway protein expression in both cell types. There was a

robust response in microglia, with a significant increase in

STING, pIRF3, and NFkb, in the presence of either palmitate

alone or combined insulin and palmitate for 24 h (Figure 6;

Supplemental Figure S9). We also found a trending increase in

cGAS protein expression in response to acute treatment for 24 h

FIGURE 3

Microglial morphology. Representative images of IBA-1 microglia (red stain) in male BL/6 mice fed standard diet (SD) or high fat diet (HFD) who
were administered saline or LPS (lipopolysaccharide; A-D). Quantification of microglia ramification index (E) and average branch length (F). In the
absence of differences between saline and LPS, data for each dietary group were combined and are presented as SD vs. HFD alone; *p<0.05,
**p<0.01, ****p<0.0001.
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with either palmitate alone or combined insulin and palmitate in

hippocampal neurons (Figure 6A; Supplemental Figure S9A).

Finally, we assessed cGAS/STING pathway activation in co-

culture to evaluate the contribution of inflammatory crosstalk on

potential pathological mechanisms via gap junctions in the CNS.

Inflammatory crosstalk (53) is vital for normal intercellular

communication (54). However, aberrant inflammatory

crosstalk in the CNS (either via glia-glia or glia-neuron

signaling) may promote pathological inflammatory

mechanisms. Indeed, it plays a role in neurodegenerative

diseases, such as AD/ADRD (55–57), and gap junctions

facilitate transfer between cells of the cGAS/STING second

messenger, cyclic GMP-AMP (cGAMP) (23, 56). To determine

whether gap junctions mediate inflammatory crosstalk, we co-

cultured neurons and microglia in the presence or absence of a

gap junction inhibitor (CBX; carbenoxolone). Co-cultures were

pre-treated with either the saturated fatty acid palmitate or the

combination of insulin to mimic obesogenic prediabetic

conditions. Our data (Figure 7; Supplemental Figure S10)

show that treating co-cultures with transfection reagent alone

did not change cGAS (Figure 7A; Supplemental Figure S10A),

STING (Figure 7B; supplemental Figure S10B), or NFkb protein

expression (Figure 7D; Supplemental Figure S10D) in the

presence of the gap junction inhibitor, carbenoxolone.

However, we observed a significant increase in co-cultures

pre-treated with insulin and palmitate for 24 h then stimulated

with the dsDNA analog, poly dA:dT (poly deoxyadenylic-

deoxythymidylic acid sodium salt), which was completely

reversed in the presence of carbenoxolone (Figure 7C;

Supplemental Figure S10C). In aggregate, these data suggest

that cGAS/STING inflammatory crosstalk between CNS cells,

e.g., neurons and microglia, in response to metabolic injury is

mediated, at least in part, by gap junctions.

Discussion

Metabolic dysfunction, in the form of chronic obesity,

prediabetes, or diabetes, induces peripheral and central

inflammation which correlate with cognitive impairment

(58, 59). However, early inflammatory events secondary to

obesity- or prediabetes that might contribute to cognitive

impairment remain uncertain. The innate immune cGAS/

STING pathway is dysregulated in cognitive impairment and

neurogenerative disease (24, 26) and by responding to excess

saturated fatty acids may connect metabolic dysfunction to

inflammation in the CNS (19–21). In the current study, we

examined the effect of acute HFD on peripheral and CNS

inflammation, cognition, and CNS cGAS/STING activation.

Our data show that acute HFD for only 3 d causes peripheral

and central metabolic and immunologic changes indicative of

insulin resistance and an acute pro-inflammatory response,

B C
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A

FIGURE 4

Hippocampal cGAS/STING protein expression. Expression in male BL/6 mice fed standard diet (SD) or high fat diet (HFD). Data represented as
cGAS (A), STING (B), pIRF3 (C), total IRF3 (D), pIRF3/total (E), and NFkb (F) relative protein expression. Protein expression quantified as average
band intensity relative to tubulin loading control; *p<0.05.
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FIGURE 5

Cytosolic DNA concentrations. Relative quantity (RQ) of cytosolic DNA (nuclear and mitochondrial) in partially immortalized human
hippocampal neurons (HHi; n=3, A, B) and in a human microglial cell line (MG; n=3, C, D). Cells treated with palmitate (Palm; HHi=250 mM,
microglia=62.5 mM, 24h) or a combination of insulin and palmitate (Ins + Palm; above palmitate concentrations + 50 nM insulin, 24h). Values
relative to BSA controls.
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though changes in cognition were not detected. Additionally,

acute HFD activates CNS microglia, as measured by changes in

cell size and morphology, and promotes cGAS/STING signaling.

This immune response was mirrored in vitro under conditions of

metabolic injury, particularly in microglia, as well as in in

neuron-microglia co-culture and was blocked by a gap

junction inhibitor. Overall, our findings indicate that

inflammation and cGAS/STING activation are early responses

to HFD, potentially through direct gap junction-mediated

neuron-microglia crosstalk in the CNS.

We found that short-duration HFD induced acute peripheral

and CNS metabolic changes in mice, specifically impaired glucose

tolerance and insulin resistance. These findings are aligned with

another study of 3 d of HFD feeding, which similarly saw

impaired glucose homeostasis (60). These changes are also

consistent with literature regarding chronic HFD, i.e., of a few

to several weeks, that report increases in body weight and

impaired glucose tolerance (29, 30). We further show that both

peripheral and CNS immune cell populations are dysregulated

after only 3 d on HFD. Specifically, HFD increased circulating and

CNS lymphocytes and neutrophils. We also observed that acute

HFD decreased circulating Ly6C+ monocytes and Ly6C+

monocytes in the CNS had lower CD11c expression.

Concurrent with increased CNS microglia, these data suggest

that HFD promoted of monocyte recruitment to the CNS and

monocyte conversion to a more microglia-like phenotype.

Moreover, LPS failed to mount a further immune response in

HFD, indicating peripheral and CNS immune cells are activated to

such a degree by HFD that LPS is unable to provoke an

appropriate response. Our findings are broadly aligned with the

acute impact of HFD on the CNS, where others have reported

increased levels of inflammatory cytokines after 3 d on diet (12).

Furthermore, it is frequently reported that chronic HFD feeding

induces an inflammatory phenotype (33, 48, 61).

HFD-induced pro-inflammatory responses through

upregulated cGAS/STING signaling in peripheral tissues has

been proposed as a potential pathological mechanism in obesity

and prediabetes/diabetes (19, 21, 41). As an intracellular pattern

recognition receptor, cGAS/STING is widely expressed by innate

cells of the CNS, including microglia (62, 63), which canonically

senses cytosolic dsDNA of viral or bacterial origin (64).

However, the cGAS/STING pathway can also be activated by

cytosolic self dsDNA released under conditions of metabolic

stress, such as by saturated fatty acid overload (20, 64). Indeed,

HFD fed mice have elevated adipose (41) and liver (65) STING

levels. In endothelial cultures, the long-chain saturated fatty acid
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FIGURE 6

Neuronal and microglial cGAS/STING protein expression. Expression in a human microglial cell line (n=3 biological replicates, A-D) and a human
hippocampal neuronal cell line (n=3 biological replicates, E-H) treated with either palmitate alone (Palm; HHi=250 mM, MG=62.5 mM, 24h) or a
combination of insulin and palmitate (Ins+Palm; above concentrations of Palm+50nM insulin, 24h). Relative protein expression quantified as
average band intensity relative to tubulin loading control; *p<0.05, **p<0.01.
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palmitate activates cGAS/STING and induces inflammation (21,

41). Further, STING deficiency partially reverses HFD-induced

weight gain, decreases plasma free fatty acids and adipose

macrophage infiltration, and improves impaired insulin

sensitivity and glucose tolerance (41).

While there is ample evidence to suggest a role for cGAS/

STING in obesity and prediabetes/diabetes in the periphery, the

role of cGAS/STING in the brain is less clear. We observed

cGAS/STING was upregulated in the hippocampus of HFD

animals versus SD controls. We previously established that our

HFD feeding paradigm induces obesity, prediabetes and

cognitive impairment with chronic HFD in mice (29). While

here we did not observe cognitive impairment after only 3 d of

HFD, our findings suggest HFD promotes an acute and early

CNS pro-inflammatory programming that precedes or initiates

the cascade of processes leading up to neurodegeneration and

cognitive impairment with chronic HFD. Conversely, others

have reported changes in cognition after acute HFD feeding

(66–68). Differences may have arisen from variations in model

system (mouse versus rat), animal age (5 wk versus 12 wk) or

testing modality (puzzle box versus contextual fear conditioning

versus radial arm maze) (66–68). Moreover, it is possible that

cognitive differences in HFD versus SD animals in only

measurable upon additional stimulation, e.g., by LPS (66).

Therefore, the temporal evolution of cognitive impairment

upon acute HFD requires further study.

In alignment with our findings of early cGAS/STING

activation, cGAS/STING is implicated in frank dementia, such

as AD/ADRD (24, 26). In the brains of AD models, cGAS/

STING is increased and improving DNA damage/repair by

NAD+ supplementation normalizes cGAS/STING levels,

reduces inflammation, and improves behavioral outcomes

(24). Furthermore, cGAS/STING may be involved in AD via

interaction with one of the key pathological AD proteins, tau.

