Neurobiol Dis — Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection

Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection

Abstract:

The coronavirus disease 2019 (COVID-19) pandemic is responsible for 267 million infections and over 5 million deaths globally. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded RNA beta-coronavirus, which causes a systemic inflammatory response, multi-organ damage, and respiratory failure requiring intubation in serious cases. SARS-CoV-2 can also trigger neurological conditions and syndromes, which can be long-lasting and potentially irreversible. Since COVID-19 infections continue to mount, the burden of SARS-CoV-2-induced neurologic sequelae will rise in parallel. Therefore, understanding the spectrum of neurological clinical presentations in SARS-CoV-2 is needed to manage COVID-19 patients, facilitate diagnosis, and expedite earlier treatment to improve outcomes. Furthermore, a deeper knowledge of the neurological SARS-CoV-2 pathomechanisms could uncover potential therapeutic targets to prevent or mitigate neurologic damage secondary to COVID-19 infection. Evidence indicates a multifaceted pathology involving viral neurotropism and direct neuroinvasion along with cytokine storm and neuroinflammation leading to nerve injury. Importantly, pathological processes in neural tissue are non-cell-autonomous and occur through a concerted breakdown in neuron-glia homeostasis, spanning neuron axonal damage, astrogliosis, microgliosis, and impaired neuron-glia communication. A clearer mechanistic and molecular picture of neurological pathology in SARS-CoV-2 may lead to effective therapies that prevent or mitigate neural damage in patients contracting and developing severe COVID-19 infection.