
Welcome. The central focus of this laboratory is to examine molecular mechanisms involved in the folding, trafficking, and targeting of newly-synthesized endocrine secretory proteins.
Projects currently concentrate on two cell types relevant to issues of health and disease:
- pancreatic beta cells that store insulin in secretory granules for release to the bloodstream in response to an increase in blood glucose or other secretagogues, and
- thyroid epithelial cells that use thyroglobulin (Tg) as a precursor for iodination in the synthesis of thyroid hormone. In these cell types, the lab is particularly interested in protein interactions that allow the secretory pathway [comprising the endoplasmic reticulum (ER), Golgi complex, secretory vesicles, as well as organelles of the endosome-lysosome-autophagosome system] to optimize production of polypeptide-derived hormones.
Research
Secretory Protein Folding, Sorting, and Targeting
1a). We are investigating proinsulin folding in the endoplasmic reticulum (ER). Recent evidence strongly implicates proinsulin misfolding in various genetic forms of diabetes mellitus, and possible in the most common form of diabetes known as "type 2" diabetes. We have identified misfolded isoforms of proinsulin by virtue of mispaired disulfide bonds, and examined interactions of these misfolded forms with ER molecular chaperones.
1b). We are investigating autosomal dominant diabetes caused by mutations in the coding sequence of preproinsulin. Evidence since 2007 shows such mutations to be the second most common cause of congenital neonatal diabetes. We have been characterizing misfolding of these mutants as well as exploring molecular mechanisms for how the mutant proinsulins may impair production of insulin derived from the nonmutant preproinsulin allele. As a model, we are examining Akita mice which exhibit similar autosomal dominant neonatal diabetes caused by a mutation in the preproinsulin coding sequence from just one of the four alleles of mouse insulin.
1c). We have developed a new fluorescent proinsulin called hProCpepGFP, and a transgenic mouse line expressing this fluorescent proinsulin exclusively in pancreatic beta cells. The hProCpepGFP allows for production in the mice of authentic human insulin as well as stoichiometric quantities of CpepGFP, which can be followed by fluorescence microscopy in live mice as a quantifiable measure of
pancreatic insulin content.
1d). We are concentrating on ways to modulate the ER environment to impact on proinsulin folding, including small molecules that may be of benefit to insulin production, as well as manipulation of ER oxidoreductase activity.
1e). We continue our long track-record of interest in insulin secretory granule biogenesis and dynamics, including studies of various protein traffic regulators, as well as the pancreatic beta cell-specific zinc transporter.
2a). We have been concentrating on humans and mice with congenital hypothyroidism caused by an Endoplasmic Reticulum Storage Disease as a consequence of expression of misfolded mutant thyroglobulin (Tg). Many human families have been described with the disease, and the thyroglobulin mutations in these families are known. We cloned the mutation causing congenital goiter in cog/cog mice, and this involves a single amino acid change contained within the cholinesterase-like (ChEL) domain of Tg. This same domain is also involved in cases of human hypothyroidism. In the case of the mice, the result is surprising since Tg is comprised of 2746 amino acids and the single point mutation does not appear until residue 2263 -- yet we have generated positive proof that there is misfolding within the first 1450 amino acid stretch of polypeptide (that does not contain the mutation). A story is developing in which the carboxyl-terminal ChEL domain functions as an intramolecular chaperone for the upstream part of the Tg protein. Deletion of the ChEL domain leaves the truncated amino-terminal Tg unable to be transported from the ER, but expression of the ChEL domain as a separate secretory protein rescues the truncated Tg.
2b). Congenital hypothyroidism in the rat dwarf (rdw) is also caused by a single point mutation in the ChEL domain. However, the dwarf rat develops an unusually hypoplastic (small) thyroid gland despite an increased in the blood levels of the growth promoting hormone known as "thyroid stimulating hormone" (TSH). We are concentrating on the hypothesis that, as a consequence of expression of the mutant Tg protein, thyroid cell death is the cause of the hypoplastic thyroid gland. Studies indicate that the mutant rdw Tg protein is very difficult to completely degrade. The degradation process known as ERAD, is under active investigation for mutant Tg.
2c). Transgenic mice have been created in which the rdw mutation has been cloned into mouse Tg, expressed exclusively in thyroid cells. The transgenic animals have hypothyroidism and a small thyroid, allowing for new investigation into the underlying cellular mechanisms of thyroid disease in ways that cannot be studied in humans.
2d). Tg is a homodimeric protein. New studies show that ChEL itself is a homodimer, just like its homologs, acetylcholinesterase and neuroligins. Dimerization of Tg is essential for Tg secretion and thyroid hormone synthesis. A four-helix bundle mechanism for Tg dimerization is proposed and mutants that may perturb or augment dimerization have been identified.
2e). We have been interested in polarized protein trafficking, i.e., selective delivery to the apical or basolateral plasma membrane domains, of thyroid exportable proteins. Tg and certain key thyroid enzymes are nearly exclusively distributed to the apical cell surface. Mechanisms of apical protein delivery have been a longstanding goal of this project.