Specifically, tau activates cGAS/STING via binding to

polyglutamine binding protein 1, which is essential for tau-

B
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FIGURE 7

Co-culture cGAS/STING protein expression with and without gap junction inhibitor. Expression in a human hippocampal and human microglial
cell line co-culture (n=4). Cells pretreated with bovine serum albumin (BSA; 31.25 µM, 24h) as a control, palmitate (Palm; 31.25 µM, 24h), or a
combination of insulin and palmitate (IP; 31.25 µM palmitate and 50 nM insulin, 24h) +/- the gap junction inhibitor carbenoxolone (CBX; 150
µM), then stimulated with the dsDNA analog Poly dA:dT (DNA; 1µg/mL). Protein expression of cGAS (A), STING (B), pIRF3 (C), and NFkb (D)
quantified quantified as average band intensity relative to histone loading control; *p<0.05. TR, transfection reagent.

Elzinga et al. 10.3389/fimmu.2022.1012594

Frontiers in Immunology frontiersin.org13

4392022 Feldman Laboratory Publications

https://doi.org/10.3389/fimmu.2022.1012594
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


mediated cGAS/STING activation, specifically in microglia (26).

In a Parkinson’s disease mouse model, knocking out cGAS/

STING signaling rescues the inflammatory phenotype, prevents

loss of dopaminergic neurons, and improves motor deficits (27).

In amyotrophic lateral sclerosis, the critical disease protein TDP-

43 promotes the release of mitochondrial dsDNA into the

cytosol, which subsequently activates the cGAS/STING

pathway and promotes neurodegeneration (28).

We observed that acute HFD was sufficient to activate

hippocampal microglia, which were unable to respond to

additional stimulus in the form of LPS injection. Further, using

an established in vitro model of metabolic injury, we observed a

stronger response of the cGAS/STING pathway in microglia

compared to neurons. This was anticipated, as cGAS/STING

pathway proteins are highly expressed in microglia (62).

Moreover, as we observed, HFD induces an inflammatory

phenotype in hippocampal microglia (11, 12), and inflammatory

microglia play critical roles in AD/ADRD pathology and related

neuroinflammation (69–71). cGAS/STING activation primarily

results in type 1 interferons (IFN) pro-inflammatory cytokine

production, which acts to further stimulate cytokine release, e.g.,

of IL-1b, IL-6, TNF-a (72). Excessive cGAS/STING activation

contributes to pathological mechanisms, often mediated in the

CNS by microglia (72, 73). This cGAS/STING activation and

subsequent IFN release structurally and functionally injures

neurons (72). Our findings indicate that microglia may

be constituently activated under HFD conditions in the

hippocampus, are less able to respond to inflammatory

stimulus, and may contribute to CNS neuroinflammation,

neurodegeneration, and eventual cognitive decline.

The immune system has multiple functions, including to

induce inflammation, recruit immune cells, initiate protective

cellular programs (including metabolic processes), preserve

homeostasis, and maintain tissue functions (74). To perform

these functions, it partly relies on inflammatory crosstalk, such

as gap junctions (53), for intercellular communication (54). This

crosstalk may become dysregulated upon chronic inflammatory

activation, such as occurs in obesity and prediabetes, and thus is a

potential mechanism promoting disease progression. In our co-

culture model of human hippocampal neurons and microglia, we

showed activation of the cGAS/STING pathway is strongly

reduced in the presence of a gap junction inhibitor. These data

show that gap junction mediated cGAS/STING crosstalk is a

mechanism by which cGAS/STING inflammatory signaling can

be promoted in the CNS in the presence of metabolic insults. In

fact, gap junctions are relevant to neurodegenerative diseases, such

as AD. Gap junctions are elevated near Ab plaques (75, 76), and

their blockade slows disease progression (55). Further, immune

responses and cytokines can regulate gap junctions during insult,

infection, or injury (77, 78). cGAS/STING has been shown to

utilize gap junctions as an inflammatory crosstalk mechanisms in

HEK cells and murine fibroblasts (23). Specifically, in response to

cytosolic dsDNA, cGAS triggers production of its second

messenger, cGAMP (20), which can travel to neighboring cells

via gap junctions and stimulate downstream cytokine production

by activating STING and pIRF3 (23). This represents a source of

direct cell-to-cell crosstalk, contributing to inflammatory

activation in neighboring cells, possibly furthering pathological

processes. While our data support a role for gap junctions in

promoting inflammatory crosstalk, it is unclear which cell types

are the primary source of this inflammation. Future studies using

single cell sequencing and cGAS cell specific knock out models are

currently underway to better understand how different cell types

contribute to this inflammation and the downstream effects they

might have on cognition.

However, our study had some limitations. First it was carried

out in male animals only. We (79) and others (80) have shown

that male and female animals have sexually dimorphic responses

to high fat diet feeding, particularly early in the paradigm.

Additionally, there are known differences between males and

females in terms of immune function and inflammation (81, 82),

including in microglia (83). These differential effects also

potentially impact cognition, as some have shown a differential

effect of sex on cognitive outcomes (84). As mentioned above, no

differences were observed between groups for puzzle box

performance. However, motivation to escape in the puzzle box

task is primarily driven by the animal’s fear and anxiety in

brightly lit spaces (85). Additional non-cognitive tasks that more

directly measure anxiety under a similar motivation, such as the

open field task (86), would allow for discrimination between a

lack of cognitive deficits vs. overall anxiety in the animals and

should be considered for future studies.

Overall, our data indicate that acute HFD feeding promotes

early dysregulated glucose and insulin metabolism in the

periphery and CNS. HFD feeding also causes an acute pro-

inflammatory response, including microglial and innate

inflammatory cGAS/STING pathway activation in the brain.

Our in vitro data in neurons and microglia further point to a

critical role for microglia in promoting this pro-inflammatory

phenotype and indicate that gap junction may, at least in part,

mediate cGAS/STING signaling, participating in inflammatory

spread in the CNS.
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SUPPLEMENTARY FIGURE 1

Representative insulin signaling western blot images. Representative
unaltered images of western blots quantified in main figure 1 (w/link

color) for cortex insulin signaling protein expression of AKT (pAKT and

total AKT; A) and IRS-1 (pIRS-1(pS307) and IRS-1; B) in male BL/6 mice fed
standard diet (SD) or high fat diet (HFD) and +/- acute insulin treatment.

SUPPLEMENTARY FIGURE 2

Cognition as measured by puzzle box testing. Data represented as single
tasks (A-D), and the combination of the single tasks into a complex task (E)
in male BL6 mice fed high-fat diet (HFD) versus standard diet (SD).

SUPPLEMENTARY FIGURE 3

Peripheral immunophenotyping by flow cytometry. Data represented as
leukocytes (number of cells A), CD4 T-cells (% of cells or number of cells;

B, C), CD8 T-cells (% of cells or number of cells; D, E), B-cells (% of cells or
number of cells; F, G), natural killer cells (% of cells or number of cells; H,
I), Ly6C+ monocytes (% of cells or number of cells; J, K), Ly6C-

monocytes (% of cells or number of cells; L, M), neutrophils (% of cells
or number of cells; N, O), Ly6C+ monocytes CD11c expression (median

fluorescent (fold) intensity; P), Ly6C+ monocytes F4/80 expression
(median fluorescent (fold) intensity; Q), Ly6C- monocytes CD11c

expression (median fluorescent (fold) intensity; R), and Ly6C-
monocytes F4/80 expression (median fluorescent (fold) intensity; S) in
male BL6 mice fed high-fat diet (HFD) versus standard diet (SD); *p<0.05.

SUPPLEMENTARY FIGURE 4

Plasma inflammatory cytokines as measured by ELISA. Data represented
as plasma TNF-a (pg/mL; A) and plasmaMCP-1 (pg/mL; B) concentrations
in male BL6 mice fed high-fat diet (HFD) versus standard diet (SD),
admin i s te red e i t he r sa l i ne o r l i popo l y saccha r ide (LPS ) ;

**p<0.01, ****p<0.0001.

SUPPLEMENTARY FIGURE 5

CNS immunophenotyping of lymphoid cells by flow cytometry. Data
represented as leukocytes (number of cells or % of cells; A, B), CD8 T-

cells (number of cells or % of cells;C, D), CD4 T-cells (number of cells or %
of cells; E, F), and natural killer cells (number of cells or % of cells; G, H) in

male BL6 mice fed high-fat diet (HFD) versus standard diet (SD). There

were no differences between animals administered saline vs.
lipopolysaccharide (LPS), therefore SD and LPS animals were combined

within their appropriate dietary groups; *p<0.05.

SUPPLEMENTARY FIGURE 6

Representative flow cytometry panels for CNS myeloid cells. Data

represented as CD11c or F4/80 surface expression on neutrophils (A),
microglia (B), and monocytes (C) in male BL6 mice fed high-fat diet (HFD;
black) versus standard diet (SD; red) given saline. For monocytes, solid

lines represent mice given saline and dashed lines represent mice given
lipopolysaccharide. Grey peaks represent IgG control antibody.

SUPPLEMENTARY FIGURE 7

Microglial morphology. Quantification of microglial territorial volume

(mm3; A), cell volume (mm3; B), number of end points (C), maximum
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branch length (mm; D), number of end points (E), and minimum branch
length (mm; F) in male BL6 mice fed high-fat diet (HFD) versus standard

diet (SD) administered saline or LPS (lipopolysaccharide; A-D).
Quantification of microglia percentage occupied volume (E) and

average branch length (F). For A, B, D, and F quantification was
performed on individual cells per image (n=3 images for the CA1 and

molecular layers of the hippocampus and n=2 images for the hilus). For C
and E quantification was performed by combing all images per

hippocampal region. In the absence of differences between saline and

LPS, data for each dietary group were combined and are presented as SD
vs. HFD alone; *p<0.05, **p<0.01, *** p<0.001, ****p<0.0001.

