We have found that **blood pressure, BMI (body mass index) and fat around the waist** are all linked to cognitive decline.

Obesity

Obesity, especially in midlife, **increases risk of developing Alzheimer’s**.

Both prediabetes and diabetes correlate with **increased cognitive impairment** over time and **loss of brain matter** on MRI.

Diet is key

Nerves can take **unsaturated fats** and easily turn them into ATP for cellular energy.

Saturated fats are more difficult for nerve cells to process into energy. This results in an accumulation of toxic waste, causing inflammation and nerve injury.

Saturated fats not only damage nerves but also surrounding support cells (glia) compounding negative effects.

A diet rich in saturated fats causes inflammation and changes in cognitive function. This inflammation occurs **after only 3 days** and involves one of the primary immune cells of the brain, the microglia.

Effects of Exercise

Neurogenesis

Exercise increases the birth of stem cells in the brain.

Increased glucose uptake

Especially important for Alzheimer’s patients.

Improved brain chemistry

Exercise increases a neurotransmitter deficient in Alzheimer’s patients, ACETYLCHOLINE.

Brain Health

Both prediabetes and diabetes correlate with increased cognitive impairment over time and loss of brain matter on MRI.

A diet rich in saturated fats causes inflammation and changes in cognitive function. This inflammation occurs after only 3 days and involves one of the primary immune cells of the brain, the microglia.

Diet is key

Nerves can take unsaturated fats and easily turn them into ATP for cellular energy.

Saturated fats are more difficult for nerve cells to process into energy. This results in an accumulation of toxic waste, causing inflammation and nerve injury.

Saturated fats not only damage nerves but also surrounding support cells (glia) compounding negative effects.

A diet rich in saturated fats causes inflammation and changes in cognitive function. This inflammation occurs after only 3 days and involves one of the primary immune cells of the brain, the microglia.

Effects of Exercise

Neurogenesis

Exercise increases the birth of stem cells in the brain.

Increased glucose uptake

Especially important for Alzheimer’s patients.

Improved brain chemistry

Exercise increases a neurotransmitter deficient in Alzheimer’s patients, ACETYLCHOLINE.