Researching Proinsulin Misfolding to Understand Diabetes
http://labblog.uofmhealth.org/industry-dx/researching-proinsulin-misfolding-to-understand-diabetes
Personnel
Peter Arvan, MD, PhD
Principal Investigator
Chief, Division of Metabolism, Endocrinology & Diabetes
parvan@umich.edu
Leena Haataja, PhD
Research Investigator
leenah@umich.edu
Dennis Larkin
Laboratory Supervisor
dlarkin@med.umich.edu
Anoop Arunagiri, PhD
Postdoctoral Fellow
anooparu@med.umich.edu
Alam Maroof, PhD
Postdoctoral Fellow
mdal@umich.edu
Anis Hassan
Lab Technician
anisf@umich.edu
Hao Zhang
Lab Technician
zhanhao@umich.edu
Undergraduate Students
Praveen Samy
Inis Isak
Kevin Landrum
Kristina Mallabo
Nadeed Sadique
Grants
- Thyrocyte Protein Transport to the Cell Surface, NIDDK
- Peptide Hormone Sorting to the Secretory/Storage Granule, NIDDK
- High Quality Proinsulin Folding Requires ERAD of Proinsulin, NIDDK
- Modifiers of Proinsulin Influence T2D Susceptibility, NIDDK
- Multidisciplinary Training Program in Basic Diabetes Research, NIDDK
Recent Publications
- Lessons from animal models of endocrine disorders caused by defects of protein folding in the secretory pathway. - Morishita Y, Arvan P. Mol Cell Endocrinol. 2020 Jan 1;499:110613. doi: 10.1016/j.mce.2019.110613. Epub 2019 Oct 9.
- Abnormalities in proinsulin processing in islets from individuals with longstanding T1D. - Sims EK, Syed F, Nyalwidhe J, Bahnson HT, Haataja L, Speake C, Morris MA, Balamurugan AN, Mirmira RG, Nadler J, Mastracci TL, Arvan P, Greenbaum CJ, Evans-Molina C. Transl Res. 2019 Nov;213:90-99. doi: 10.1016/j.trsl.2019.08.001. Epub 2019 Aug 9.
-
PDIA1/P4HB is required for efficient proinsulin maturation and ß cell health in response to diet induced obesity. - Jang I, Pottekat A, Poothong J, Yong J, Lagunas-Acosta J, Charbono A, Chen Z, Scheuner DL, Liu M, Itkin-Ansari P, Arvan P, Kaufman RJ. Elife. 2019 Jun 11;8. pii: e44528. doi: 10.7554/eLife.44528.
- Proinsulin misfolding is an early event in the progression to type 2 diabetes. Arunagiri A, Haataja L, Pottekat A, Pamenan F, Kim S, Zeltser LM, Paton AW, Paton JC, Tsai B, Itkin-Ansari P, Kaufman RJ, Liu M, Arvan P.
-
Cells Deploy a Two-Pronged Strategy to Rectify Misfolded Proinsulin Aggregates. Cunningham CN, Williams JM, Knupp J, Arunagiri A, Arvan P, Tsai B. Mol Cell. 2019 Aug 8;75(3):442-456.e4. doi: 10.1016/j.molcel.2019.05.011. Epub 2019 Jun 5.
-
Response to Comment on Sims et al. Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes. Diabetes Care 2019;42:258-264. Sims EK, Bahnson HT, Nyalwidhe J, Haataja L, Davis AK, Speake C, DiMeglio LA, Blum J, Morris MA, Mirmira RG, Nadler J, Mastracci TL, Marcovina S, Qian WJ, Yi L, Swensen AC, Yip-Schneider M, Schmidt CM, Considine RV, Arvan P, Greenbaum CJ, Evans-Molina C. Diabetes Care. 2019 May;42(5):e85-e86. doi: 10.2337/dci19-0012.
-
Preservation of circadian rhythms by the protein folding chaperone, BiP. Pickard A, Chang J, Alachkar N, Calverley B, Garva R, Arvan P, Meng QJ, Kadler KE. FASEB J. 2019 Jun;33(6):7479-7489. doi: 10.1096/fj.201802366RR. Epub 2019 Mar 19.
-
The role of thyroglobulin in thyroid hormonogenesis. Citterio CE, Targovnik HM, Arvan P. Nat Rev Endocrinol. 2019 Jun;15(6):323-338. doi: 10.1038/s41574-019-0184-8. Review.
-
Increased mitochondrial respiration promotes survival from endoplasmic reticulum stress. Knupp J, Arvan P, Chang A. Cell Death Differ. 2019 Mar;26(3):487-501. doi: 10.1038/s41418-018-0133-4. Epub 2018 May 23.
-
Relationship between the dimerization of thyroglobulin and its ability to form triiodothyronine. Citterio CE, Morishita Y, Dakka N, Veluswamy B, Arvan P. J Biol Chem. 2018 Mar 30;293(13):4860-4869. doi: 10.1074/jbc.RA118.001786. Epub 2018 Feb 12.
In the News
- Dr. Peter Arvan - Unraveling the Manufacturing Process - Department of Internal Medicine News, January 2020
- How Proinsulin Misfolding Is a Prelude to Type 2 Diabetes - Michigan Medicine Health Lab, October 2019
- Is Type 2 Diabetes Reversible? - U.S. News & World Report, April 2019
- Researching Proinsulin Misfolding to Understand Diabetes - Michigan Medicine Health Lab, November 2016
- Weird Aches, Dry Skin, Horrible Fatigue, Puffy Face: I Had a Thyroid Problem - The Washington Post, May 2016
- Shining a Light on Pancreatic Insulin - Michigan Medicine Health Lab, March 2016
Contact Info. & Useful Links
Contact Information
University of Michigan Health System
Brehm Center for Diabetes Research
1000 Wall Street, 5th floor Brehm Tower
Ann Arbor, MI 48105
Campus Address: Suite 5100 Brehm Tower, SPC 5714
Peter Arvan, MD, PhD
parvan@umich.edu
Sheila Branham, Division Chief Assistant
phone: (734) 936-5505
fax: (734) 936-6684
branhams@umich.edu