SUPPLEMENTARY FIGURE 8

Representative hippocampal cGAS/STING western blot images.
Representative unaltered images of western blots quantified in main

figure 4 (w/link color) for hippocampal cGAS/STING pathway protein

expression of cGAS (A), STING (B), pIRF3 (C), IRF3 (D), NFkb (E), and
tubulin (F) in male BL/6 mice fed standard diet (SD) or high fat diet (HFD).

SUPPLEMENTARY FIGURE 9

Representative neuron and microglia cGAS/STING western blot images.
Representative unaltered images of western blots quantified in main

figure 6 (w/link color) for cGAS/STING pathway protein expression of
cGAS (A), STING (B), pIRF3 (C), NFkb (D), and tubulin (F) in palmitate (Palm)

and insulin (Ins) stimulated neuronal and microglial cell lines. Conditions
in bold are those used for analysis.

SUPPLEMENTARY FIGURE 10

Representative co-culture cGAS/STING western blot images.
Representative unaltered images of western blots quantified in main

figure 7 (w/link color) for cGAS/STING pathway protein expression of
cGAS (A), STING (B), pIRF3 (C), NFkb (D), and histone (F) in in palmitate

(Palm) and insulin and palmitate (IP) stimulated neuronal and microglial

cell line co-culture +/- the gap junction inhibitor carbenoxolone (CBX;
150 mM). Co-cultures were further stimulated with the dsDNA analog Poly

dA:dT (DNA; 1mg/mL). Conditions in bold are those used for analysis. TR;
transfection reagent.
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Graphical Abstract

– Traditional immunosuppression with tacrolimus and mycophenolate mofetil
did not sustain human neural stem cell xenograft survival in mouse brain for
more than 2 weeks.

– Immunosuppression with monoclonal antibodies targeting CD4 and CD40L
enabled long-term persistence of human stem cell transplants.

– Transplants survive past 28 weeks in C57BL/6 mice and the 5XFAD animal
model of Alzheimer’s disease.
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Abstract
Background: As the field of stem cell therapy advances, it is important to
develop reliable methods to overcome host immune responses in animal mod-
els. This ensures survival of transplanted human stem cell grafts and enables
predictive efficacy testing. Immunosuppressive drugs derived from clinical pro-
tocols are frequently used but are often inconsistent and associated with toxic
side effects. Here, using a molecular imaging approach, we show that immuno-
suppression targeting costimulatory molecules CD4 and CD40L enables robust
survival of human xenografts in mouse brain, as compared to conventional
tacrolimus and mycophenolate mofetil.
Methods: Human neural stem cells were modified to express green fluorescent
protein and firefly luciferase. Cells were implanted in the fimbria fornix of the
hippocampus and viability assessed by non-invasive bioluminescent imaging.
Cell survival was assessed using traditional pharmacologic immunosuppression
as compared to monoclonal antibodies directed against CD4 and CD40L. This
paradigm was also implemented in a transgenic Alzheimer’s disease mouse
model.
Results: Graft rejection occurs within 7 days in non-immunosuppressed mice
and within 14 days in mice on a traditional regimen. The addition of dual mon-
oclonal antibody immunosuppression extends graft survival past 7 weeks (p <
.001) on initial studies. We confirm dual monoclonal antibody treatment is supe-
rior to either antibody alone (p< .001). Finally, we demonstrate robust xenograft
survival at multiple cell doses up to 6 months in both C57BL/6J mice and a
transgenic Alzheimer’s disease model (p < .001). The dual monoclonal antibody
protocol demonstrated no significant adverse effects, as determined by complete
blood counts and toxicity screen.

Lisa M. McGinley and Kevin S. Chen contributed equally to this work.
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Conclusions: This study demonstrates an effective immunosuppression proto-
col for preclinical testing of stem cell therapies. A transition towards antibody-
based strategiesmay be advantageous by enabling stemcell survival in preclinical
studies that could inform future clinical trials.

KEYWORDS
Alzheimer’s disease, antibodies, cell tracking, immunosuppression therapy, monoclonal, stem
cell transplantation

1 BACKGROUND

Transplantation of human stem cells in the central
nervous system (CNS) represents a rapidly developing,
multifaceted approach for the treatment of neurological
disorders.1,2 Preclinical studies show that stem cell trans-
plantation can improve disease-related pathology and neu-
rologic function, and advances have led to clinical testing
in patients with stroke, Parkinson’s disease, amyotrophic
lateral sclerosis and Alzheimer’s disease.3–6 Established
human neural stem cell (hNSC) lines are increasingly
utilized in clinical trials7–11in lieu of autologous sources
of stem cells (e.g., mesenchymal stem cells). There are
many benefits to using a hNSC line, including commit-
ment to neuronal/glial fates, the ability to characterize
and/or modify cells ex vivo, and amenability to large-scale
production, thus reducing cost and increasing accessibility
for patients. However, US Food and Drug Administration
approval for biologic therapies requires preclinical efficacy
testing in small animals, necessitating xenogeneic trans-
plant paradigms. Given this requirement, host rejection
of transplanted cells and the reliance on immunosup-
pressive agents to prevent an immune response, even in
human allogenic transplant paradigms, remain significant
challenges.12–15
Traditionally considered an ‘immunoprivileged’ site,

it is now known that CNS antigens are transported
to peripheral lymph nodes, and activated T cells can
cross the blood brain barrier.16,17 In the context of xeno-
geneic cell transplantation in the CNS, recipient CD4+
T cells appear to play a major role, capable of recog-
nizing donor antigens, triggering the adaptive immune
response and consequent graft rejection.18–20 Costimu-
latory signalling, for example via CD40-CD40L interac-
tions, appears to be a necessary component of xenograft
rejection.21,22 This represents a substantial hurdle to ensur-
ing robust survival of human cells in xenograft experimen-
talmodels.21,23 Immunosuppressive drug regimens derived
from clinical protocols for solid organ transplant have
been deployed to prevent xenograft rejection and include
steroids and inhibitors of calcineurin, inosine monophos-

phate dehydrogenase, interleukins and tumour necrosis
factor α.24,25 In terms of xenogeneic grafts, the long-term
effectiveness of these immunosuppressive drugs in pre-
venting cytotoxic immune-mediated rejection of human
stem cell transplants in the CNS is not well established.
Furthermore, standard non-specific immunosuppression
paradigms often donot sufficiently overcomehost immune
responses, with transient survival of transplanted human
cells and subsequent graft rejection within 4–6 weeks in
rodents.26–32 More effective and specific immunosuppres-
sive regimens are needed for robust xenograft survival in
rodent models to extend experimental timelines, enable
evaluation of maximum therapeutic effects and mitigate
effects of stem cell loss.
Emerging approaches include the use of monoclonal

antibodies (mAbs) targeted to specific immune cell pop-
ulations and costimulatory pathways involved in the
immune response.33–37 In preclinical studies, various com-
binations of mAbs have been used to promote immune
tolerance in transplantation experiments. Although this
approach seems promising, the application of long-term
mAb-based immunosuppressive regimens to CNS stem
cell transplantation therapy is unknown. This prompted
us to investigate a mAb-based immunosuppressive reg-
imen consisting of anti-CD4 and anti-CD40L mAb co-
stimulatory blockade in the context of preclinical intracra-
nial hNSC transplantation. Using real-time in vivo bio-
luminescent imaging (BLI), we demonstrate that this
mAb-based immunosuppressive regimen enables robust
and durable survival and extensivemigration of a clinically
relevant hNSC line following intracranial transplantation
in both normal and Alzheimer’s disease mouse models.

2 METHODS

2.1 In vitro generation of
hNSC-luc±/green fluorescent protein± cells

hNSC lines (HK532-CAG-IGF1, previously assessed for
intracranial transplantation)38,39 were supplied by Seneca
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BioPharma, Inc. (Germantown, USA) and cultured as pre-
viously described.40,41 Stable reporter gene expression was
achieved in hNSCs with a lentivirus vector (LV-Luc2-P2A-
EmGFP, # LV050-L, Imanis Life Sciences, Rochester, USA)
encoding firefly luciferase (luc) and emerald green flu-
orescent protein (GFP). Briefly, lentivirus was added to
hNSCs at approximately 70% confluence in growth media
and incubated for approximately 16 h in normal culture
conditions (5% O2, 5% CO2, 37◦C). After incubation, cells
were washed three times in growthmedia to remove virus.
Transduction efficiencywasmonitored under fluorescence
microscopy for GFP expression. Luciferase expression was
measured at 48 h post-transductionusing a luciferase activ-
ity assay per manufacturer protocols (Promega, Madison,
USA). For transplantation, a bank of hNSC-luc+/GFP+
transduced at multiplicity of infection (MOI) 25 was
expanded and stored in liquid nitrogen.

2.2 Stem cell transplantation

We assessed viability of hNSC transplants in C57BL/6J
mice (Jackson Laboratory, Bar Harbor, USA) as well as
the 5XFAD transgenicmouse (Jackson Laboratory), a com-
monly used model of Alzheimer’s disease.42–44These mice
harbour two humanized transgenes: (1) the amyloid-β pre-
cursor protein gene with the Swedish, Florida and London
mutations and (2) the presenilin-1 (PSEN1) gene harbour-
ing theM146L and L286Vmutations. It is important to note
here that we45 and others46 have demonstrated that the
neurological and behavioural phenotypes on the C57BL/6J
genetic background are less severe and occur at later time-
points when compared to that observed on the original
C57BL6/SJLF1 hybrid background.42 Mice were randomly
assigned to treatment groups for each experiment. Sample
sizes are specified in figures and/or figure legends, and out-
liers are included. Personnel performing BLI, immunohis-
tochemistry, microscopy, complete blood counts (CBCs),
flow cytometry, ELISA and toxicity screen analysis were
blinded to the treatment groups. All animal procedures
were approved by the University of Michigan Institutional
Animal Care and Use Committee (PRO00010247) and per-
formed according toUniversity ofMichigan guidelines and
state and federal regulations, including the NIH Guide for
the Care and Use of Laboratory Animals.
Intracranial transplantation was performed on 8-10-

week-old male C57BL/6J or 5XFAD mice (Jackson Labo-
ratory) using our established stereotactic approach.39–41,47
Briefly, mice were anesthetized with 2% isoflurane and
placed in a standard Kopf stereotactic frame (David Kopf
Instruments, Tujunga, USA). hNSC-luc+/GFP+ vials were
thawed and cultured in N2b Growth Media (Seneca Bio-
pharma) supplementedwith basic fibroblast growth factor.

At the same passage number, cells were harvested with
0.25% trypsin followed by addition of soybean trypsin
inhibitor (Invitrogen, Waltham, USA, 0.5 mg/ml). hNSCs
were pelleted by centrifugation, then resuspended in hiber-
nation media (Seneca BioPharma) and trypan blue exclu-
sion ensured transplantation of >90% viable cells. hNSCs
were delivered by bilateral injection to the fimbria fornix of
the hippocampus at three sites per hemisphere (2 μl hNSC-
luc+/GFP+, total six injections) delivered to the follow-
ing coordinates (bregma/lateral/ventral): −0.82/0.75/2.5,
−1.46/2.3/2.9, −1.94/2.8/2.9 mm. Cell concentrations var-
ied depending on the experiment and intended cell dose
(see figure legends). Final cell doses ranged between 1.8 ×
105 and 9.6 × 105 total cells per animal. Each injection was
administered over 120 s followed by a 120 s delay prior to
needle withdrawal. Cell viability was reassessed by trypan
blue exclusion post-transplantation to ensure adequate cell
survival throughout the procedure.

2.3 Immunosuppression treatments

Body weights were collected weekly for all mice for
accurate dosing. For the initial comparison of tacrolimus
with mycophenolate mofetil (Tac/MMF) versus mAbs in
C57BL/6J, mice were either non-immunosuppressed or
received one of several immunosuppression regimens.
For Tac/MMF treatment, beginning 1 week preopera-
tively, mice received intraperitoneal MMF (30 mg/kg
daily, Genentech USA Inc., South San Francisco, USA)
until post-operative day (POD) 7 and intraperitoneal Tac
(5 mg/kg daily, Astellas Pharmas US Inc., Northbrook,
USA) beginning 1 week preoperatively and continuing
daily for the study duration. For animals in this experiment
comparing Tac/MMF to mAbs, induction of immunosup-
pression by mAb therapy (20 mg/kg each, intraperitoneal)
was begun on the day of surgery and given for three
daily consecutive doses. Subsequent maintenance mAb
treatment was given every 7 days thereafter for the study
duration. Depleting mAb treatment targeted CD4 (Clone
GK1.5, Rat IgG2b,κ, 20 mg/kg, Bio X Cell, Lebanon,
USA) and CD40L (Clone MR-1, Armenian Hamster IgG,
20mg/kg, BioXCell). TheTac/MMF/mAbgroups received
the above regimens in combination.
In subsequent experiments, mAb immunosuppression

began on the day prior to surgery and induction dos-
ing continued for four daily consecutive doses followed
by maintance therapy every 7 days for the study dura-
tion. This mAb regimen was administered to C57BL/6J
and 5XFAD mice for hNSC dosing and long-term tracking
experiments. For comparison of both mAbs versus single
mAb treatment, mice received the same mAb treatment
as above, compared with anti-CD4mAb alone (20 mg/kg),
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or anti-CD40L mAb alone (20 mg/kg) on the same dosing
schedule.

2.4 BLI

For in vitro imaging, hNSC-luc+/GFP+ were plated in a
black-walled, clear bottom 96-well plate at various cell
concentrations 1–2 days before imaging. Control groups
included unlabelled hNSC (prepared identically to hNSC-
luc+/GFP+) and dead hNSC-luc+/GFP+ (cells subjected to
heat shock at 70◦C for 3 min, verified by trypan blue stain-
ing). On the day of imaging when cells were approximately
70%–80% confluent, D-Luciferin was added at 150 μg/ml 2
min prior to imaging. Imaging was performed using the
bioluminescence protocol with open emission, an expo-
sure time of 30 s, medium binning and 1.5 cm subject
height.
In vivo BLI was performed in the Center for Molecu-

lar Imaging at the University of Michigan using the IVIS
Spectrum in vivo Imaging System (PerkinElmer,Waltham,
USA). The IVIS Spectrum was initialized at the start of
each imaging session to cool the charge-coupled device
camera to−90◦C.Mice received a single 100 μl D-Luciferin
intraperitoneal injection (resuspended at 40 mg/ml in 1×
PBS) 10 min prior to imaging. Anesthesia was induced
with inhaled isoflurane (2% in 100% oxygen) 6 min prior
to imaging and maintained at 1.5% isoflurane for the dura-
tion of the procedure. At 2 min prior to imaging, mice
were placed in prone position on the heated imaging
platform inside the IVIS Spectrum chamber with inte-
grated gas anesthesia provided through a nose cone. The
following IVIS acquisition settings were used through-
out the study: Exposure time 180 s; F/Stop 1; Medium
Pixel Binning; Field of View C; Subject height 1.50 cm.
Both Luminescent and Photograph Imaging modes were
selected to render a quantitative bioluminescent signal
expressed in photons/second overlaid on a photographic
image of the animal under white light. BLI analysis was
performed using the Living Image Software (IVIS Imaging
Systems). IVIS Spectrum-generated images were analysed
using automatically generated contour regions of interest
with a 10% threshold to eliminate background noise. Total
flux (photons/second) data were collected and aggregated
throughout the study.

2.5 Tissue and blood collection,
histology, flow cytometry, ELISA and CBCs

Mice were euthanized by intraperitoneal pentobarbital
overdose (FatalPlus, Vortech Pharmaceuticals, Dearborn,
USA), and whole blood was collected from the inferior
vena cava using a 23-gauge needle. For CBCs, 100 μl of

blood was placed into an EDTA-coated 100-μl microvette
tube, gently rolled to mix and maintained at room tem-
perature. Automated CBC analysis (element HT5, Heska,
Loveland, USA) was performed at the In Vivo Animal
Core at the University of Michigan within 4 h of blood
draw. Following blood collection, mice were perfused with
saline followed by 4% paraformaldehyde. Brains were
removed and post-fixed in 4% paraformaldehyde, cryopro-
tected in 30% sucrose and cryosectioned (coronal, 40 μm
sections). Transplanted hNSCs were visualized in brain
sections by using the 488 nm filter for GFP for hNSC-
luc+/GFP+ or by immunostainingwith a primary antibody
for humannuclei (HuNu;MAB1281,Millipore, Burlington,
USA) for unlabelled hNSCs. Additional characterization
of hNSC grafts used primary antibodies towards Nestin
(ABD69, Millipore), glial fibrillary acidic protein (GFAP,
Z0334, Dako, Glostrup, Denmark), Mouse IgG (4410, Cell
Signaling, Danvers, USA), Mouse IgM (13-5790-82, Invitro-
gen), Mouse IgA (NB7506, Novus, Weldon Spring, USA),
CD4(STJ114879-50, St. John’s Laboratory, London, UK),
CD40L (STJ114971-50, St. John’s) and Iba1(091-19741,Wako,
Richmond, USA) as previously described.39 All fluores-
cent sections were counterstained with Hoechst (Pierce,
Walthmam, USA).
To assess systemic toxicity associated with dual mAb

treatment and/or hNSC transplantation, samples of brain,
heart, liver, kidney, and pancreas of hNSC-treated ani-
mals were submitted to the University of Michigan
Unit for Laboratory Animal Medicine In Vivo Animal
Core. Hematoxylin/eosin-stained sections of formalin-
fixed paraffin-embedded tissue from each organ were
reviewed by a board-certified veterinary pathologist for
evience of organ toxicity or damage, blinded to experimen-
tal groups.
A CD40L enzyme linked immunosorbent assay (ELISA)

kit (Abcam, Waltham, USA) was utilized to quantify
CD40L levels in serumofmAb treated animals. Briefly, fol-
lowing the manufacturer’s protocol, samples were diluted
1:2 and placed into a 96-well plate pre-coated with anti-
CD40L antibodies. Sandwich ELISA was performed by
then incubating with biotin-conjugated anti-CD40L anti-
body, followed by Streptavidin-horseradish peroxidase and
tetramethylbenzidine substrate. The reaction was then
stopped by Stop solution, and absorbance in each well
was read on a spectrophotometer at 450-nm wavelength
(Synergy HTX, Agilent, Santa Clara, USA). Levels were
compared to absorbances from a serially diluted standard
of mouse CD40L provided in the kit.
To assess efficacy and off-target effects of mAb treat-

ment, serumsampleswere taken 8 days after the above four
dose induction regimen of anti-CD4 alone, anti-CD40L
alone or both mAbs, then processed for flow-cytometry
(without hNSC transplants). Briefly, red cells were lysed
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in blood samples, and peripheral immune cells were iso-
lated by centrifugation. Cells were resuspended in flow
cytometry buffer and Fc receptors blocked (TruStain FcX
blocking solution, BioLegend, SanDiego, USA). Cells were
then stained with APC-CD45, FITC-CD3, BV421-CD8 and
APC-Cy7 CD4 antibody (BioLegend) at 1:100 dilution,
then fixed with BD Stabilizing Fixative (BD Biosciences,
Franklin Lakes, NJ). Flow cytometry was performed on
a BD LSRFortessa flow cytometer with FACSDiva soft-
ware (BD Biosciences) and analysed with FlowJo software
(FloJo LLC, Ashland, USA). Lymphocytes were initially
gated by low side scatter properties then gated for CD4+
T cells, and the number of SSClowCD4+ cells were counted
as a percentage of total lymphocytes as has been reported
previously.48–52

2.6 Morris water maze

The Morris water maze is a well-established method of
assessing spatial memory in animal models. Briefly, at 11
months of age, animals are placed in a pool of opaque
water with visual cues placed around the perimeter of
the pool. Groups included wild-type mice (WT) with no
treatment as well as 5XFAD mice with no treatment,
5XFAD mice that received biweekly injections of saline or
CD4/CD40LmAb. In groups receiving saline ormAb injec-
tions, intraperitoneal injections began 4 weeks prior to
initiation of behavioural testing. A submerged hidden plat-
form is placed in one quadrant, which provides an escape
from water. The location of the hidden platform can be
deduced by spatial relationship to the surrounding visual
cues, and latency for animals to swim towards and find
the hidden platform reduces over repeated trials as ani-
mals learn the spatial relationship between the platform
and visual cues (four trials per day for 12 days). A positive
control with visible platform is performed on the 14th day.
Subsequently, to test long-term reference memory, probe
trials (with the platform removed) were conducted prior
to start of training on day 4 and 24 h after the end of
training (day 13). Time spent probing each quadrant of the
pool is measured: mice that are successful in spatial learn-
ing and memory will spend a disproportionate amount of
time searching for the platform in the quadrant where it
was previously placed, whereas impaired spatial memory
results in only 25% of time spent in the correct quadrant as
a matter of chance.

2.7 Statistical analysis

All statistical analyses were performed using GraphPad
Prism 8 (GraphPad Software Inc., La Jolla, USA), or R. Sta-

tistical significancewas determined using an alpha-level of
0.05. Brown-Forsythe F-tests were used to compare vari-
ances and determine distribution. Data were analysed by
parametric t-test, one-way analysis of variance (ANOVA)
with Tukey’s post-test for comparisons of multiple groups,
or Pearson’s correlation. Analysis of repeated BLI mea-
surements was performed using a linear mixed effects
model with random mouse-specific intercepts to deter-
mine the association between changes in total flux during
follow-up as a function of treatment group. Specifically, the
mixed models included a treatment effect, a linear follow-
up time effect and a time by treatment group interaction
effect. Themixed effectsmodelswere fit using the lmerTest
package in R software version 3.5.2, and model parameter
estimates were determined using the maximum likeli-
hood method.53 T-tests calculated using Satterthwaite’s
degrees of freedom method were evaluated to assess dif-
ferences in total flux between treatment groups during
follow-up. Since total flux was heavily skewed, outcomes
were log transformed as log(Flux+1). We performed an
available-case analysis and included all information in the
mixed effects models, even those without complete data.
Comparison between mouse strains was performed using
Wilcoxon-Mann-Whitney Tests. Exact n values, p values
and test specifics for each experiment are included in the
figure legends.

3 RESULTS

3.1 Using BLI to assess transplanted cell
survival

Using a molecular imaging approach, we modified hNSCs
with a lentiviral vector to induce stable expression of luc
andGFP reporters. GFP reporter expressionwas visualized
in transduced hNSCs confirming transduction (Figure 1A),
and expression increased with escalating MOI. For MOI
selection, luciferase expression was measured in modified
hNSCs, where highest activity was observed at MOI 25
(Figure 1B). There was also negligible effect on cell viabil-
ity at this MOI, whereas higher MOI reduced cell viability
(Figure 1C). Based on these data, a large bank of hNSC-
luc+/GFP+ transduced at MOI 25 was generated for all
further experiments.
We next used optical imaging to evaluate the sensitiv-

ity and specificity of bioluminescence in hNSC-luc+/GFP+
in vitro. Cells were serially diluted within the range of 5 ×
102 to 3 × 10,6 and luciferin was added prior to imaging
for bioluminescence (Figure 1D). Bioluminescent signal
was increased at greater cell densities. Media only and
hNSC-luc+/GFP+ cells without luciferin were included
as negative controls and produced no signal. To assess if
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6 of 17 MCGINLEY et al.

F IGURE 1 Development and validation of bioluminescent imaging (BLI) to assess transplanted human neural stem cell (hNSC) graft
viability in vivo. (A) Fluorescence microscopy of green fluorescent protein (GFP) expression in hNSCs modified to express a dual reporter
luc+/GFP+ vector at increasing multiplicity of infection (MOI) 48 h post-transduction. Luciferase assay (B) and trypan blue exclusion viability
assay (C) of hNSC-luc+/GFP+ performed at 72 h post-transduction. (D) In vitro BLI of hNSC-luc+/GFP+ cells at concentrations ranging from
3 × 106 to 5 × 102 per well, with no luciferin and media only controls. (E) In vitro BLI of unlabelled hNSC and dead hNSC-luc+/GFP+ (DC),
with hNSC-luc+/GFP+ cells as a positive control. (F) In vivo BLI detection of transplanted hNSC-luc+/GFP+ in 8-week-old C57BL/6J mice on
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signal is specific to viable, labelled cells, unlabelled hNSC
and dead hNSC-luc+/GFP+ cells were also imaged and did
not produce bioluminescent signal (Figure 1E).
To evaluate bioluminescence in vivo, we injected hNSC-

luc+/GFP+ bilaterally into the fimbria fornix of 8-week-old
C57BL/6J mice and imaged on POD 2. Control groups
included mice with unilateral injection of live hNSC-
luc+/GFP+ and contralateral injection of either unlabelled
hNSC or dead cells. In bilaterally transplanted mice,
hNSC-luc+/GFP+ cellswere detectable as substantial bilat-
eral BLI signal (Figure 1F). In unlabelled and dead cell
groups, bioluminescent signal was present unilaterally at
the site of live hNSC-luc+/GFP+ cell transplants, while the
contralateral side exhibited no signal. Histological analy-
sis confirmed that hNSC-luc+/GFP+ grafts in postmortem
mouse brain co-localized with BLI signal (Figure 1G).
Here, GFP+ and HuNu+ cells were visualized at the site of
hNSC-luc+/GFP+ transplants and BLI signal. Unlabelled
hNSCs showed HuNu labelling alone, and dead cell grafts
showed no HuNu or GFP signal.
Together, these initial proof-of-concept experiments

confirmed that BLI can detect hNSC-luc+/GFP+ cells in
vitro and in vivo and indicate that bioluminescent signal is
specific to viable, labelled cells, thereby validating BLI as a
tool to assess in vivo survival of transplanted cells.

3.2 Anti-CD4 and anti-CD40L mAbs
enable robust hNSC survival compared to
traditional immunosuppression

We next used in vivo BLI tracking of hNSC survival in
real time to compare immunosuppression protocols in
C57BL/6J mice. For this purpose, mice were randomly
assigned to the following groups: no immunosuppres-
sion, Tac/MMF, Tac/MMF/mAb or mAbs alone. hNSC-
luc+/GFP+ cells were transplanted into the fimbria fornix
of the hippocampus, and mice were imaged on POD 2
and weekly until end point, approximately 7 weeks post-
transplantation. Induction Tac/MMF treatment began
with daily administration starting 7 days before transplant
and continuing 7 days after transplant,withTac continuing
daily until study endpoint. Induction of mAb immuno-
suppression began with daily administration of anti-CD4
and anti-CD40L starting on day of transplanted for three

doses, followed by administration every 7 days until study
endpoint.
Robust BLI signal indicating graft survival was observed

in all groups 2 days post-operatively (Figure 2A). Signal loss
rapidly declined after POD 7 in non-immunosuppressed
mice and at POD 14 in mice on a regimen of Tac/MMF.
However, the addition of anti-CD4 and anti-CD40L mAbs
preserved bioluminescent signal, and hence graft survival,
to the terminal time point of 7 weeks.
At POD 10, graft loss appeared associated with IgG and

CD4 positive staining. Animals treated with traditional
Tac/MMF were compared to animals receiving combined
Tac/MMF and mAb, and both demonstrated accumula-
tion of Iba1 positive microglia at graft sites (Figure S1A),
suggesting microglial reaction to hNSC grafts was not
impacted by mAb. We did not detect significant CD40L
at cell grafts in either group (Figure S1A). By contrast,
staining for Mouse IgG as well as CD4 was only seen
in Tac/MMF treated animals and was not detectable in
mAb treated mice (Figure S1B). There was no detectable
staining of IgM or IgA (data not shown). Higher magnifi-
cation images demonstrated IgG staining on the surface of
many GFP+ stem cells in animals treated with Tac/MMF,
suggesting host-generated antibodies were reactive to
xenograft surface epitopes prior to clearance of grafts
(Figure S1C). While rare inclusion bodies showed IgG
staining in mAb treated animals, this was not associated
with GFP-expressing stem cells. This appears consistent
with prior work describing a role for a humoural response
as well as CD4+ T cell response to xenografts in mice.16
The difference in Mouse IgG detection could be a result of
anti-CD40LmAbactivity in the periphery and interference
with B cell Ig class switching.40,54
Total BLI flux was quantified for all time points (Figure

2B) and was significantly increased over follow-up time in
the mAb groups as compared to non-immunosuppressed
and Tac/MMF groups (p < .001). No significant difference
in flux was observed between Tac/MMF/mAb and mAb
alone groups. Of note, in the Tac/MMF group, signal was
present in only two mice from POD 14 onward, represent-
ing a survival rate of 20% (n = 10 total). Conversely, robust
bioluminescent signal was present throughout the experi-
ment in all mice on mAb regimens, both in the mAb alone
(n= 7 euthanized at POD 14, n= 5 euthanized POD49) and
the combined Tac/MMF/mAb groups (n = 7 euthanized

post-operative day (POD) 2 after bilateral injection of 3.6 × 105 hNSC-luc+/GFP+, or unilateral injection of 1.8 × 105 hNSC-luc+/GFP+ (L: left
side) with contralateral injection of 1.8 × 105 DC or unlabelled hNSC transplants (n = 2 per group). (G) Representative POD 2
immunohistochemical (IHC) images showing the fimbria fornix target area in C57BL/6J mice, with hNSC-luc+/GFP+ grafts expressing GFP
(green) and human-specific nuclear antibody HuNu (red), with contralateral staining of DC or unlabelled hNSC. Data presented as mean ±
standard error of the mean (S.E.M.) for luciferase activity and cell viability analysed by ANOVA with Tukey’s post-test for comparisons of
multiple groups. **p < .01; ****p < .0001. DC, dead cells; POD, post-operative day
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8 of 17 MCGINLEY et al.

F IGURE 2 Assessment of immunosuppression protocols using bioluminescent imaging (BLI) to track transplanted hNSC graft survival.
(A) Serial BLI detection of transplanted hNSC-luc+/green fluorescent protein (GFP)+ in C57BL/6J mice (3.6 × 105 total cells) receiving no
immunosuppression (No IS), tacrolimus with mycophenolate mofetil (Tac/MMF), Tac/MMF in combination with mAbs against CD40L and
CD4 (Tac/MMF/mAbs) or only mAb against CD40L and CD4 (mAbs). (B) BLI signal quantification for all mice at all-time points
demonstrates significant maintenance of BLI signal in mAb treated groups versus Tac/MMF alone or non-immunosuppressed groups. (C and
D) immunohistochemical (IHC) images showing GFP+ grafts (green) colocalized with HuNu (red) in the fimbria fornix target area at POD 2
and POD 49 (endpoint). Starting sample size: n = 10 in No IS group, n = 12 in all other groups. Subsets were euthanized for IHC at POD2 (2
from No IS group and 3 from all other groups) and POD10 (2 from No IS group and 3 from all other groups, IHC data not shown). Remaining
animals were used for each BLI data point until study end (POD 49). Data presented as mean ± standard deviation (SD) for repeated BLI
measures, analysed by linear mixed effects model, ***p < .001. HuNu, human nuclei; IS, immunosuppression; POD, post-operative day

at POD 14, n = 5 euthanized at POD 49), representing a
survival rate of 100%. This indicates that a regimen of only
CD4/CD40L mAbs is sufficient to support graft survival.
To confirm the BLI results, transplanted hNSC-

luc+/GFP+ grafts were also evaluated histologically
directly following POD 2 and POD 49 imaging. At the
earlier POD 2 time point, bioluminescent signal corre-
sponded with GFP+ cells and HuNu+ immunostaining

in all groups, where sizeable grafts were visible in the
fimbria fornix target region (Figure 2C). These cells
stained strongly for the neuronal marker Nestin, with the
occasional expression of astrocyte marker GFAP (Figure
S1D), consistent with our previous characterization of this
cell line.40 By POD 49, the non-immunosuppressed and
Tac/MMF groups that had lost bioluminescent signal also
exhibited no human-specific immunostaining or GFP+
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MCGINLEY et al. 9 of 17

TABLE 1 Complete blood count (CBC) analysis. (A) Whole blood CBC analysis in C57BL/6J mice 8 weeks post-transplantation of 360k
human neural stem cell (hNSC)-luc+/green fluorescent protein (GFP)+. CBC panel measures and data (mean ± standard deviation) for each
experimental group. (B) CBC measures were compared between groups, and statistically significant comparisons are highlighted

A. CBC results

Measure
Normal
range

No IS
(n = 7)

Tac
(n = 6)

Tac mAb
(n = 7)

mAb
(n = 7)

White blood cell count - WBC
(103/μl)

1.8–10.7 3.123 ± .5019 1.007 ± .5417 1.194 ± .7348 3.28 ± 1.469

Neutrophil count - NE (103/μl) .1–2.4 .8957 ± .5754 .2067 ± .1122 .2643 ± .1295 .6986 ± .3076
Lymphocyte count - LY (103/μl) .9–9.3 2.119 ± .4143 .755 ± .4117 .8714 ± .5934 2.471 ± 1.165
Monocyte count - MO (103/μl) .0–.4 .09143 ± .02545 .03 ± .0228 .04429 ± .02637 .09429 ± .07829
Eosinophil count - EO (103/μl) .0–.2 .01 ± .005774 .008333 ± .007528 .008571 ± .006901 .01429 ± .01272
Basophil count - BA (103/μl) .0–.2 .004286 ± .005345 .003333 ± .008165 .004286 ± .005345 .002857 ± .00488
Red blood cell count - RBC
(106/μl)

6.36–9.42 8.579 ± .31 8.478 ± .8597 9.18 ± .7665 9.134 ± .4404

Hemoglobin - HB (g/dl) 11.0–15.1 11.69 ± .3891 10.97 ± 1.234 11.91 ± .4634 11.73 ± .6317
Hematocrit - HCT (%) 35.1–45.4 37.01 ± 1.471 35.63 ± 3.976 38.17 ± 1.608 39.47 ± 2.391
Mean cell volume - MCV (fL) 45.4–60.3 43.14 ± .5442 42 ± .6663 41.71 ± 1.875 43.2 ± .8794
Mean cell hemoglobin - MCH
(pg)

14.1–19.3 13.64 ± .1902 12.9 ± .2098 13.01 ± .7151 12.83 ± .4751

MCH concentrate - MCHC (g/dl) 30.2–34.2 31.59 ± .3805 30.78 ± .4167 31.21 ± 1.014 29.73 ± .9759
Red cell distribution width -
RDW (%)

12.4–27.0 17.74 ± .4894 17.18 ± .7305 18.24 ± 1.247 18.04 ± .4036

Platelet count -PLT (103/μl) 592—2972 439.9 ± 197.1 377.3 ± 250.2 472.3 ± 249.2 662.3 ± 105.1
Mean platelet volume - MPV (fL) 5.0–20.0 4.543 ± .4198 4.717 ± .6401 4.514 ± .7988 4.271 ± .1799
B. CBC statistics
Group comparison WBC NE LY MO EO BA RBC
No IS versus Tac **** *** *** * ns ns ns
No IS versus Tac MAb *** *** ** * ns ns ns
No IS versus MAb ns ns ns ns ns ns ns
Tac versus Tac MAb ns ns ns ns Ns ns *
Tac versus MAb **** ** **** ** Ns ns ns
Tac MAb versus MAb **** * **** * Ns ns ns

*Significant (p < .0332) by one-way ANOVA.
**Significant (p < .0021) by one-way ANOVA.
***Significant (p < .0001) by one-way ANOVA.

cells (Figure 2D). Weakly GFP+ and HuNu+ debris was
observed in the target areas, indicative of graft rejection.
Conversely, the retention of bioluminescent signal in mAb
groups corresponded with intact HuNu+/GFP+ cells in
the fimbria fornix target region, demonstrating robust
viability of transplanted hNSC-luc+/GFP+ cells.
We also analysed CBC profiles on whole blood from

mice that underwent hNSC transplantation and BLI
(Table 1). Decreased white blood cell counts, includ-
ing neutrophils, lymphocytes and monocyte counts (with
preserved lymphocyte:neutrophil ratios) were observed
in Tac/MMF and Tac/MMF/mAb groups as compared
to non-immunosuppressed controls, indicating a more
global immunosuppression relative to non-treated, non-
immunosuppressed controls. However, mice receiving

only mAbs with hNSC transplants maintained normal
CBC profiles comparable to non-immunosuppressedmice.
Eosinophil, basophil, red blood cell and platelet counts
were normal for all hNSC transplant groups regardless
of immunosuppressant. These data indicate that mAb
immunosuppressionmediates a targeted immunosuppres-
sant activity sufficient to preserve human hNSC survival
without detrimental impact to peripheral CBC profiles.
Together, these data show that a regimen of anti-CD4

and anti-CD40L mAbs extends the survival of intracra-
nial human stem cell transplants through at least 7 weeks
in C57BL/6J mice and does not negatively impact CBCs
compared to the conventionally used immunosuppressive
agents Tac/MMF, offering an enhanced immunosuppres-
sion method for xenografts in mice.
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10 of 17 MCGINLEY et al.

3.3 Both anti-CD4 and anti-CD40L
mAbs are required for transplanted hNSC
graft survival

Although anti-CD4 or anti-CD40L mAbs have been used
in combination with other agents to promote the short-
term acceptance of transplanted organ and cell grafts in
mice,33 ,55,56 they have not well studied individually in
the context of CNS xenograft transplantation. Therefore,
we next questioned if suppression of both CD4+ and
CD40L+ cells is required, or if administration of a single
mAb is sufficient for long-term transplanted hNSC graft
survival. To determine this, hNSC-luc+/GFP+ cells were
transplanted intracranially to C57BL/6J mice on a regi-
men of anti-CD4 mAb alone, anti-CD40L mAb alone, or
a combination of both anti-CD4 and anti-CD40L mAbs.
Induction mAb treatment began 1 day prior to transplant
for 4 daily doses, and continued every 7 days until study
endpoint. Serial BLI imagingwas again used to track hNSC
survival over time and was performed beginning on POD
2 and weekly or biweekly until end point, approximately
28 weeks post-transplantation (Figure 3A). Mice receiving
both mAb retained BLI signal strength through 28 weeks,
indicative of hNSC graft survival. However, similar graft
survival was not maintained in the anti-CD4 alone and
anti-CD40L alone groups. This was also reflected in the
signal quantification (Figure 3B), where total flux was sim-
ilar for all groups at POD 2 then separated longitudinally,
with the dual-mAb group retaining significantly increased
signal throughout the 28-week time span as compared to
anti-CD4 alone (p < .001) or anti-CD40L alone (p < .001).
To confirm and characterize the effect of mAb immuno-

suppression on the host immune response, we also
assessed CD4+ cells and soluble CD40L levels in periph-
eral blood. Here, a separate cohort of animals received
anti-CD4 alone, anti-CD40L alone or dual mAb therapy
on an induction schedule of four daily doses of mAb. Flow
cytometry for CD4+ cells was performed on peripheral
whole blood collected 1 week after the induction regimen
ofmAb.Mice in the anti-CD4 alone and dualmAbs groups
displayed depletion of CD4+ cells, relative to mice that
were treated with anti-CD40L alone and untreated con-
trols (Figure S2A). Numbers of CD40L+ T cells were poorly
detected by flow cytometry even in untreated animals
(Figure S2B) likely due to the transient nature of surface
CD40L expression with T cell activation.57,58 Therefore,
serum was taken from animals after completion of BLI
studies above and analysed for soluble CD40L. ELISA
analysis of soluble CD40L levels in serum collected at
experimental endpoint (28 weeks) for hNSC-transplanted
animals, only mice treated with anti-CD40L, either alone
or in combinationwith anti-CD4mAb, displayed depletion
of soluble CD40L, relative to controls (Figure S2C). F
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F IGURE 4 Long-term bioluminescent imaging (BLI) tracking of transplanted human neural stem cell (hNSC) in C57BL/6J and 5XFAD.
Serial BLI detection and signal quantification of 3.6 × 105, 6.0 × 105 or 9.6 × 105 hNSC-luc+/green fluorescent protein (GFP)+ cells
transplanted in C57BL/6J mice (A and B) and 5XFAD Alzheimer’s disease mice (C and D) on a dual mAb immunosuppression protocol of
anti-CD4 and anti-CD40L. No biologically relevant statistical differences in BLI flux are seen between cell dose groups. (E) Representative
immunohistochemical (IHC) images demonstrate GFP+ hNSC-luc+/GFP+ grafts in the fimbria fornix target area at endpoint in C57BL/6J
mice. Sample size: n = 5 animals per treatment dose (n = 15 animals for C57BL/6J and another 15 for 5XFAD). Data presented as mean for BLI
measures, error bars omitted for clarity, analysed by linear mixed effects model. POD, post-operative day

3.4 CD4 and CD40LmAb regimen is
effective at multiple cell doses and in a
transgenic mouse model

After demonstrating that dual mAb-based immunosup-
pression is more effective than Tac/MMF-based regimens
or each mAb alone, we next investigated this method of
immunosuppression using multiple cell doses in a trans-
genic mouse model. Induction of immunosuppression by
daily dual mAb therapy was again performed starting 1
day prior to transplant for four doses, followed by mainte-
nance dosing every 7 days until study endpoint. Long-term

graft survival was initially assessed in 8-week-oldC57BL/6J
mice. Multiple doses of hNSC-luc+/GFP+ cells were trans-
planted bilaterally into the fimbria fornix at increasing
doses of 3.6 × 105 (low dose), 6.0 × 105 (medium dose)
and 9.6 × 105 (high dose) total cells, and longitudinal BLI
was performed to track graft survival. Robust BLI signal
indicative of hNSC graft survival was present up to the
study endpoint 24 weeks post-transplantation (Figure 4A).
While a statistical difference in the BLI signal was seen
in comparing the medium and the low dose cell groups
(p = 0.035), this difference was thought to be attributable
to outlier BLI flux timepoints in the low- and high-dose
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groups and deemed not biologically meaningful (Figure
4B). Functionally, there was no difference in BLI signal
between administered cell doses.
Using an identical experimental design, we assessed

mAb immunosuppression in 8-week-old 5XFAD mice, a
commonly used model of Alzheimer’s disease. Escalating
doses of 3.6 × 10,5 6.0 × 105 and 9.6×105 total cells were
transplanted bilaterally into the fimbria fornix, andweekly
BLI was again performed to track graft survival over time
until the study termination at approximately 8 months
post-transplantation (data concordant with C57BL/6Jmice
up to 24 weeks presented here). Here, similar long-term
hNSC graft survival was achieved in 5XFAD mice, where
robust BLI signal was present in all three cell dose groups
until study endpoint (Figure 4C). Again, while statistical
differences were noted between groups in effect of treat-
ment dose over time (low- vs. medium-dose, p= .013; low-
vs. high-dose, p < .001), stratification and correlation of
BLI signal to treatment group could not be consistently
identified (Figure 4D).
To address the question of differential hNSC survival

rates between strains, we performed a comparison of
within-individual percent change of log (Flux+1) between
first measurement to post-operative day 161 (latest shared
time point) using Wilcoxon-Mann-Whitney tests. There
were no significant differences between C57BL/6J and
5XFAD animals in low dose (p = .73), medium dose (p
= .56) or high dose (p = .53) groups, or even all groups
combined (p = .61).
BLI data were confirmed histologically, where GFP+

hNSC grafts were visible in the fimbria fornix target
of C57BL/6J (Figrue 4E). Whole brain imaging revealed
significant migration of hNSCs from the site of transplan-
tation at the fimbria fornix throughout the white matter
tracts, including the corpus callosum. This migratory
action may account for the apparent BLI signal increase
over the long-term period of 6 months. Histopathologic
toxicity screening (blinded to treatment group) was per-
formed at 6 months after transplant of C57BL/6J animals
receiving low,mediumandhigh dose hNSC grafts and dual
mAb immunosuppression. This revealed ‘no findings sug-
gestive of treatment-related toxic effect in the experimental
group, based on hematologic, gross pathology and histo-
logical evaluation of representative organs’ (Table S1, full
report available upon request).
We were further able to confirm in 5XFADmice that the

known behavioural deficit in hippocampal-based mem-
ory tasks was not affected by injection regimen or mAb
treatment. Delayed learning curve during training period
for Morris Water Maze was noted in all 5XFAD animals
as compared to WT controls, regardless of whether ani-
mals receivedmAb, saline injections alone or no treatment
(Figure S3A). Further, there was no difference in 5XFAD

groups during probe trials as measured by time spent
exploring the target quadrant (Figure S3B). Together, these
data demonstrate that dualmAb immunosuppression sup-
ports robust hNSC survival atmultiple cell doses for up to 6
months inC57BL/6Jmice andup to 8months in the 5XFAD
transgenic model of Alzheimer’s disease.

4 DISCUSSION

A significant obstacle facing the widespread adoption of
stem cell therapy for neurological diseases is transplant
rejection by the host immune system and eventual graft
failure.16,59 As progress is made in developing cell-based
treatments, reliable methods to overcome host immune
rejection are of paramount importance. In the present
research, we show that an immunosuppressive regimen
of depleting anti-CD4 and anti-CD40L mAbs results in
robust long-term persistence of hNSC grafts, superior to
the traditional agents Tac/MMF. Cell survival requires
both antibodies for maximal efficacy, persists across esca-
lating stem cell doses and is applicable to disease models.
The mAb regimen is also more effective and less toxic
than conventional immunosuppressive agents. Overall,
this study supports the use of dual mAbs as an alternative
immunosuppression method for study of human stem cell
therapeutics in preclinical animal disease models.
For cell-based therapy to succeed in clinical translation,

transplanted cells must survive. In allogenic transplant
paradigms, a variety of strategies have been pursued to
achieve this. Prior work has utilized mesenchymal stem
cells, given the relative ease of sourcing from bonemarrow
and early thought thatmesenchymal stemcells could avoid
immune rejection.60 However, follow-up studies demon-
strated that allogenic mesenchymal stem cell transplants
still elicited an immune response and graft rejection in
the ‘immune privileged’ CNS.61–63 Furthermore, while
mesenchymal stem cells can be transdifferentiated to
neuron-like cells in vitro, their ability to recapitulate neu-
rons in vivo after transplantation has been less studied.64,65
Alternatively, the advent of induced pluripotent stem cell
technology brings the promise of autologous cell trans-
plants, but currently these approaches are labour- and
cost-intensive and likely to be prohibitive for large clinical
trials and population scale therapy. Therefore, as a more
practical paradigm, hNSC lines represent a promising ‘off
the shelf’ therapeutic option in neurologic disorders given
the capacity for large-scale expansion and commitment to
neuroglial differentiation. These advantages have led to
many early phase trials utilizing hNSC lines.7–11
In preclinical testing for future therapies, hNSC studies

encounter the added barrier of requiring xenograft ani-
mal models to demonstrate efficacy even prior to invoking
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an allograft paradigm in human trials. A number of stud-
ies use immunodeficient or humanized animal strains,66
yet this broad approach removes a critical contribution of
the immune system to underlying disease pathophysiol-
ogy of the animal model.67 Many groups utilize traditional
pharmaceutical-based immunosuppression based on solid
organ transplant protocols. As an example, preclinical
studies supporting Phase 1 and 2 clinical trials of a human
spinal cord stem cell line in amyotrophic lateral sclero-
sis utilized Tac/MMF.68–71 Yet these drugs proved to be
insufficient in long-term xenograft models. This is con-
sistent with our own published work in various mouse
models where immunosuppression with a combination of
Tac/MMF resulted in low survival rates and graft clear-
ance within 8 weeks.41,47 Furthermore, long-term use of
these drugs may directly impact the fidelity of the underly-
ing disease model,72 ,73 and prolonged use of these drugs
is associated with toxic side effects, including elevated
risk of infections, diabetes, hypertension, cardiovascular
disease, nephrotoxicity and neurotoxicity.74 Therefore, a
robust immunosuppressive regimen that ensures hNSC
survival without impacting the model phenotype is criti-
cally needed.
In the current study, dual mAb therapy resulted in cell

survival in 100% of transplanted animals for at least 6–8
months in both C57BL/6J mice and an aggressive model
of AD, with no disruption in peripheral blood profiles or
other organ toxicity. There was also no detrimental impact
to the behavioural phenotype under study. We expect this
targeted approach is a major advance enabling the study of
awide range of stemcell therapies in theCNS.CD4+ T cells
play a central role in cytotoxic rejection of transplanted
cells, particularly more mature or differentiated cells that
up-regulate major histocompatibility complex class I and
II in the setting of local inflammation.21,24,75,76 Therefore,
depleting CD4+ T cells targets a fundamental immune
rejection mechanism. CD40L also appears to be a criti-
cal component of the immune recognition and rejection of
stem cell xenografts, as demonstrated by our data show-
ing mAbs targeting both CD4 and CD40L are required for
optimal cell survival. We did not detect significant changes
inmembrane-bound CD40Lwith peripheral or infiltrating
T cells, and hypothesize that CD40L plays a role in anti-
gen presentation in the periphery for activation of stem
cell-responsive immune cells.77–79 However, constitutive
expression of CD40L in licensed T cells within rejecting
grafts appears unnecessary for immune clearance, at least
in the CNS.80 Our observed CD4 and mouse IgG stain-
ing at the xenograft site are likely downstream effects of
CD40L activation, which is curtailed with dual mAb ther-
apy. At the same time, in contrast to broad pharmacologic
immunosuppression, this targeted approach appears to
minimize collateral adverse effects. This is evidenced by

reduced alterations in CBC profiles of mAb-treated ani-
mals versus those receiving Tac/MMF, as well as lack
of histopathologic toxicity. A prior study by Ager et al.81
reported survival of CNS xenografts for up to 6 weeks in
two AD mouse models utilizing mAbs targeting LFA-1,
CD40 and CTLA-4, representing an improvement over tra-
ditional immunosuppressant drugs. A number of alternate
mAb-based approaches have been pursued targeting the
T cell costimulatory mechanism, including targeting CD4
alone,20 ,31,82 CD2/T-cell receptor αβ,83 CD25,84 IL-2R,85
CTLA-4/MR186 and B7/LFA-1,80 ,87 although these studies
did not interrogate cell survival for more than 4–18 weeks.
Here, our data demonstrate that anti-CD4 mAb alone still
results in a significant degree of graft loss over the long-
term, while dual mAbs produces robust graft survival for
more than 28 weeks.
Although we found statistical differences in BLI signal

over time with varying cell doses in C57BL/6 and 5XFAD
mice, variability in BLI quantification curves precludes
conclusions on biological relevance. Some variability in
BLI signal is likely related to migration and spread of
luminescent cells along white matter tracts in the brain.
Furthermore, it is possible that a maximal cell dose was
reached, and additional cell survival at higher cell num-
ber/concentration could not be supported in the transplant
site.88 We are performing additional dosing studies using
an unmodified hNSC cell line to further investigate and
identify the maximal tolerated dose in AD mice. As
this approach is extended to other disease models, the
preservation of therapeutic benefit as well as underlying
animal model phenotype will need to be validated for
each cell line/model in the presence of dual mAb-based
immunosuppression.
The approach presented here is readily translatable

to clinical trials of stem cell therapy. Therapies target-
ing CD4 (clenoliximab, keliximab, zanolimumab) and
CD40(teneliximab) are pending or already under investi-
gation in human trials.36,89,90 Still, several obstacles remain
in clinical application of stem cell therapies for neurolog-
ical diseases. Although we saw no behavioural difference
with mAb treatment in our AD mouse model, given
the complex interaction of the nervous system and the
immune system, global impacts of chronic mAb treatment
especially in humanswill need further study. Furthermore,
while we modified transplanted cells to express luc/GFP
for in vivo BLI, alternate methods will be required for
non-invasive cell tracking in humans. Current techniques,
such as superparamagnetic iron oxide labelling or use of
radiotracers, can become diluted over time and are also
limited by the inability to distinguish between live cells
versus phagocytosed dead cell debris.91,92 Thus, future
studies must also address a viable cell tracking approach
in humans.
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The present study has a number of limitations and is
focused on optimizing survival of hNSC grafts in murine
models, including 5XFAD model of Alzheimer’s disease.
Our data demonstrate cell survival in an AD mouse
model; still, many questions regarding therapeutic bene-
fit of hNSCs and potential mechanisms of action remain
to be answered in ongoing larger-scale preclinical stud-
ies. We show that dual mAb therapy and the anxiety
from repeated handling/injections do not adversely affect
the fidelity of the cognitive deficits seen in this model.42
However, these studies were not designed or powered
to assess efficacy of hNSCs as a therapy for Alzheimer’s
disease. Our studies with mAb immunosuppression are
limited to a single human NSC line that is currently
under therapeutic development for AD as part of the NIA
Alzheimer’sDrugDevelopment Program (5U01AG057562).
Larger-scale efficacy studies are ongoing, enabled by dis-
coveries presented here. Feasibility must also be estab-
lished for other cell types of interest, such as those derived
from iPS or ES cells. We also altered our cell line to
express luciferin and GFP. We therefore cannot conclude
that graft survival was not purely mediated by immune
tolerance to expression of luciferin or GFP specifically,
as opposed to other human epitopes on the transplanted
cells.
While we demonstrated superiority of dual mAb

treatment to traditional immunosuppression, it remains
unclear if maintenance mAb treatments are required
indefinitely. Ongoing weekly antibody infusions
would be challenging for patients, although infusion
in human subjects could be extended based on anti-
body pharmacokinetics93 or using techniques to extend
antibody half-life94 Animal data suggest cessation of
immunosuppression results in graft loss even at later time
points,32 although scant human data show persistence of
some cells after a limited course of immunosuppression.95
As mAb mature in the clinical realm, their use

and potential drawbacks will require long-term study.
Although current solid organ/bone marrow transplant
patients carry elevated risk of infection and medication
side effets with current immunosuppressants, ongoing
depletion of CD4 and CD40L in humans is also likely to
carry some risk. While we did not see significant adverse
events in our well-controlled animal population, infection
risks and adverse effects of sustained CD4/CD40L deple-
tion will need to be accounted for and compared to tradi-
tional regimens in any future application in humans.96,97
Given themechanismof targeting costimulatory activation
in the presence of transplanted stem cell antigen presen-
tation, it is theoretically possible host tolerance could be
induced or that T cells could be rendered anergic to trans-
planted antigens.80,87 In future studies, if a limited course
of mAb therapy could be defined that preserves stem cell

viability, side effect profiles and translational potential
could be improved even further.
The results presented here are important for several

reasons. Establishing an efficacious targeted immuno-
suppression treatment that ensures hNSC graft survival
enables preclinical investigation and translation of cell-
based therapeutics in the CNS. We have demonstrated
durable xenograft cell survival over an extended period of
at least 28 weeks, longer than other reported studies.31,32
This informs future preclinical studies that may require
longer timelines and serves as a guideline for cellular
therapies that translate to early clinical trials. As the advan-
tages of stem cell-based treatment paradigms become
increasingly utilized, the robust immunosuppression regi-
men outlined herewill optimize long-term rates of success.

5 CONCLUSIONS

mAbs (anti-CD4 and anti-CD40L) enable long-term (>6
months) survival of hNSCs grafted into brains of laboratory
mice and amousemodel of Alzheimer’s disease. This facil-
itates robust preclinical study of cell-based therapy for CNS
disorders and fast-tracks translation of stem cell therapy to
early phase clinical trials.
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